Details
Intermolecular Interactions
Physical Picture, Computational Methods and Model Potentials1. Aufl.
169,99 € 

Verlag:  Wiley 
Format:  
Veröffentl.:  01.05.2006 
ISBN/EAN:  9780470863336 
Sprache:  englisch 
Anzahl Seiten:  380 
DRMgeschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
The subject of this book — intermolecular interactions — is as important in physics as in chemistry and molecular biology. Intermolecular interactions are responsible for the existence of liquids and solids in nature. They determine the physical and chemical properties of gases, liquids, and crystals, the stability of chemical complexes and biological compounds. In the first two chapters of this book, the detailed qualitative description of different types of intermolecular forces at large, intermediate and shortrange distances is presented. For the first time in the monographic literature, the temperature dependence of the dispersion forces is discussed, and it is shown that at finite temperatures the famous CasimirPolder asymptotic formula is correct only at narrow distance range. The author has aimed to make the presentation understandable to a broad scope of readers without oversimplification. In Chapter 3, the methods of quantitative calculation of the intermolecular interactions are discussed and modern achievements are presented. This chapter should be helpful for scientists performing computer calculations of manyelectron systems. The last two chapters are devoted to the manybody effects and model potentials. More than 50 model potentials exploited for processing experimental data and computer simulation in different fields of physics, chemistry and molecular biology are represented. The widely used global optimisation methods: simulated annealing, diffusion equation method, basinhopping algorithm, and genetic algorithm are described in detail. Significant efforts have been made to present the book in a selfsufficient way for readers. All the necessary mathematical apparatus, including vector and tensor calculus and the elements of the group theory, as well as the main methods used for quantal calculation of manyelectron systems are presented in the appendices.
Preface. 1 Background Knowledge. 1.1 The Subject and its Specificity. 1.2 A Brief Historical Survey. 1.3 The Concept of Interatomic Potential and Adiabatic Approximation. 1.4 General Classification of Intermolecular Interactions. References. 2 Types of Intermolecular Interactions: Qualitative Picture. 2.1 Direct Electrostatic Interactions. 2.2 Resonance Interaction. 2.3 Polarization Interactions. 2.4 Exchange Interaction. 2.5 Retardation Effects in LongRange Interactions and the Influence of Temperature. 2.6 Relativistic (Magnetic) Interactions. 2.7 Interaction Between Macroscopic Bodies. References. 3 Calculation of Intermolecular Interactions. 3.1 Large Distances. 3.2 Intermediate and Short Distances. References. 4 Nonadditivity of Intermolecular Interactions. 4.1 Physical Nature of Nonadditivity and the Definition of ManyBody Forces. 4.2 Manifestations of Nonadditive Effects. 4.3 Perturbation Theory and ManyBody Decomposition. 4.4 ManyBody Effects in Atomic Clusters. 4.5 Atom–Atom Potential Scheme and Nonadditivity. References. 5 Model Potentials. 5.1 Semiempirical Model Potentials. 5.2 Determination of Parameters in Model Potentials. 5.3 Reconstructing Potentials on the Basis of Experimental Data. 5.4 Global Optimization Methods. References. Appendix 1: Fundamental Physical Constants and Conversion Table of Physical Units. Appendix 2: Some Necessary Mathematical Apparatus. A2.1 Vector and Tensor Calculus. A2.1.1 Definition of vector; the addition law. A2.1.2 Scalar and vector products; triple scalar product. A2.1.3 Determinants. A2.1.4 Vector analysis; gradient, divergence and curl. A2.1.5 Vector spaces and matrices. A2.1.6 Tensors. A2.2 Group Theory. A2.2.1 Properties of group operations. A2.2.2 Representations of groups. A2.2.3 The permutation group. A2.2.4 The linear groups. The threedimensional rotation group. A2.2.5 Point groups. A2.2.6 Irreducible tensor operators. Spherical tensors. References. Appendix 3: Methods of QuantumMechanical Calculations of ManyElectron Systems. A3.1 Adiabatic Approximation. A3.2 Variational Methods. A3.2.1 Selfconsistent field method. A3.2.2 Methods taking into account the electron correlation. A3.2.2.1 r12dependent wave functions. A3.2.2.2 Configuration interaction. A3.2.2.3 Coupled cluster method. A3.2.2.4 Density functional theory approach. A3.3 Perturbation Theory. A3.3.1 Rayleigh–Schr¨odinger perturbation theory. A3.3.2 Møller–Plesset perturbation theory. A3.3.3 Operator formalism and the Brillouin–Wigner perturbation theory. A3.3.4 Variational perturbation theory. A3.3.5 Asymptotic expansions; Padé approximants. References. Index.
"…worthy to be placed on the shelf of any researcher, teacher, or graduate student working in those fields of science." (Physics Today, July 2007) "This book is of interest for all those professionals that carry out experimental and theoretical studies of intermolecular interactions…" (Magazine of Modern Plastics, April 2007)
The subject of this book—intermolecular interactions— is as important in physics as in chemistry and molecular biology. Intermolecular interactions are responsible for the existence of liquids and solids in nature. They determine the physical and chemical properties of gases, liquids, and crystals, the stability of chemical complexes and biological compounds. In the first two chapters of this book, the detailed qualitative description of different types of intermolecular forces at large, intermediate and shortrange distances is presented. For the first time in the literature, the temperature dependence of the dispersion forces is analyzed and it is shown that the famous CasimirPolder formula for dispersion forces is incorrect at any finite temperature. The author has aimed to make the presentation understandable to a broad scope of readers without oversimplification. In Chapter 3, the methods of quantitative calculation of the intermolecular interactions are discussed and modern achievements are presented. This chapter should be helpful for scientists performing computer calculations of manyelectron systems. The last two chapters are devoted to the manybody effects and model potentials. More than 50 model potentials exploited for processing experimental data and computer simulation in different fields of physics, chemistry and molecular biology are represented. The widely used optimization methods: simulated annealing, diffusion equation method, basinhopping algorithm, and genetic algorithm are described in detail. Significant efforts have been made to present the book in a selfsufficient way for readers. All the necessary mathematical apparatus, including vector and tensor calculus and the elements of the group theory, as well as the main methods used for quantal calculation of manyelectron systems are presented in the appendices. All those working on the theoretical and experimental studies of intermolecular interactions in chemistry, physics, biochemistry and molecular biology will find this text of interest and it will appeal to advanced undergraduates, graduates and researchers.