Details

Introduction to AC Machine Design


Introduction to AC Machine Design


IEEE Press Series on Power and Energy Systems 1. Aufl.

von: Thomas A. Lipo

126,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.10.2017
ISBN/EAN: 9781119352099
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior</b></p> <p>AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. <i>Introduction to AC Machine Design</i> includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter.</p> <p>Based on the author’s notes, as well as after years of classroom instruction, <i>Introduction to AC Machine Design</i>:</p> <ul> <li>Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior</li> <li>Introduces electrical machine design to neophytes while also being a resource for experienced designers</li> <li>Fully examines AC machine design, beginning with basic electromagnetic principles </li> <li>Covers the many facets of the induction machine design</li> </ul> <p><i>Introduction to AC Machine Design</i> is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.</p>
<p>Preface and Acknowledgments xiii</p> <p>List of Principal Symbols xv</p> <p>About the Author xxiii</p> <p><b>Chapter 1 Magnetic Circuits 1</b></p> <p>1.1 Biot–Savart Law 1</p> <p>1.2 The Magnetic Field <i>B</i> 2</p> <p>1.3 Example—Computation of Flux Density <i>B</i> 3</p> <p>1.4 The Magnetic Vector Potential <i>A</i> 5</p> <p>1.5 Example—Calculation of Magnetic Field from the Magnetic Vector Potential 6</p> <p>1.6 Concept of Magnetic Flux 7</p> <p>1.7 The Electric Field <i>E</i> 9</p> <p>1.8 Ampere’s Law 10</p> <p>1.9 Magnetic Field Intensity <i>H</i> 12</p> <p>1.10 Boundary Conditions for <i>B</i> and <i>H</i> 15</p> <p>1.11 Faraday’s Law 17</p> <p>1.12 Induced Electric Field Due to Motion 18</p> <p>1.13 Permeance, Reluctance, and the Magnetic Circuit 19</p> <p>1.14 Example—Square Toroid 23</p> <p>1.15 Multiple Circuit Paths 23</p> <p>1.16 General Expression for Reluctance 24</p> <p>1.17 Inductance 27</p> <p>1.18 Example—Internal Inductance of a Wire Segment 28</p> <p>1.19 Magnetic Field Energy 29</p> <p>1.20 The Problem of Units 31</p> <p>1.21 Magnetic Paths Wholly in Iron 33</p> <p>1.22 Magnetic Materials 35</p> <p>1.23 Example—Transformer Structure 37</p> <p>1.24 Magnetic Circuits with Air Gaps 40</p> <p>1.25 Example—Magnetic Structure with Saturation 42</p> <p>1.26 Example—Calculation for Series–Parallel Iron Paths 43</p> <p>1.27 Multiple Winding Magnetic Circuits 44</p> <p>1.28 Magnetic Circuits Applied to Electrical Machines 46</p> <p>1.29 Effect of Excitation Coil Placement 48</p> <p>1.30 Conclusion 50</p> <p>Reference 50</p> <p><b>Chapter 2 The MMF and Field Distribution of an AC Winding 51</b></p> <p>2.1 MMF and Field Distribution of a Full-Pitch Winding for a Two Pole Machine 51</p> <p>2.2 Fractional Pitch Winding for a Two-Pole Machine 54</p> <p>2.3 Distributed Windings 56</p> <p>2.4 Concentric Windings 62</p> <p>2.5 Effect of Slot Openings 64</p> <p>2.6 Fractional Slot Windings 67</p> <p>2.7 Winding Skew 70</p> <p>2.8 Pole Pairs and Circuits Greater than One 73</p> <p>2.9 MMF Distribution for Three-Phase Windings 73</p> <p>2.10 Concept of an Equivalent Two-Phase Machine 76</p> <p>2.11 Conclusion 77</p> <p>References 77</p> <p><b>Chapter 3 Main Flux Path Calculations Using Magnetic Circuits 79</b></p> <p>3.1 The Main Magnetic Circuit of an Induction Machine 79</p> <p>3.2 The Effective Gap and Carter’s Coefficient 80</p> <p>3.3 The Effective Length 84</p> <p>3.4 Calculation of Tooth Reluctance 86</p> <p>3.5 Example 1—Tooth MMF Drop 89</p> <p>3.6 Calculation of Core Reluctance 94</p> <p>3.7 Example 2—MMF Drop Over Main Magnetic Circuit 102</p> <p>3.8 Magnetic Equivalent Circuit 111</p> <p>3.9 Flux Distribution in Highly Saturated Machines 112</p> <p>3.10 Calculation of Magnetizing Reactance 116</p> <p>3.11 Example 3—Calculation of Magnetizing Inductance 120</p> <p>3.12 Conclusion 123</p> <p>References 124</p> <p><b>Chapter 4 Use of Magnetic Circuits in Leakage Reactance Calculations 125</b></p> <p>4.1 Components of Leakage Flux in Induction Machines 125</p> <p>4.2 Specific Permeance 127</p> <p>4.3 Slot Leakage Permeance Calculations 129</p> <p>4.4 Slot Leakage Inductance of a Single-Layer Winding 134</p> <p>4.5 Slot Leakage Permeance of Two-Layer Windings 135</p> <p>4.6 Slot Leakage Inductances of a Double-Cage Winding 137</p> <p>4.7 Slot Leakage Inductance of a Double-Layer Winding 139</p> <p>4.8 End-Winding Leakage Inductance 144</p> <p>4.8.1 Method of Images 144</p> <p>4.8.2 End-Winding Leakage Inductance of Random-Wound Coils 147</p> <p>4.8.3 End-Winding Leakage Inductance of a Coil with Stator Iron Treated as a Perfect Conductor 148</p> <p>4.8.4 End-Winding Leakage Inductance of a Coil with Stator Iron Treated as Air 150</p> <p>4.8.5 End-Winding Leakage Inductance per Phase 153</p> <p>4.8.6 End-Winding Leakage of Form-Wound Coils 153</p> <p>4.8.7 Squirrel-Cage End-Winding Inductance 155</p> <p>4.9 Stator Harmonic or Belt Leakage 156</p> <p>4.10 Zigzag Leakage Inductance 159</p> <p>4.11 Example 4—Calculation of Leakage Inductances 164</p> <p>4.12 Effective Resistance and Inductance Per Phase of Squirrel-Cage Rotor 171</p> <p>4.13 Fundamental Component of Rotor Air Gap MMF 175</p> <p>4.14 Rotor Harmonic Leakage Inductance 177</p> <p>4.15 Calculation of Mutual Inductances 181</p> <p>4.16 Example 5—Calculation of Rotor Leakage Inductance Per Phase 186</p> <p>4.17 Skew Leakage Inductance 187</p> <p>4.18 Example 6—Calculation of Skew Leakage Effects 189</p> <p>4.19 Conclusion 190</p> <p>References 190</p> <p><b>Chapter 5 Calculation of Induction Machine Losses 193</b></p> <p>5.1 Introduction 193</p> <p>5.2 Eddy Current Effects in Conductors 194</p> <p>5.3 Calculation of Stator Resistance 203</p> <p>5.4 Example 7—Calculation of Stator and Rotor Resistance 205</p> <p>5.5 Rotor Parameters of Irregularly Shaped Bars 212</p> <p>5.6 Categories of Electrical Steels 216</p> <p>5.7 Core Losses Due to Fundamental Flux Component 217</p> <p>5.8 Stray Load and No-Load Losses 222</p> <p>5.9 Calculation of Surface Iron Losses Due to Stator Slotting 228</p> <p>5.10 Calculation of Tooth Pulsation Iron Losses 237</p> <p>5.11 Friction and Windage Losses 244</p> <p>5.12 Example 8—Calculation of Iron Loss Resistances 244</p> <p>5.13 Conclusion 250</p> <p>References 250</p> <p><b>Chapter 6 Principles of Design 251</b></p> <p>6.1 Design Factors 251</p> <p>6.2 Standards for Machine Construction 252</p> <p>6.3 Main Design Features 255</p> <p>6.4 The <i>D</i><sup>2</sup><i>L</i> Output Coefficient 258</p> <p>6.4.1 Essen’s Rule 259</p> <p>6.4.2 Magnetic Shear Stress 261</p> <p>6.4.3 The Aspect Ratio 265</p> <p>6.4.4 Base Impedance 268</p> <p>6.5 The <i>D</i><sup>3</sup><i>L</i> Output Coefficient 269</p> <p>6.6 Power Loss Density 277</p> <p>6.7 The D<sup>2.5</sup>L Sizing Equation 277</p> <p>6.8 Choice of Magnetic Loading 278</p> <p>6.8.1 Maximum Flux Density in Iron 279</p> <p>6.8.2 Magnetizing Current 280</p> <p>6.9 Choice of Electric Loading 281</p> <p>6.9.1 Voltage Rating 281</p> <p>6.9.2 Current Density Constraints 282</p> <p>6.9.3 Representative Values of Current Density 285</p> <p>6.10 Practical Considerations Concerning Stator Construction 287</p> <p>6.10.1 Random Wound vs. Formed Coil Windings 288</p> <p>6.10.2 Delta vs. Wye Connection 289</p> <p>6.10.3 Lamination Insulation 290</p> <p>6.10.4 Selection of Stator Slot Number 290</p> <p>6.10.5 Choice of Dimensions of Active Material for NEMA Designs 291</p> <p>6.10.6 Selection of Wire Size 292</p> <p>6.10.7 Selection of Air Gap 293</p> <p>6.11 Rotor Construction 293</p> <p>6.11.1 Slot Combinations to Avoid 294</p> <p>6.11.2 Rotor Heating During Starting or Under Stalled Conditions 294</p> <p>6.12 The Design Process 295</p> <p>6.13 Effect of Machine Performance by a Change in Dimension 299</p> <p>6.14 Conclusion 302</p> <p>References 302</p> <p><b>Chapter 7 Thermal Design 305</b></p> <p>7.1 The Thermal Problem 305</p> <p>7.2 Temperature Limits and Maximum Temperature Rise 306</p> <p>7.3 Heat Conduction 307</p> <p>7.3.1 Simple Heat Conduction Through a Rectangular Plate 308</p> <p>7.3.2 Heat Conduction Through a Cylinder 309</p> <p>7.3.3 Heat Conduction with Simple Internal Heat Generation 311</p> <p>7.3.4 Example 9—Stator Winding Heating 313</p> <p>7.3.5 One-Dimensional Conductive Heat Flow with Distributed Internal Heat Generation 314</p> <p>7.3.6 Two- and Three-Dimensional Conductive Heat Flow with Internal Distributed Heat Generation 316</p> <p>7.3.7 Application of Two-Dimensional Heat Flow to Stator Teeth 317</p> <p>7.3.8 Radial Heat Flow Over Solid Cylinder with Internal Heat Generation 318</p> <p>7.3.9 Heat Flow Over Cylindrical Shell with Internal Distributed Heat Generation 320</p> <p>7.4 Heat Convection on Plane Surfaces 325</p> <p>7.5 Heat Flow Across the Air Gap 327</p> <p>7.6 Heat Transfer by Radiation 328</p> <p>7.7 Cooling Methods and Systems 329</p> <p>7.7.1 Surface Cooling by Air 329</p> <p>7.7.2 Internal Cooling 329</p> <p>7.7.3 Cooling in a Circulatory System 329</p> <p>7.7.4 Cooling with Liquids 330</p> <p>7.7.5 Direct Gas Cooling 330</p> <p>7.7.6 Gas as a Cooling Medium 331</p> <p>7.7.7 Liquids as a Cooling Medium 332</p> <p>7.8 Thermal Equivalent Circuit 333</p> <p>7.9 Example 10—Heat Distribution of 250 HP Induction Machine 338</p> <p>7.9.1 Heat Inputs 339</p> <p>7.9.2 Thermal Resistances 342</p> <p>7.10 Transient Heat Flow 353</p> <p>7.10.1 Externally Generated Heat 353</p> <p>7.10.2 Internally Generated Heat—Stalled Operation 354</p> <p>7.10.3 Thermal Instability 356</p> <p>7.11 Conclusion 357</p> <p>References 357</p> <p><b>Chapter 8 Permanent Magnet Machines 359</b></p> <p>8.1 Magnet Characteristics 359</p> <p>8.2 Hysteresis 362</p> <p>8.3 Permanent Magnet Materials 364</p> <p>8.4 Determination of Magnet Operating Point 366</p> <p>8.5 Sinusoidally FED Surface PM Motor 369</p> <p>8.6 Flux Density Constraints 373</p> <p>8.7 Current Density Constraints 376</p> <p>8.8 Choice of Aspect Ratio 377</p> <p>8.9 Eddy Current Iron Losses 377</p> <p>8.9.1 Eddy Current Tooth Iron Losses 378</p> <p>8.9.2 Eddy Current Yoke Iron Losses 379</p> <p>8.10 Equivalent Circuit Parameters 380</p> <p>8.10.1 Magnetizing Inductance 381</p> <p>8.10.2 Current Source 382</p> <p>8.10.3 Eddy Current Iron Loss Resistance 382</p> <p>8.10.4 Alternate Equivalent Circuit 383</p> <p>8.11 Temperature Constraints and Cooling Capability 383</p> <p>8.12 Magnet Protection 384</p> <p>8.12.1 Magnet Protection for Maximum Steady-State Current 384</p> <p>8.12.2 Magnet Protection for Transient Conditions 386</p> <p>8.13 Design for Flux Weakening 387</p> <p>8.14 PM Motor with Inset Magnets 389</p> <p>8.14.1 Short-Circuit Protection 392</p> <p>8.14.2 Flux Weakening 392</p> <p>8.15 Cogging Torque 393</p> <p>8.16 Ripple Torque 394</p> <p>8.17 Design Using Ferrite Magnets 394</p> <p>8.18 Permanent Machines with Buried Magnets 395</p> <p>8.18.1 PM Machines with Buried Circumferential Magnets 396</p> <p>8.19 Conclusion 399</p> <p>Acknowledgment 400</p> <p>References 400</p> <p><b>Chapter 9 Electromagnetic Design of Synchronous Machines 401</b></p> <p>9.1 Calculation of Useful Flux Per Pole 401</p> <p>9.2 Calculation of Direct and Quadrature Axis Magnetizing Inductance 402</p> <p>9.3 Determination of Field Magnetizing Inductance 411</p> <p>9.4 Determination of <i>d</i>-Axis Mutual Inductances 418</p> <p>9.5 Calculation of Rotor Pole Leakage Permeances 420</p> <p>9.6 Stator Leakage Inductances of a Salient Pole Synchronous Machine 424</p> <p>9.6.1 Zigzag or Tooth-Top Leakage Inductance of Salient Pole Machines 424</p> <p>9.7 The Amortisseur Winding Parameters 428</p> <p>9.8 Mutual and Magnetizing Inductances of the Amortisseur Winding 435</p> <p>9.9 Direct Axis Equivalent Circuit 435</p> <p>9.10 Referral of Rotor Parameters to the Stator 438</p> <p>9.11 Quadrature Axis Circuit 441</p> <p>9.12 Power and Torque Expressions 446</p> <p>9.13 Magnetic Shear Stress 449</p> <p>9.14 Field Current Profile 451</p> <p>9.15 Conclusion 453</p> <p>References 453</p> <p><b>Chapter 10 Finite-Element Solution of Magnetic Circuits 455</b></p> <p>10.1 Formulation of the Two-Dimensional Magnetic Field Problem 455</p> <p>10.2 Significance of the Vector Potential 458</p> <p>10.3 The Variational Method 459</p> <p>10.4 Nonlinear Functional and Conditions for Minimization 460</p> <p>10.5 Description of the Finite-Element Method 465</p> <p>10.6 Magnetic Induction and Reluctivity in the Triangle Element 467</p> <p>10.7 Functional Minimization 468</p> <p>10.8 Formulation of the Stiffness Matrix Equation 472</p> <p>10.9 Consideration of Boundary Conditions 474</p> <p>10.10 Step-By-Step Procedure for Solving the Finite-Element Problem 476</p> <p>10.11 Finite-Element Modeling of Permanent Magnets 482</p> <p>10.12 Conclusion 485</p> <p>10.A Appendix 486</p> <p>References 487</p> <p>Appendix A Computation of Bar Current 489</p> <p>Appendix B FEM Example 493</p> <p>Index 505</p>
<p> <strong>THOMAS A. LIPO, PhD</strong> is an Emeritus Professor at the University of Wisconsin-Madison and also a Research Professor at Florida State University. He has published over 700 technical papers as well as 52 patents, 5 books, and 8 book chapters. Dr. Lipo is a Life Fellow of IEEE, and recipient of the IEEE Medal in Power Engineering. He previously co-published <em>Pulse Width Modulation for Power Converters: Principles and Practice</em> with Wiley-IEEE Press.
<p><strong> The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior </strong> <p> AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. <em>Introduction to AC Machine Design</em> includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. <p> Based on the author's notes, as well as years of classroom instruction, <em>Introduction to AC Machine Design:</em> <ul> <li>Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior</li> <li>Introduces electrical machine design to neophytes while also being a resource for experienced designers</li> <li>Fully examines AC machine design, beginning with basic electromagnetic principles</li> <li>Covers the many facets of the induction machine design</li> </ul> <br> <p> <em>Introduction to AC Machine Design</em> is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €