Details

Interface / Interphase in Polymer Nanocomposites


Interface / Interphase in Polymer Nanocomposites


Adhesion and Adhesives: Fundamental and Applied Aspects 1. Aufl.

von: Anil N. Netravali, K. L. Mittal

171,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 29.11.2016
ISBN/EAN: 9781119185130
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Significant research has been done in polymeric nanocomposites and progress has been made in understanding nanofiller-polymer interface and interphase and their relation to nanocomposite properties.  However, the information is scattered in many different publication media.  This is the first book that consolidates the current knowledge on understanding, characterization and tailoring interfacial interactions between nanofillers and polymers by bringing together leading researchers and experts in this field to present their cutting edge research. </p> <p><b>Eleven chapters authored by senior subject specialists cover topics including:</b></p> <ul> <li>Thermodynamic mechanisms governing nanofiller dispersion, engineering of interphase with nanofillers</li> <li>Role of interphase in governing the mechanical, electrical, thermal and other functional properties of nanocomposites, characterization and modelling of the interphase</li> <li>Effects of crystallization on the interface, chemical and physical techniques for surface modification of nanocellulose reinforcements</li> <li>Electro-micromechanical and nanoindentation techniques for interface evaluation, molecular dynamics (MD) simulations to quantify filler-matrix adhesion and nanocomposite mechanical properties.</li> </ul>
<p>Preface xiii</p> <p><b>Part 1 Nanocomposite Interfaces/Interphases</b></p> <p><b>1 Polymer Nanocomposite Interfaces: The Hidden Lever for Optimizing Performance in Spherical Nanofilled Polymers 3<br /> </b><i>Ying Li, Yanhui Huang, Timothy Krentz, Bharath Natarajan, Tony Neely and Linda S. Schadler</i></p> <p>1.1 Introduction 4</p> <p>1.1.1 Dispersion Control 5</p> <p>1.1.2 Interface Structure 6</p> <p>1.1.3 Interface Properties 6</p> <p>1.1.4 Measuring and Modeling the Interface 7</p> <p>1.2 Dispersion Control through Interfacial Modification 8</p> <p>1.2.1 Introduction 8</p> <p>1.2.2 Short Ligands 8</p> <p>1.2.3 Polymer Brush 11</p> <p>1.2.3.1 Polymer Brush Synthesis Methods 12</p> <p>1.2.3.2 Enthalpic and Entropic Contributions of Polymer Brushes to Dispersion Control 13</p> <p>1.3 Interface Structure 16</p> <p>1.3.1 Introduction 16</p> <p>1.3.2 Effects of Particle Size 17</p> <p>1.3.3 Effects of Crystallinity and Crosslinking 18</p> <p>1.3.4 Effects of Polymer Brush Penetration 19</p> <p>1.3.4.1 The Athermal Case 19</p> <p>1.3.4.2 The Enthalpic Case 21</p> <p>1.3.5 Characterizing the Interface Structure 22</p> <p>1.4 Interface Properties and Characterization Techniques 24</p> <p>1.4.1 Introduction 24</p> <p>1.4.2 Molecular Mobility in Nanocomposite Interfaces 25</p> <p>1.4.3 Thermomechanical Properties and Measurements 28</p> <p>1.4.3.1 Direct Measurement 30</p> <p>1.4.3.2 Indirect Methods 32</p> <p>1.4.4 Dielectric Properties and Measurements 40</p> <p>1.4.4.1 Effects of Nanofillers 42</p> <p>1.4.4.2 Measurement Techniques 43</p> <p>1.4.4.3 Indirect Measurement 44</p> <p>1.4.4.4 Finite Element Modeling 50</p> <p>1.4.5 Remarks on Characterization Methods 52</p> <p>1.5 Summary 53</p> <p>Acknowledgements 54</p> <p>References 55</p> <p><b>2 Interphase Engineering with Nanofillers in Fiber-Reinforced Polymer Composites 71<br /> </b><i>József Karger-Kocsis, Sándor Kéki, Haroon Mahmood and Alessandro Pegoretti</i></p> <p>2.1 Introduction 72</p> <p>2.2 Interphase Tailoring for Stress Transfer 74</p> <p>2.2.1 Coating with Nanofillers 74</p> <p>2.2.2 Creation of Hierarchical Fibers 80</p> <p>2.2.2.1 Chemical Grafting of Nanofillers 80</p> <p>2.2.2.2 Chemical Vapor Deposition (CVD) 81</p> <p>2.2.2.3 Other “Grafting” Techniques 83</p> <p>2.2.3 Effects of Matrix Modification with Nanofillers 85</p> <p>2.3 Interphase Tailoring for Functionality 87</p> <p>2.3.1 Sensing/Damage Detection 87</p> <p>2.3.2 Self-Healing/Repair 89</p> <p>2.3.3 Damping 91</p> <p>2.4 Outlook and Future Trends 91</p> <p>2.5 Summary 93</p> <p>2.6 Acknowledgements 93</p> <p>2.7 Nomenclature 94</p> <p>References 94</p> <p><b>3 Formation and Functionality of Interphase in Polymer Nanocomposites 103<br /> </b><i>Peng-Cheng Ma, Bin Hao and Jang-Kyo Kim</i></p> <p>3.1 Introduction 103</p> <p>3.2 Formation of Interphase in Polymer Nanocomposites 105</p> <p>3.3 Functionality of Interphase in Polymer Nanocomposites 111</p> <p>3.3.1 Load Transfer in Nanocomposites 111</p> <p>3.3.2 Reduction in Growth Rate of Fatigue Cracks in Nanocomposites 116</p> <p>3.3.3 Controlling the Fracture Behavior of Nanocomposites 119</p> <p>3.3.4 Enhancing the Damping Properties of Nanocomposites 121</p> <p>3.3.5 Channels for the Transport of Ions and Moisture in Nanocomposites 123</p> <p>3.3.6 Phonon Scattering in Nanocomposites 125</p> <p>3.3.7 Electron Transfer in Nanocomposites 128</p> <p>3.4 Summary and Prospects 130</p> <p>Acknowledgements 133</p> <p>References 133</p> <p><b>4 Impact of Crystallization on the Interface in Polymer Nanocomposites 139<br /> </b><i>Nandika D’Souza Siddhi Pendse, Laxmi Sahu, Ajit Ranade and Shailesh Vidhate</i></p> <p>4.1 Introduction 140</p> <p>4.2 Thermodynamics of Crystallization 142</p> <p>4.3 Nylon Nanocomposites 144</p> <p>4.4 Dispersion of MLS in Nanocomposites 145</p> <p>4.5 Effect of MLS on Thermal Transitions in Nylon 146</p> <p>4.6 Permeability 149</p> <p>4.7 PET Nanocomposites 151</p> <p>4.8 Dispersion of MLS in Nanocomposites 151</p> <p>4.9 Effect of MLS on Thermal Transitions in PET 151</p> <p>4.10 PEN Nanocomposites 156</p> <p>4.11 Dispersion of MLS in Nanocomposites 156</p> <p>4.12 Effect of MLS on Thermal Transitions in PEN 157</p> <p>4.13 Permeability 162</p> <p>4.14 The Role of the Interface in Permeability: PET versus PEN 162</p> <p>4.15 Summary 167</p> <p>References 168</p> <p><b>5 Improved Nanofiller-Matrix Bonding and Distribution in GnP-reinforced Polymer Nanocomposites by Surface Plasma Treatments of GnP 171<br /> </b><i>Rafael J. Zaldivar and Hyun I. Kim</i></p> <p>5.1 Introduction 172</p> <p>5.2 Experimental 173</p> <p>5.2.1 Composite Fabrication 173</p> <p>5.2.2 Image Analysis 174</p> <p>5.2.3 Raman Spectroscopy 174</p> <p>5.2.4 X-ray Photoelectron Spectroscopy (XPS) 174</p> <p>5.2.5 Scanning Electron Microscopy (SEM) 175</p> <p>5.2.6 Mechanical Testing 175</p> <p>5.3 Results 175</p> <p>5.4 Conclusions 187</p> <p>Acknowledgement 187</p> <p>References 187</p> <p><b>6 Interfacial Effects in Polymer Nanocomposites Studied by Thermal and Dielectric Techniques 191<br /> </b><i>Panagiotis Klonos, Apostolos Kyritsis and Polycarpos Pissis</i></p> <p>6.1 Introduction 192</p> <p>6.2 Experimental Techniques 197</p> <p>6.2.1 Differential Scanning Calorimetry (DSC) 197</p> <p>6.2.2 Dielectric Techniques 202</p> <p>6.2.2.1 Broadband Dielectric Spectroscopy (BDS) 203</p> <p>6.2.2.2 Thermally Stimulated Depolarization Current (TSDC) Techniques 207</p> <p>6.3 Evaluation in Terms of Interfacial Characteristics 209</p> <p>6.3.1 Analysis of DSC Measurements 209</p> <p>6.3.2 Analysis of Dielectric Measurements 211</p> <p>6.3.3 Thickness of the Interfacial Layer 213</p> <p>6.4 Examples 214</p> <p>6.4.1 DSC Measurements 214</p> <p>6.4.2 Dielectric Measurements 221</p> <p>6.5 Prospects 235</p> <p>6.6 Summary 236</p> <p>Acknowledgements 237</p> <p>References 237</p> <p><b>Part 2 Techniques to Characterize/Control Nanoadhesion</b></p> <p><b>7 Investigation of Interfacial Interactions between Nanofillers and Polymer Matrices Using a Variety of Techniques 251<br /> </b><i>Luqi Liu</i></p> <p>7.1 Introduction 251</p> <p>7.2 Observation of Interfacial Layer in Nanostructured Carbon Materials-based Nanocomposites 253</p> <p>7.2.1 Characterization of Interface Layer Around CNTs 253</p> <p>7.2.2 Characterization of Interface Layer Around Graphene Sheets 255</p> <p>7.3 Interfacial Properties between Nanofiller and Polymer Matrix 256</p> <p>7.3.1 Theoretical Simulations of CNT and/or Graphene-based Nanocomposites 256</p> <p>7.3.1.1 Theoretical Simulation of CNT-based Nanocomposites 256</p> <p>7.3.1.2 Theoretical Simulation of Graphene-based Nanocomposites 258</p> <p>7.3.2 Experimental Studies to Characterize Interfacial Behavior in CNT and/or Graphene-based Nanocomposite Systems 260</p> <p>7.3.2.1 Indirect Measurement 261</p> <p>7.3.2.2 Direct Measurement 261</p> <p>7.4 Summary 270</p> <p>Acknowledgements 271</p> <p>References 271</p> <p><b>8 Chemical and Physical Techniques for Surface Modification of Nanocellulose Reinforcements 279<br /> </b><i>Viktoriya Pakharenko, Muhammad Pervaiz, Hitesh Pande and Mohini Sain</i></p> <p>8.1 Introduction 279</p> <p>8.2 Chemical Surface Modification 281</p> <p>8.2.1 Acetylation 281</p> <p>8.2.2 Silylation 284</p> <p>8.2.3 Bacterial Treatment 285</p> <p>8.2.4 Grafting 287</p> <p>8.2.5 Surfactant Adsorption 289</p> <p>8.2.6 TEMPO-mediated Oxidation 290</p> <p>8.2.7 Click chemistry 292</p> <p>8.3 Physical Surface Modification 292</p> <p>8.3.1 Plasma 292</p> <p>8.3.2 Corona 297</p> <p>8.3.3 Laser 299</p> <p>8.3.4 Flame 299</p> <p>8.4 Use of Ions 300</p> <p>8.5 Summary 300</p> <p>Acknowledgments 301</p> <p>References 301</p> <p><b>9 Nondestructive Sensing of Interface/Interphase Damage in Fiber/Matrix Nanocomposites 307<br /> </b><i>Zuo-Jia Wang, Dong-Jun Kwon, Jin-Yeong Choi, Pyeong-Su Shin, K. Lawrence DeVries and Joung-Man Park</i></p> <p>9.1 Introduction 308</p> <p>9.2 Experimental Specimens and Methods 311</p> <p>9.2.1 Gradient Specimen Test 311</p> <p>9.2.2 Dual Matrix Fragmentation Test 314</p> <p>9.3 Damage Sensing Using Electrical Resistance Measurements 317</p> <p>9.3.1 Electrical Resistance Measurement for Strain Sensing Application 317</p> <p>9.3.2 Electrical Resistance Measurement for Interface/Interphase Evaluation 321</p> <p>9.4 Summary 327</p> <p>References 327</p> <p><b>10 Development of Polymeric Biocomposites: Particulate Incorporation, Interphase Generation and Evaluation by Nanoindentation 333<br /> </b><i>Oisik Das and Debes Bhattacharyya</i></p> <p>10.1 Introduction 334</p> <p>10.2 The Definitions of Composite and its Constituents 337</p> <p>10.2.1 Composite 337</p> <p>10.2.2 Biocomposite 337</p> <p>10.2.3 The Reinforcement 337</p> <p>10.2.4 The Matrix 338</p> <p>10.3 Physical and Chemical Structures of Bio–based Reinforcements 339</p> <p>10.3.1 Plant/Vegetable-based Reinforcements/Fibres 339</p> <p>10.3.1.1 Physical Structure 339</p> <p>10.3.1.2 Chemical Structure 339</p> <p>10.3.2 Animal-based Reinforcements/Fibres 342</p> <p>10.3.2.1 Physical Structure 342</p> <p>10.3.2.2 Chemical Structure 343</p> <p>10.4 Particulate and Short Fibre Composites 344</p> <p>10.4.1 Biochar as Potential New Bio-based Particulate Reinforcement 345</p> <p>10.4.2 Properties of Particulate-based Composites: Governing Factors 351</p> <p>10.4.2.1 Particulate Properties 351</p> <p>10.4.2.2 Particulate Structure 355</p> <p>10.5 Nanoindentation Technique to Determine Interphase and Composite Properties 358</p> <p>10.5.1 The Technique and Theory of Nanoindentation 358</p> <p>10.5.1.1 Different Types of Indenter Tips 360</p> <p>10.5.1.2 Nanoindentation Theory 362</p> <p>10.5.1.3 Nanoindentation Instrument 364</p> <p>10.5.2 Nanoindentation on Polymeric Composites and their Interphase 364</p> <p>10.5 Concluding Remarks 369</p> <p>References 370</p> <p><b>11 Perspectives on the Use of Molecular Dynamics Simulations to Characterize Filler-Matrix Adhesion and Nanocomposite Mechanical Properties 375<br /> </b><i>Sanket A. Deshmukh, Benjamin J. Hanson, Qian Jiang and Melissa A. Pasquinelli</i></p> <p>11.1 Introduction 376</p> <p>11.2 Overview of Molecular Dynamics (MD) Simulations 377</p> <p>11.3 Characterization of Interfacial Adhesion with MD Simulations 381</p> <p>11.3.1 Quantifying Adhesion Strength 381</p> <p>11.3.2 Effect of the Strength of Matrix-Filler Interactions 383</p> <p>11.3.3 Effect of Filler Geometry 386</p> <p>11.3.4 Effect of Ordering and Crosslinking within the Polymer Matrix 388</p> <p>11.4 Characterization of Mechanical Properties with MD Simulations 391</p> <p>11.4.1 Predicting Static Mechanical Properties 392</p> <p>11.4.2 Predicting Dynamic Mechanical Properties 395</p> <p>11.5 Prospects 399</p> <p>11.6 Summary 400</p> <p>Acknowledgements 400</p> <p>References 400</p>
<p><b>Anil Netravali</b> is currently the Jean and Douglas McLean Professor in Fiber Science & Apparel Design, Cornell University. His main research is in the field of fiber reinforced composites and green materials and processes. In the past few years, his research group has developed green resins and adhesives from a variety of proteins and starches that have excellent mechanical properties. Dr. Netravali has written over 110 refereed papers and over 20 book chapters.  He has also edited 2 books. He has presented his research at several conferences all over the world and several of them as Keynote addresses as well as plenary and invited lectures.</p> <p><b>Kashmiri Lal Mittal</b> was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor <i>honoris causa</i> from Maria Curie-Skodowska University, Lublin, Poland. He is the editor of more than 120 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification,surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal <i>Reviews of Adhesion and Adhesives</i>.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €