Details

Introduction to Chemical Engineering Computing


Introduction to Chemical Engineering Computing


2nd Edition (Update)

von: Bruce A. Finlayson

49,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.03.2014
ISBN/EAN: 9781118888377
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems</b></p> <p>Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly.</p> <p>Now in its <i>Second Edition, Introduction to Chemical Engineering Computing</i> is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including:</p> <ul> <li>Equations of state</li> <li>Chemical reaction equilibria</li> <li>Mass balances with recycle streams</li> <li>Thermodynamics and simulation of mass transfer equipment</li> <li>Process simulation</li> <li>Fluid flow in two and three dimensions</li> </ul> <p>All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective.</p> <p>Covering a broad range of disciplines and problems within chemical engineering, <i>Introduction to Chemical Engineering Computing</i> is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.</p>
Preface xv <p><b>1 Introduction 1</b></p> <p>Organization, 2</p> <p>Algebraic Equations, 3</p> <p>Process Simulation, 3</p> <p>Differential Equations, 3</p> <p>Appendices, 4</p> <p><b>2 Equations of State 7</b></p> <p>Equations of State—Mathematical Formulation, 8</p> <p>Solving Equations of State Using Excel (Single Equation in One Unknown), 12</p> <p>Solution Using “Goal Seek”, 12</p> <p>Solution Using “Solver”, 13</p> <p>Example of a Chemical Engineering Problem Solved Using “Goal Seek”, 13</p> <p>Solving Equations of State Using MATLAB (Single Equation in</p> <p>One Unknown), 15</p> <p>Example of a Chemical Engineering Problem Solved Using MATLAB, 16</p> <p>Another Example of a Chemical Engineering Problem Solved Using</p> <p>MATLAB, 18</p> <p>Equations of State With Aspen Plus, 20</p> <p>Example Using Aspen Plus, 20</p> <p>Specific Volume of a Mixture, 21</p> <p>Chapter Summary, 26</p> <p>Problems, 26</p> <p>Numerical Problems, 28</p> <p><b>3 Vapor–Liquid Equilibria 29</b></p> <p>Flash and Phase Separation, 30</p> <p>Isothermal Flash—Development of Equations, 30</p> <p>Example Using Excel, 32</p> <p>Thermodynamic Parameters, 33</p> <p>Example Using MATLAB, 34</p> <p>Example Using Aspen Plus, 35</p> <p>Nonideal Liquids—Test of Thermodynamic Model, 39</p> <p>NIST Thermo Data Engine in Aspen Plus, 41</p> <p>Chapter Summary, 44</p> <p>Problems, 44</p> <p>Numerical Problems, 48</p> <p><b>4 Chemical Reaction Equilibria 49</b></p> <p>Chemical Equilibrium Expression, 50</p> <p>Example of Hydrogen for Fuel Cells, 51</p> <p>Solution Using Excel, 52</p> <p>Solution Using MATLAB, 53</p> <p>Chemical Reaction Equilibria with Two or More Equations, 56</p> <p>Multiple Equations, Few Unknowns Using MATLAB, 56</p> <p>Chemical Reaction Equilibria Using Aspen Plus, 59</p> <p>Chapter Summary, 59</p> <p>Problems, 60</p> <p>Numerical Problems, 63</p> <p><b>5 Mass Balances with Recycle Streams 65</b></p> <p>Mathematical Formulation, 66</p> <p>Example Without Recycle, 68</p> <p>Example with Recycle; Comparison of Sequential and Simultaneous</p> <p>Solution Methods, 70</p> <p>Example of Process Simulation Using Excel for Simple Mass Balances, 72</p> <p>Example of Process Simulation Using Aspen Plus for Simple</p> <p>Mass Balances, 73</p> <p>Example of Process Simulation with Excel Including Chemical Reaction</p> <p>Equilibria, 74</p> <p>Did the Iterations Converge?, 75</p> <p>Extensions, 76</p> <p>Chapter Summary, 76</p> <p>Class Exercises, 76</p> <p>Class Discussion (After Viewing Problem 5.10 on the Book Website), 76</p> <p>Problems, 77</p> <p><b>6 Thermodynamics and Simulation of Mass Transfer Equipment 85</b></p> <p>Thermodynamics, 86</p> <p>Guidelines for Choosing, 89</p> <p>Properties Environment | Home | Methods Selection Assistant, 89</p> <p>Thermodynamic Models, 90</p> <p>Example: Multicomponent Distillation with Shortcut Methods, 91</p> <p>Multicomponent Distillation with Rigorous Plate-to-Plate Methods, 95</p> <p>Example: Packed Bed Absorption, 97</p> <p>Example: Gas Plant Product Separation, 100</p> <p>Example: Water Gas Shift Equilibrium Reactor with Sensitivity Block and</p> <p>Design Specification Block, 102</p> <p>Chapter Summary, 106</p> <p>Class Exercise, 106</p> <p>Problems (using Aspen Plus), 106</p> <p><b>7 Process Simulation 109</b></p> <p>Model Library, 110</p> <p>Example: Ammonia Process, 110</p> <p>Development of the Model, 112</p> <p>Solution of the Model, 115</p> <p>Examination of Results, 115</p> <p>Testing the Thermodynamic Model, 118</p> <p>Utility Costs, 118</p> <p>Greenhouse Gas Emissions, 120</p> <p>Convergence Hints, 120</p> <p>Optimization, 122</p> <p>Integrated Gasification Combined Cycle, 125</p> <p>Cellulose to Ethanol, 126</p> <p>Chapter Summary, 128</p> <p>Class Exercise, 128</p> <p>Problems, 128</p> <p>Problems Involving Corn Stover and Ethanol, 131</p> <p><b>8 Chemical Reactors 137</b></p> <p>Mathematical Formulation of Reactor Problems, 138</p> <p>Example: Plug Flow Reactor and Batch Reactor, 138</p> <p>Example: Continuous Stirred Tank Reactor, 140</p> <p>Using MATLAB to Solve Ordinary Differential Equations, 140</p> <p>Simple Example, 140</p> <p>Use of the “Global” Command, 142</p> <p>Passing Parameters, 143</p> <p>Example: Isothermal Plug Flow Reactor, 144</p> <p>Example: Nonisothermal Plug Flow Reactor, 146</p> <p>Using Comsol Multiphysics to Solve Ordinary Differential Equations, 148</p> <p>Simple Example, 148</p> <p>Example: Isothermal Plug Flow Reactor, 150</p> <p>Example: Nonisothermal Plug Flow Reactor, 151</p> <p>Reactor Problems with Mole Changes and Variable Density, 153</p> <p>Chemical Reactors with Mass Transfer Limitations, 155</p> <p>Plug Flow Chemical Reactors in Aspen Plus, 158</p> <p>Continuous Stirred Tank Reactors, 161</p> <p>Solution Using Excel, 162</p> <p>Solution Using MATLAB, 163</p> <p>CSTR with Multiple Solutions, 163</p> <p>Transient Continuous Stirred Tank Reactors, 164</p> <p>Chapter Summary, 168</p> <p>Problems, 169</p> <p>Numerical Problems (See Appendix E), 174</p> <p><b>9 Transport Processes in One Dimension 175</b></p> <p>Applications in Chemical Engineering—Mathematical Formulations, 176</p> <p>Heat Transfer, 176</p> <p>Diffusion and Reaction, 177</p> <p>Fluid Flow, 178</p> <p>Unsteady Heat Transfer, 180</p> <p>Introduction to Comsol Multiphysics, 180</p> <p>Example: Heat Transfer in a Slab, 181</p> <p>Solution Using Comsol Multiphysics, 181</p> <p>Solution Using MATLAB, 184</p> <p>Example: Reaction and Diffusion, 185</p> <p>Parametric Solution, 186</p> <p>Example: Flow of a Newtonian Fluid in a Pipe, 188</p> <p>Example: Flow of a Non-Newtonian Fluid in a Pipe, 190</p> <p>Example: Transient Heat Transfer, 193</p> <p>Solution Using Comsol Multiphysics, 193</p> <p>Solution Using MATLAB, 195</p> <p>Example: Linear Adsorption, 196</p> <p>Example: Chromatography, 199</p> <p>Pressure Swing Adsorption, 203</p> <p>Chapter Summary, 204</p> <p>Problems, 204</p> <p>Chemical Reaction, 204</p> <p>Chemical Reaction and Heat Transfer, 205</p> <p>Mass Transfer, 207</p> <p>Heat Transfer, 207</p> <p>Electrical Fields, 207</p> <p>Fluid Flow, 208</p> <p>Numerical Problems (See Appendix E), 213</p> <p><b>10 Fluid Flow in Two and Three Dimensions 215</b></p> <p>Mathematical Foundation of Fluid Flow, 217</p> <p>Navier–Stokes Equation, 217</p> <p>Non-Newtonian Fluid, 218</p> <p>Nondimensionalization, 219</p> <p>Option One: Slow Flows, 219</p> <p>Option Two: High-Speed Flows, 220</p> <p>Example: Entry Flow in a Pipe, 221</p> <p>Example: Entry Flow of a Non-Newtonian Fluid, 226</p> <p>Example: Flow in Microfluidic Devices, 227</p> <p>Example: Turbulent Flow in a Pipe, 230</p> <p>Example: Start-Up Flow in a Pipe, 233</p> <p>Example: Flow Through an Orifice, 235</p> <p>Example: Flow in a Serpentine Mixer, 239</p> <p>Microfluidics, 240</p> <p>Mechanical Energy Balance for Laminar Flow, 243</p> <p>Pressure Drop for Contractions and Expansions, 245</p> <p>Generation of Two-Dimensional Inlet Velocity Profiles for</p> <p>Three-Dimensional Simulations, 246</p> <p>Chapter Summary, 249</p> <p>Problems, 249</p> <p><b>11 Heat and Mass Transfer in Two and Three Dimensions 259</b></p> <p>Convective Diffusion Equation, 260</p> <p>Nondimensional Equations, 261</p> <p>Example: Heat Transfer in Two Dimensions, 262</p> <p>Example: Heat Conduction with a Hole, 264</p> <p>Example: Convective Diffusion in Microfluidic Devices, 265</p> <p>Example: Concentration-Dependent Viscosity, 268</p> <p>Example: Viscous Dissipation, 269</p> <p>Example: Chemical Reaction, 270</p> <p>Example: Wall Reactions, 272</p> <p>Example: Mixing in a Serpentine Mixer, 272</p> <p>Microfluidics, 274</p> <p>Characterization of Mixing, 276</p> <p>Average Concentration along an Optical Path, 276</p> <p>Peclet Number, 276</p> <p>Example: Convection and Diffusion in a Three-Dimensional T-Sensor, 278</p> <p>Chapter Summary, 280</p> <p>Problems, 280</p> <p>Steady, Two-Dimensional Problems, 280</p> <p>Heat Transfer with Flow, 283</p> <p>Reaction with Known Flow, 284</p> <p>Reaction with No Flow, 285</p> <p>Solve for Concentration and Flow, 286</p> <p>Numerical Problems, 289</p> <p><b>Appendix A HintsWhen Using Excel® 291</b></p> <p>Introduction, 291</p> <p>Calculation, 292</p> <p>Plotting, 293</p> <p>Import and Export, 294</p> <p>Presentation, 294</p> <p><b>Appendix B HintsWhen Using MATLAB® 297</b></p> <p>General Features, 298</p> <p>Screen Format, 298</p> <p>Stop/Closing the Program, 299</p> <p>m-files and Scripts, 299</p> <p>Workspaces and Transfer of Information, 300</p> <p>“Global” Command, 300</p> <p>Display Tools, 301</p> <p>Classes of Data, 301</p> <p>Programming Options: Input/Output, Loops, Conditional Statements, Timing, and Matrices, 302</p> <p>Input/Output, 302</p> <p>Loops, 303</p> <p>Conditional Statements, 303</p> <p>Timing Information, 304</p> <p>Matrices, 304</p> <p>Matrix Multiplication, 304</p> <p>Element by Element Calculations, 305</p> <p>More Information, 306</p> <p>Finding and Fixing Errors, 306</p> <p>Eigenvalues of a Matrix, 307</p> <p>Evaluate an Integral, 307</p> <p>Spline Interpolation, 307</p> <p>Interpolate Data, Evaluate the Polynomial, and Plot the Result, 308</p> <p>Solve Algebraic Equations, 309</p> <p>Using “fsolve”, 309</p> <p>Solve Algebraic Equations Using “fzero” or “fminsearch” (Both in Standard MATLAB), 309</p> <p>Integrate Ordinary Differential Equations that are Initial Value Problems, 309</p> <p>Differential-Algebraic Equations, 311</p> <p>Checklist for Using “ode45” and Other Integration Packages, 311</p> <p>Plotting, 312</p> <p>Simple Plots, 312</p> <p>Add Data to an Existing Plot, 312</p> <p>Dress Up Your Plot, 312</p> <p>Multiple Plots, 313</p> <p>3D Plots, 313</p> <p>More Complicated Plots, 314</p> <p>Use Greek Letters and Symbols in the Text, 314</p> <p>Bold, Italics, and Subscripts, 314</p> <p>Other Applications, 315</p> <p>Plotting Results from Integration of Partial Differential Equations Using Method of Lines, 315</p> <p>Import/Export Data, 315</p> <p>Import/Export with Comsol Multiphysics, 318</p> <p>Programming Graphical User Interfaces, 318</p> <p>MATLAB Help, 318</p> <p>Applications of MATLAB, 319</p> <p>Appendix C Hints When Using Aspen Plus® 321</p> <p>Introduction, 321</p> <p>Flowsheet, 323</p> <p>Model Library, 323</p> <p>Place Units on Flowsheet, 324</p> <p>Connect the Units with Streams, 324</p> <p>Data, 324</p> <p>Setup, 324</p> <p>Data Entry, 325</p> <p>Specify Components, 325</p> <p>Specify Properties, 325</p> <p>Specify Input Streams, 326</p> <p>Specify Block Parameters, 326</p> <p>Run the Problem, 326</p> <p>Scrutinize the Stream Table, 327</p> <p>Checking Your Results, 328</p> <p>Change Conditions, 328</p> <p>Report, 329</p> <p>Transfer the Flowsheet and Mass and Energy Balance to a Word Processing Program, 329</p> <p>Prepare Your Report, 329</p> <p>Save Your Results, 330</p> <p>Getting Help, 330</p> <p>Advanced Features, 330</p> <p>Flowsheet Sections, 330</p> <p>Mass Balance Only Simulations and Inclusion of Solids, 331</p> <p>Transfer Between Excel and Aspen, 331</p> <p>Block Summary, 331</p> <p>Calculator Blocks, 332</p> <p>Aspen Examples, 334</p> <p>Molecule Draw, 334</p> <p>Applications of Aspen Plus, 334</p> <p>Appendix D HintsWhen Using Comsol Multiphysics® 335</p> <p>Basic Comsol Multiphysics Techniques, 336</p> <p>Opening Screens, 336</p> <p>Equations, 337</p> <p>Specify the Problem and Parameters, 337</p> <p>Physics, 339</p> <p>Definitions, 339</p> <p>Geometry, 339</p> <p>Materials, 340</p> <p>Discretization, 341</p> <p>Boundary Conditions, 341</p> <p>Mesh, 342</p> <p>Solve and Examine the Solution, 342</p> <p>Solve, 342</p> <p>Plot, 342</p> <p>Publication Quality Figures, 343</p> <p>Results, 343</p> <p>Probes, 344</p> <p>Data Sets, 344</p> <p>Advanced Features, 345</p> <p>Mesh, 345</p> <p>Transfer to Excel, 346</p> <p>LiveLink with MATLAB, 347</p> <p>Variables, 348</p> <p>Animation, 349</p> <p>Studies, 349</p> <p>Help with Convergence, 349</p> <p>Help with Time-Dependent Problems, 350</p> <p>Jump Discontinuity, 350</p> <p>Help, 351</p> <p>Applications of Comsol Multiphysics, 351</p> <p>Appendix E Mathematical Methods 353</p> <p>Algebraic Equations, 354</p> <p>Successive Substitution, 354</p> <p>Newton–Raphson, 354</p> <p>Ordinary Differential Equations as Initial Value Problems, 356</p> <p>Euler’s Method, 356</p> <p>Runge–Kutta Methods, 357</p> <p>MATLAB and ode45 and ode15s, 357</p> <p>Ordinary Differential Equations as Boundary Value Problems, 358</p> <p>Finite Difference Method, 359</p> <p>Finite Difference Method in Excel, 360</p> <p>Finite Element Method in One Space Dimension, 361</p> <p>Initial Value Methods, 363</p> <p>Partial Differential Equations in time and One Space Dimension, 365</p> <p>Problems with Strong Convection, 366</p> <p>Partial Differential Equations in Two Space Dimensions, 367</p> <p>Finite-Difference Method for Elliptic Equations in Excel, 367</p> <p>Finite Element Method for Two-Dimensional Problems, 368</p> <p>Summary, 370</p> <p>Problems, 370</p> <p>References 373</p> <p>Index 379</p>
<p><b>BRUCE A. FINLAYSON, PhD,</b> is Rehnberg Professor Emeritus of Chemical Engineering in the Department of Chemical Engineering of the University of Washington. He is also a former president of the American Institute of Chemical Engineers (AIChE). Among his many accolades and honors, Dr. Finlayson is a recipient of the AIChE’s prestigious William H. Walker Award and an elected member of the National Academy of Engineering.</p>
<p><b>Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems</b></p> <p>Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly.</p> <p>Now in its <i>Second Edition, Introduction to Chemical Engineering Computing</i> is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including:</p> <ul> <li>Equations of state</li> <li>Chemical reaction equilibria</li> <li>Mass balances with recycle streams</li> <li>Thermodynamics and simulation of mass transfer equipment</li> <li>Process simulation</li> <li>Fluid flow in two and three dimensions</li> </ul> <p>All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective.</p> <p>Covering a broad range of disciplines and problems within chemical engineering, <i>Introduction to Chemical Engineering Computing</i> is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €