Details

Joining of Polymer-Metal Hybrid Structures


Joining of Polymer-Metal Hybrid Structures

Principles and Applications
1. Aufl.

von: Sergio T. Amancio Filho, Lucian-Attila Blaga

153,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 21.12.2017
ISBN/EAN: 9781119466772
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive introduction to the concepts of joining technologies for hybrid structures</b></p> <p>This book introduces the concepts of joining technology for polymer-metal hybrid structures by addressing current and new joining methods. This is achieved by using a balanced approach focusing on the scientific features (structural, physical, chemical, and metallurgical/polymer science phenomena) and engineering properties (mechanical performance, design, applications, etc.) of the currently available and new joining processes. It covers such topics as mechanical fastening, adhesive bonding, advanced joining methods, and statistical analysis in joining technology.</p> <p><i>Joining of Polymer-Metal Hybrid Structures: Principles and Applications</i> is structured by joining principles, in adhesion-based, mechanical fastened, and direct-assembly methods. The book discusses such recent technologies as friction riveting, friction spot joining and ultrasonic joining. This is used for applications where the original base material characteristics must remain unchanged. Additional sections cover the main principles of statistical analysis in joining technology (illustrated with examples from the field of polymer-metal joining). Joining methods discussed include mechanical fastening (bolting, screwing, riveting, hinges, and fits of polymers and composites), adhesive bonding, and other advanced joining methods (friction staking, laser welding, induction welding, etc.).</p> <ul> <li>Provides a combined engineering and scientific approach used to describe principles, properties, and applications of polymer-metal hybrid joints </li> <li>Describes the current developments in design of experiments and statistical analysis in joining technology with emphasis on joining of polymer-metal hybrid structures </li> <li>Covers recent innovations in joining technology of polymer-metal hybrid joints including friction riveting, friction spot joining, friction staking, and ultrasonic joining </li> <li>Principles illustrated by pictures, 3D-schemes, charts, and drawings using examples from the field of polymer-metal joining </li> </ul> <p><i>Joining of Polymer-Metal Hybrid Structures: Principles and Applications</i> will appeal to chemical, polymer, materials, metallurgical, composites, mechanical, process, product, and welding engineers, scientists and students, technicians, and joining process professionals.</p>
<p>List of Contributors xiii</p> <p>Preface xvii</p> <p><b>Part I Joining Processes Based on Adhesion Forces </b><b>1</b></p> <p><b>1 Principles of Adhesive Bonding </b><b>3<br /></b><i>Mariana D. Banea, Lucas F. M. da Silva, and Raul D. S. G. Campilho</i></p> <p>1.1 Introduction 3</p> <p>1.2 General Basics 4</p> <p>1.3 Advantages and Disadvantages of Adhesive Bonding 5</p> <p>1.4 Effect of Surface Preparation and the Environmental Factors 7</p> <p>1.5 Adhesive Properties 10</p> <p>1.6 Joint Manufacture 12</p> <p>1.6.1 Preparation of the Adherends 13</p> <p>1.6.2 Adhesive Application 14</p> <p>1.6.3 Joint Assembly 14</p> <p>1.6.4 Curing 16</p> <p>1.7 Joint Design 16</p> <p>1.7.1 Failure Mode 17</p> <p>1.7.2 Analysis of Adhesively Bonded Joints 18</p> <p>1.7.2.1 Analytical Methods 18</p> <p>1.7.2.2 Finite Element Method 19</p> <p>1.8 Recent Developments 22</p> <p>1.9 Conclusions 23</p> <p>References 24</p> <p><b>2 Adhesive Bonding of Polymer Composites to Lightweight Metals </b><b>29<br /></b><i>Raul D. S. G. Campilho, Lucas F.M. da Silva, and Mariana D. Banea</i></p> <p>2.1 Introduction 29</p> <p>2.2 Characteristics and Applications of Hybrid Bonding 31</p> <p>2.3 Experimental Evaluation of Hybrid Structures 35</p> <p>2.3.1 Preparation of the Adherends 35</p> <p>2.3.2 Application of the Adhesive 36</p> <p>2.3.3 Testing of the Specimens 37</p> <p>2.3.4 Experimental Works 38</p> <p>2.4 Predictive Techniques for Hybrid Structures 41</p> <p>2.4.1 Analytical 43</p> <p>2.4.2 Numerical 45</p> <p>2.4.2.1 Continuum Modeling 45</p> <p>2.4.2.2 Damage Mechanics 46</p> <p>2.5 Conclusions 54</p> <p>List of Abbreviations 55</p> <p>References 56</p> <p><b>3 Friction Spot Joining (FSpJ) </b><b>61<br /></b><i>Seyed M. Goushegir and Sergio T. Amancio-Filho</i></p> <p>3.1 Introduction 61</p> <p>3.2 Principles of the FSpJ 63</p> <p>3.2.1 FSpJ Tool 63</p> <p>3.2.2 FSpJ Equipment 63</p> <p>3.2.3 FSpJ Process 64</p> <p>3.2.4 Bonding Mechanisms 69</p> <p>3.2.5 Process Parameters 71</p> <p>3.3 Heat Generation During FSpJ Process 74</p> <p>3.4 Microstructural Zones in FSpJ 75</p> <p>3.5 Mechanical Properties of FSp Joints 77</p> <p>3.5.1 Local Mechanical Properties 77</p> <p>3.5.1.1 Metal (AA2024) 77</p> <p>3.5.1.2 Composite (Short Glass-Fiber-Reinforced PPS) 79</p> <p>3.5.2 Quasistatic Global Mechanical Properties 80</p> <p>3.5.2.1 Influence of Surface Pretreatment 80</p> <p>3.5.2.2 Influence of Joint Geometry 81</p> <p>3.5.3 Cyclic Global Mechanical Properties 86</p> <p>3.6 Comparison Between the Quasistatic Mechanical Performance of FSp and State-of-the-Art Adhesively Bonded Joints 87</p> <p>3.7 Defects in FSpJ 88</p> <p>3.8 Advantages, Limitations, and Potential Applications 91</p> <p>3.9 Final Remarks 94</p> <p>References 94</p> <p><b>4 Induction Welding of Metal/Composite Hybrid Structures </b><b>101<br /></b><i>Mirja Didi and Peter Mitschang</i></p> <p>4.1 Introduction 101</p> <p>4.2 Description of the Principles of the Joining Technique 102</p> <p>4.2.1 Process Overview 102</p> <p>4.2.2 Heating Process 103</p> <p>4.2.2.1 Geometry of the Inductor and the Magnetic Field 105</p> <p>4.2.2.2 Skin Effect 106</p> <p>4.2.3 Theory of Adhesion and Influence of the Surface 109</p> <p>4.2.4 Thermal Degradation 113</p> <p>4.2.5 Deconsolidation and Consolidation 115</p> <p>4.2.5.1 Deconsolidation 115</p> <p>4.2.5.2 Consolidation 116</p> <p>4.2.6 Cooling 116</p> <p>4.2.7 Internal Stresses in the Weld Zone 116</p> <p>4.2.8 Process Variants 117</p> <p>4.2.8.1 Three-Phase Discontinuous Welding Process 117</p> <p>4.2.8.2 Spot Welding 119</p> <p>4.3 Mechanical Performance of Induction Welds in Comparison to Adhesive Bonding 121</p> <p>4.4 Advantages and Limitations 123</p> <p>4.5 Applications 123</p> <p>4.6 Available Equipment and Tools 124</p> <p>4.7 Further Reading and Additional Literature 124</p> <p>References 124</p> <p><b>5 Direct Joining of Metal and Plastic with Laser </b><b>127<br /></b><i>Seiji Katayama and Yousuke Kawahito</i></p> <p>5.1 Introduction 127</p> <p>5.2 Direct Joining Procedures of Metal and Plastic with Laser (LAMP Joining Procedure) 128</p> <p>5.3 Features and Mechanical Properties of Metal–Plastic Laser Joints (LAMP Joints) 131</p> <p>5.4 Mechanisms of LAMP (Laser-Assisted Metal and Plastic) Direct Joining 135</p> <p>5.5 Reliability Evaluation Tests 140</p> <p>5.6 Evolution of LAMP Joining 141</p> <p>5.7 Conclusions 143</p> <p>References 143</p> <p><b>Part II Joining Processes Based on Mechanical Interlocking </b><b>145</b></p> <p><b>6 Principles of Mechanical Fastening in Structural Applications </b><b>147<br /></b><i>Carlos E. Chaves, Diego J. Inforzato, and Fernando F. Fernandez</i></p> <p>6.1 Introduction 147</p> <p>6.2 General Joint Structural Design 148</p> <p>6.3 Shear Joints 149</p> <p>6.3.1 Failure Modes 149</p> <p>6.3.2 Models for Joint Analysis and Dimensioning 154</p> <p>6.3.3 Secondary Bending 156</p> <p>6.3.4 Multiple-Site Damage in Riveted Joints 157</p> <p>6.3.5 Influence of the Squeezing Force in Riveted Joints 158</p> <p>6.3.6 Welded and Bonded Shear Joints 159</p> <p>6.4 Tension Joints 160</p> <p>6.4.1 Prying Effect 163</p> <p>6.4.2 Fatigue Behavior of Tension Joints 163</p> <p>6.4.3 Methods for Estimation of Contact Area and Member’s Stiffness in Tension Joints 164</p> <p>6.5 Tolerances in Joint Design 165</p> <p>6.6 Materials 166</p> <p>6.6.1 Material Properties 167</p> <p>6.6.2 Corrosion and Protection 171</p> <p>6.6.3 Material Selection 174</p> <p>6.7 Fasteners 177</p> <p>6.7.1 Design Criteria 182</p> <p>6.8 Summary and Final Remarks 183</p> <p>References 183</p> <p><b>7 Mechanical Fastening of Composite and Composite–Metal Structures </b><b>187<br /></b><i>Pedro P. Camanho and Giuseppe Catalanotti</i></p> <p>7.1 Introduction 187</p> <p>7.2 Semianalytical Method for the Design of Composite Joints 189</p> <p>7.2.1 Prediction of Net-Tension Failure 189</p> <p>7.3 Numerical Method for the Design of Composite Joints 193</p> <p>7.4 Conclusions 199</p> <p>Acknowledgments 200</p> <p>References 200</p> <p><b>8 Friction Riveting of Polymer–Metal Multimaterial Structures </b><b>203<br /></b><i>Sergio T. Amancio-Filho and Lucian-Attila Blaga</i></p> <p>8.1 Introduction 203</p> <p>8.2 FricRiveting: Principles of the Technique 205</p> <p>8.2.1 Joining Equipment and Procedure 206</p> <p>8.3 FricRiveting: Process Parameters and Variables 206</p> <p>8.3.1 Process Parameters 207</p> <p>8.3.2 Process Variables 208</p> <p>8.4 FricRiveting: Process Phases and Heat Generation 209</p> <p>8.5 Thermal History 211</p> <p>8.6 Microstructure 214</p> <p>8.6.1 MTMAZ 1 220</p> <p>8.6.2 MTMAZ 2 222</p> <p>8.7 Physical–Chemical Changes in the Polymeric Material 225</p> <p>8.8 Mechanical Performance 228</p> <p>8.8.1 Joint Local Mechanical Properties 228</p> <p>8.8.2 Joint Global Mechanical Performance 231</p> <p>8.8.2.1 Tensile Strength 231</p> <p>8.8.2.2 Lap Shear Strength 235</p> <p>8.9 Envisaged Applications 241</p> <p>8.10 Conclusions 241</p> <p>Acknowledgments 242</p> <p>References 243</p> <p>List of Awards and Prizes Received by Works on FricRiveting 247</p> <p><b>9 Staking of Polymer–Metal Hybrid Structures </b><b>249<br /></b><i>André B. Abibe and Sergio T. Amancio-Filho</i></p> <p>9.1 Introduction 249</p> <p>9.2 Types of Staking Processes 251</p> <p>9.2.1 Cold Staking 251</p> <p>9.2.2 Hot Staking 252</p> <p>9.2.2.1 Thermal Staking 253</p> <p>9.2.2.2 Hot Air Cold Staking (HACS) 253</p> <p>9.2.2.3 Infrared and Laser Staking 253</p> <p>9.2.2.4 Ultrasonic Staking 254</p> <p>9.2.3 Advanced Staking Processes 254</p> <p>9.2.3.1 Injection Clinching Joining (ICJ) 255</p> <p>9.2.3.2 Friction Staking (FricStaking) 256</p> <p>9.2.3.3 Ultrasonic Upsetting 256</p> <p>9.2.3.4 Thermoclinching 257</p> <p>9.3 Characteristics of Staked Joints 257</p> <p>9.3.1 Joint Formation 257</p> <p>9.3.2 Microstructure 259</p> <p>9.3.3 Defects 261</p> <p>9.3.4 Characterization of Local Properties 262</p> <p>9.3.4.1 Local Mechanical Properties 262</p> <p>9.3.4.2 Physicochemical and Structural Properties 263</p> <p>9.4 Design Considerations for Staked Joints 264</p> <p>9.4.1 Through-Hole Design 265</p> <p>9.4.2 Stud Design 266</p> <p>9.4.3 Stake Head/Forming Tool Design 267</p> <p>9.5 Mechanical Behavior of Staked Joints 269</p> <p>9.6 Final Remarks 270</p> <p>List of Abbreviations 271</p> <p>References 271</p> <p><b>Part III Joining Processes Based on Direct-Assembly Methods </b><b>275</b></p> <p><b>10 Injection Overmolding of Polymer–Metal Hybrid Structures </b><b>277<br /></b><i>Mica Grujicic</i></p> <p>10.1 Basics of Polymer–Metal Hybrid Technology 277</p> <p>10.2 Classification of PMH Technologies 280</p> <p>10.2.1 Injection Overmolding PMH Technology 280</p> <p>10.2.2 Metal Overmolding PMH Technology 281</p> <p>10.2.3 Adhesively Bonded Polymer–Metal Hybrid Structures 282</p> <p>10.2.4 Direct-Adhesion Polymer–Metal Hybrid Technology 282</p> <p>10.3 Mechanisms for Polymer/Metal Joining 285</p> <p>10.3.1 Injection Overmolded PMH Structures 285</p> <p>10.3.2 Metal Overmolded PMH Structures 285</p> <p>10.3.3 Adhesively Bonded PMH Structures 285</p> <p>10.3.4 Direct-Adhesion PMH Structures 286</p> <p>10.4 Computational Engineering Analyses of PMH Technologies 286</p> <p>10.4.1 PMH Component Design and Optimization 287</p> <p>10.4.2 Modeling and Simulations of the Injection-Molding Process 288</p> <p>10.4.2.1 Optimal Placement and Number of Injection Points 289</p> <p>10.4.2.2 Mold-Filling Analysis 289</p> <p>10.4.2.3 Flow-Induced Fiber-Orientation Distribution Analysis 291</p> <p>10.4.2.4 Mold-Packing Analysis 292</p> <p>10.4.2.5 In-Mold Stress Analysis 292</p> <p>10.4.2.6 Micromechanics-Based Derivation of the Effective Material Properties 294</p> <p>10.4.3 Ejected-Component Shrinkage and Warping Analysis 294</p> <p>10.4.4 PMH Component Structural Analysis 295</p> <p>10.5 Compatibility with Automotive BIW Manufacturing Process Chain 298</p> <p>10.6 Concluding Remarks 300</p> <p>References 300</p> <p><b>11 Ultrasonic Joining of Lightweight Alloy/Fiber-Reinforced Polymer Hybrid Structures </b><b>307<br /></b><i>Eduardo E. Feistauer and Sergio T. Amancio-Filho</i></p> <p>11.1 Introduction 307</p> <p>11.2 MIMStruct Manufacturing Route 309</p> <p>11.3 U-Joining: Principles of the Process 310</p> <p>11.3.1 Process Parameters 312</p> <p>11.3.2 Process Phases 313</p> <p>11.3.3 Process Variants 315</p> <p>11.3.4 Potential Applications 315</p> <p>11.4 Case Study on Ti-6Al-4V/GF-PEI Joints 315</p> <p>11.4.1 Materials 317</p> <p>11.4.1.1 MIMStruct Part 317</p> <p>11.4.1.2 Composite Part 318</p> <p>11.4.1.3 Joining Procedure 318</p> <p>11.4.2 Process Temperature 319</p> <p>11.4.3 Microstructure of the U-Joining Joints 320</p> <p>11.4.4 Local Mechanical Properties of MIMStruct Part 322</p> <p>11.4.5 Global Mechanical Properties of the U-Joining Joints 323</p> <p>11.4.6 Fracture Surface Analysis 326</p> <p>11.4.7 Conclusions 329</p> <p>11.5 Advantages and Limitations 329</p> <p>Acknowledgments 330</p> <p>References 330</p> <p><b>Part IV Design of Experiments and Statistical Analysis in Joining Process Development </b><b>335</b></p> <p><b>12 Factorial Design of Experiments for Polymer–Metal Joining </b><b>337<br /></b><i>Lucian-Attila Blaga, Gonçalo P. Cipriano, Arnaldo R. Gonzalez, and Sergio T. Amancio-Filho</i></p> <p>12.1 Introduction 337</p> <p>12.2 Design of Experiments 337</p> <p>12.2.1 Factorial Design of Experiments 339</p> <p>12.2.1.1 General Description 340</p> <p>12.2.1.2 Analysis of Variance 340</p> <p>12.2.1.3 Interpretation of Results and Design Validation 341</p> <p>12.2.2 Examples of Factorial Design of Experiments in Joining Process Development for Metal–Polymer Hybrid Structures 342</p> <p>12.2.2.1 Case Study 1 – Full-Factorial Design in Friction Riveting 343</p> <p>12.2.2.2 Case Study 2 – Factorial Design of Experiments in Single-Lap Friction Spot Joints 351</p> <p>12.3 Final Remarks 361</p> <p>References 362</p> <p><b>13 Taguchi Design and Response Surface Methodology for Polymer–Metal Joining </b><b>365<br /></b><i>Lucian-Attila Blaga, Gonçalo P. Cipriano, Arnaldo R. Gonzalez, and Sergio T. Amancio-Filho</i></p> <p>13.1 Introduction 365</p> <p>13.2 The Taguchi Design of Experiments 365</p> <p>13.2.1 General Description 365</p> <p>13.2.2 Analysis of Variance 368</p> <p>13.3 Example of Taguchi Design of Experiments in Joining of Metal to Composite Structures 368</p> <p>13.3.1 Case Study 1 – Taguchi L9 (3<sup>4</sup>) DoE in Double-Lap Friction Spot Joints 368</p> <p>13.3.1.1 Process Optimization 369</p> <p>13.3.1.2 Influence of the FSpJ Process Parameters on Joint Mechanical Performance by Taguchi Design of Experiments 370</p> <p>13.3.1.3 Conclusions of the Case Study 376</p> <p>13.4 Response Surface Methodology 376</p> <p>13.4.1 Introduction 376</p> <p>13.4.2 The Central Composite Design 379</p> <p>13.4.2.1 General Description 379</p> <p>13.4.3 The Box–Behnken Design 380</p> <p>13.4.3.1 General Description 381</p> <p>13.4.4 Case Study 2 – Central Composite Design in Friction Riveting 381</p> <p>13.4.4.1 Conclusions of the Case Study 386</p> <p>13.5 Other Surface Designs 386</p> <p>13.6 Final Remarks 387</p> <p>References 387</p> <p>Index 389</p>
<p><b>SERGIO T. AMANCIO-FILHO</b> was the group leader of the Advanced Polymer-Metal Hybrid Structures Group at the Helmholtz-Zentrum Geesthacht, Germany from 2010 to 2017. He is currently Full Professor at Graz University of Technology, Austria. <p><b>LUCIAN-ATTILA BLAGA</b> is a senior researcher in the Advanced Polymer-Metal Hybrid Structures Group at the Helmholtz-Zentrum Geesthacht, Germany.
<p><b>A COMPREHENSIVE INTRODUCTION TO THE CONCEPTS OF JOINING TECHNOLOGIES FOR HYBRID STRUCTURES</b> <p>This book introduces the concepts of joining technology for polymer-metal hybrid structures by addressing current and new joining methods. This is achieved by using a balanced approach focusing on the scientific features (structural, physical, chemical, and metallurgical/polymer science phenomena) and engineering properties (mechanical performance, design, applications, etc.) of the currently available and new joining processes. It covers such topics as mechanical fastening, adhesive bonding, advanced joining methods, and statistical analysis in joining technology. <p><i>Joining of Polymer-Metal Hybrid Structures: Principles and Applications</i> is structured by joining principles, in adhesion-based, mechanical fastened, and direct-assembly methods. The book discusses such recent technologies as friction riveting, friction spot joining and ultrasonic joining. This is used for applications where the original base material characteristics must remain unchanged. Additional sections cover the main principles of statistical analysis in joining technology (illustrated with examples from the field of polymer-metal joining). Joining methods discussed include mechanical fastening (bolting, screwing, riveting, hinges, and fits of polymers and composites), adhesive bonding, and other advanced joining methods (friction staking, laser welding, induction welding, etc.). <ul> <li>Provides a combined engineering and scientific approach used to describe principles, properties, and applications of polymer-metal hybrid joints</li> <li>Describes the current developments in design of experiments and statistical analysis in joining technology with emphasis on joining of polymer-metal hybrid structures</li> <li>Covers recent innovations in joining technology of polymer-metal hybrid joints including friction riveting, friction spot joining, friction staking, and ultrasonic joining</li> <li>Principles illustrated by pictures, 3D-schemes, charts, and drawings using examples from the field of polymer-metal joining</li> </ul> <p><i>Joining of Polymer-Metal Hybrid Structures: Principles and Applications</i> will appeal to chemical, polymer, materials, metallurgical, composites, mechanical, process, product, and welding engineers, scientists and students, technicians, and joining process professionals.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €