Details

Intelligent Transport Systems


Intelligent Transport Systems

Technologies and Applications
1. Aufl.

von: Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola

105,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 28.09.2015
ISBN/EAN: 9781118894750
Sprache: englisch
Anzahl Seiten: 376

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>INTELLIGENT TRANSPORT SYSTEMS</b> <p><b>TECHNOLOGIES AND APPLICATIONS</b> <p>This book provides a systematic overview of Intelligent Transportation Systems (ITS), offering an insight into the reference architectures developed within the main research projects. It delves into each of the layers of such architectures, from physical to application layer, describing the technological issues which are being currently faced by some of the most important ITS research groups. The book concludes with some end-user services and applications deployed by industrial partners. <p>The book is a well-balanced combination of academic contributions and industrial applications in the field of Intelligent Transportation Systems. It includes the most representative technologies and research results achieved by some of the most relevant research groups working on ITS, collated to show the chances of generating industrial solutions to be deployed in real transportation environments.
<p>About the Editors xv</p> <p>List of Contributors xvii</p> <p>Foreword xxiii</p> <p>Acknowledgements xxxii</p> <p><b>Part 1 Intelligent Transportation Systems 1</b></p> <p><b>1 Reference ITS Architectures in Europe 3<br /> </b><i>Begoña Molinete, Sergio Campos, Ignacio (Iñaki) Olabarrieta and Ana Isabel Torre</i></p> <p>1.1 Introduction 3</p> <p>1.2 FRAME: The European ITS Framework Architecture 3</p> <p>1.2.1 Background 4</p> <p>1.2.2 Scope 5</p> <p>1.2.3 Methodology and Content 6</p> <p>1.3 Cooperative Systems and Their Impact on the European ITS Architecture Definition 7</p> <p>1.3.1 Research Projects and Initiatives 7</p> <p>1.3.2 Pilots and Field Operational Tests 8</p> <p>1.3.3 European Policy and Standardization Framework 9</p> <p>1.3.4 Impact on FRAME Architecture 9</p> <p>1.4 Experiences in ITS Architecture Design 10</p> <p>1.4.1 Cybercars‐2: Architecture Design for a Cooperative Cybernetics Transport System 10</p> <p>1.4.2 MoveUs Cloud‐Based Platform Architecture 13</p> <p>References 17</p> <p><b>2 Architecture Reference of ITS in the USA 18<br /> </b><i>Clifford D. Heise</i></p> <p>2.1 Introduction 18</p> <p>2.2 National ITS Architecture in the USA 19</p> <p>2.3 Origins of ITS Architecture in the USA 19</p> <p>2.4 US National ITS Architecture Definition 20</p> <p>2.4.1 The Development Process 20</p> <p>2.4.2 User Services 22</p> <p>2.4.3 Logical Architecture 22</p> <p>2.4.4 Physical Architecture 23</p> <p>2.4.5 Services 25</p> <p>2.4.6 Standards Mapping 25</p> <p>2.5 Impact on ITS Development in USA 26</p> <p>2.5.1 Architecture and Standards Regulation 27</p> <p>2.5.2 ITS Planning 28</p> <p>2.5.3 ITS Project Development 29</p> <p>2.5.4 Tools 32</p> <p>2.6 Evolution of the National ITS Architecture 34</p> <p>References 35</p> <p><b>Part 2 Wireless Vehicular Communications 37</b></p> <p><b>3 Wireless Communications in Vehicular Environments 39<br /> </b><i>Pekka Eloranta and Timo Sukuvaara</i></p> <p>3.1 Background and History of Vehicular Networking 39</p> <p>3.2 Vehicular Networking Approaches 46</p> <p>3.3 Vehicular Ad‐hoc Networking 48</p> <p>3.3.1 Vehicle‐to‐infrastructure Communication 50</p> <p>3.3.2 Vehicle‐to‐vehicle Communication 51</p> <p>3.3.3 Combined Vehicle‐to‐vehicle and Vehicle‐to‐infrastructure Communication 52</p> <p>3.3.4 Hybrid Vehicular Network 53</p> <p>3.3.5 LTE and Liquid Applications 54</p> <p>References 55</p> <p><b>4 The Case for Wireless Vehicular Communications Supported by Roadside Infrastructure 57<br /> </b><i>Tiago Meireles, José Fonseca and Joaquim Ferreira</i></p> <p>4.1 Introduction 57</p> <p>4.1.1 Rationale for Infrastructure‐based Vehicle Communications for Safety Applications 59</p> <p>4.2 MAC Solutions for Safety Applications in Vehicular Communications 61</p> <p>4.2.1 Infrastructure‐based Collision‐free MAC Protocols 63</p> <p>4.2.2 RT‐WiFi – TDMA Layer 65</p> <p>4.2.3 Vehicular Deterministic Access (VDA) 65</p> <p>4.2.4 Self‐organizing TDMA (STDMA) 66</p> <p>4.2.5 MS‐Aloha 66</p> <p>4.3 Vehicular Flexible Time‐triggered Protocol 68</p> <p>4.3.1 Model for RSU Deployment in Motorways 68</p> <p>4.3.2 RSU Infrastructure Window (IW) 69</p> <p>4.3.3 V‐FTT Protocol Overview 71</p> <p>4.3.4 Synchronous OBU Window (SOW) 74</p> <p>4.4 V‐FTT Protocol Details 75</p> <p>4.4.1 Trigger Message Size 75</p> <p>4.4.2 Synchronous OBU Window Length (l<sub>sow</sub>) 77</p> <p>4.4.3 V‐FTT Protocol Using IEEE 802.11p/WAVE / ITS G‐5 78</p> <p>4.5 Conclusions 80</p> <p>References 81</p> <p><b>5 Cyber Security Risk Analysis for Intelligent Transport Systems and In‐vehicle Networks 83</b><br /> <i>Alastair R. Ruddle and David D. Ward</i></p> <p>5.1 Introduction 83</p> <p>5.2 Automotive Cyber Security Vulnerabilities 84</p> <p>5.2.1 Information Security 85</p> <p>5.2.2 Electromagnetic Vulnerabilities 85</p> <p>5.3 Standards and Guidelines 86</p> <p>5.3.1 Risk Analysis Concepts 86</p> <p>5.3.2 Functional Safety Standards 87</p> <p>5.3.3 IT Security Standards 87</p> <p>5.3.4 Combining Safety and Security Analysis 88</p> <p>5.4 Threat Identification 88</p> <p>5.4.1 Use Cases 88</p> <p>5.4.2 Security Actors 89</p> <p>5.4.3 Dark‐side Scenarios and Attack Trees 90</p> <p>5.4.4 Identifying Security Requirements 93</p> <p>5.5 Unified Analysis of Security and Safety Risks 93</p> <p>5.5.1 Severity Classification 93</p> <p>5.5.2 Probability Classification 95</p> <p>5.5.3 Controllability Classification 95</p> <p>5.5.4 Risk Classification 95</p> <p>5.5.5 Evaluating Risk from Attack Trees 97</p> <p>5.5.6 Prioritizing Security Functional Requirements 100</p> <p>5.5.7 Security Assurance and Safety Integrity Requirements 101</p> <p>5.6 Cyber Security Risk Management 102</p> <p>5.7 Conclusions 103</p> <p>Acknowledgements 104</p> <p>References 104</p> <p><b>6 Vehicle Interaction with Electromagnetic Fields and Implications for Intelligent Transport Systems (ITS) Development 107<br /> </b><i>Lester Low and Alastair R. Ruddle</i></p> <p>6.1 Introduction 107</p> <p>6.2 In‐vehicle EM Field Investigation and Channel Characterization 109</p> <p>6.3 Field Simulation Tools and Techniques 112</p> <p>6.4 In‐vehicle EM Field Measurement 116</p> <p>6.5 Simulation of Field Distribution and Antenna Placement Optimization 118</p> <p>6.6 Occupant Field Exposure and Possible Field Mitigation Methods 122</p> <p>6.6.1 Human Exposure to Electromagnetic Fields 122</p> <p>6.6.2 Field Mitigation Methods 125</p> <p>6.7 Conclusions 127</p> <p>Acknowledgements 128</p> <p>References 128</p> <p><b>7 Novel In‐car Integrated and Roof‐mounted Antennas 131</b><br /> <i> Rus Leelaratne</i><b><i>†</i></b></p> <p>7.1 Introduction 131</p> <p>7.2 Antennas for Broadcast Radio 132</p> <p>7.2.1 Roof‐mounted Radio Antennas 132</p> <p>7.2.2 Hidden Glass Antennas 134</p> <p>7.2.3 Hidden and Integrated Antennas 136</p> <p>7.3 Antennas for Telematics 137</p> <p>7.3.1 Roof‐mounted Telematics Antennas 137</p> <p>7.3.2 Hidden Telematics Antennas 140</p> <p>7.3.3 Future Trend of Telematics Antennas 141</p> <p>7.4 Antennas for Intelligent Transportation Systems 141</p> <p>7.4.1 Car2Car Communication Antennas 141</p> <p>7.4.2 Emergency Call (E‐Call) Antennas 143</p> <p>7.4.3 Other ITS Antennas 144</p> <p>7.5 Intelligent and Smart Antennas 145</p> <p>7.5.1 Intelligent Antenna for Broadcast Radio 145</p> <p>7.5.2 Intelligent Antenna for GNSS 146</p> <p>7.6 Conclusions 147</p> <p>References 147</p> <p><b>Part 3 Sensors Networks and Surveillance at ITS 149</b></p> <p><b>8 Middleware Solution to Support ITS Services in IoT‐based Visual Sensor Networks 151<br /> </b><i>Matteo Petracca, Claudio Salvadori, Andrea Azzarà, Daniele Alessandrelli,</i><i>Stefano Bocchino, Luca Maggiani and Paolo Pagano</i></p> <p>8.1 Introduction 151</p> <p>8.2 Visual Sensor Networks and IoT Protocols 153</p> <p>8.2.1 Visual Sensor Networks 153</p> <p>8.2.2 Internet of Things 156</p> <p>8.3 Proposed Middleware Architecture for IoT‐based VSNs 158</p> <p>8.3.1 RESTful Web Service 159</p> <p>8.3.2 Configuration Manager 160</p> <p>8.3.3 Resource Processing Engine 160</p> <p>8.4 Middleware Instantiation for the Parking Lot Monitoring Use Case 161</p> <p>8.4.1 Use Case Scenario, Exposed Resources and Their Interaction 161</p> <p>8.4.2 Middleware Implementation 163</p> <p>8.5 Conclusions 164</p> <p>References 165</p> <p><b>9 Smart Cameras for ITS in Urban Environment 167</b><br /> <i>Massimo Magrini, Davide Moroni, Gabriele Pieri and Ovidio Salvetti</i></p> <p>9.1 Introduction 167</p> <p>9.2 Applications to Urban Scenarios 169</p> <p>9.3 Embedded Vision Nodes 171</p> <p>9.3.1 Features of Available Vision Nodes 172</p> <p>9.3.2 Computer Vision on Embedded Nodes 173</p> <p>9.4 Implementation of Computer Vision Logics on Embedded Systems for ITS 175</p> <p>9.4.1 Traffic Status and Level of Service 175</p> <p>9.4.2 Parking Monitoring 178</p> <p>9.5 Sensor Node Prototype 180</p> <p>9.5.1 The Vision Board 181</p> <p>9.5.2 The Networking Board 182</p> <p>9.5.3 The Sensor 182</p> <p>9.5.4 Energy Harvesting and Housing 182</p> <p>9.5.5 The Board Layout 183</p> <p>9.6 Application Scenarios and Experimental Results 184</p> <p>9.7 Conclusions 185</p> <p>References 187</p> <p><b>Part 4 Data Processing Techniques at ITS 189</b></p> <p><b>10 Congestion Prediction by Means of Fuzzy Logic and Genetic Algorithms 191<br /> </b><i>Xiao Zhang, Enrique Onieva, Victor C.S. Lee and Kai Liu</i></p> <p>10.1 Introduction 191</p> <p>10.2 Hierarchical Fuzzy Rule‐based System (HFRBS) 193</p> <p>10.3 Genetic Hierarchical Fuzzy Rule‐based System (GHFRBS) 194</p> <p>10.3.1 Triple Coding Scheme 194</p> <p>10.3.2 Genetic Operators 196</p> <p>10.3.3 Chromosome Evaluation 197</p> <p>10.3.4 Mechanism and Characteristics of the Algorithm Framework 197</p> <p>10.4 Dataset Configuration and Simplification 197</p> <p>10.5 Experimentation 199</p> <p>10.5.1 Experimental Setup 199</p> <p>10.5.2 Results 199</p> <p>10.5.3 Analysis of the Results 201</p> <p>10.6 Conclusions 202</p> <p>Acknowledgment 203</p> <p>References 203</p> <p><b>11 Vehicle Control in ADAS Applications: State of the Art 206</b><br /> <i>Joshué Pérez, David Gonzalez and Vicente Milanés</i></p> <p>11.1 Introduction 206</p> <p>11.2 Vehicle Control in ADAS Application 206</p> <p>11.3 Control Levels 207</p> <p>11.4 Some Previous Works 208</p> <p>11.5 Key Factor for Vehicle Control in the Market 210</p> <p>11.6 ADAS Application From a Control Perspective 211</p> <p>11.6.1 Lane Change Assistant Systems 212</p> <p>11.6.2 Pedestrian Safety Systems 212</p> <p>11.6.3 Forward‐looking Systems 213</p> <p>11.6.4 Adaptive Light Control 213</p> <p>11.6.5 Park Assistant 214</p> <p>11.6.6 Night Vision Systems 215</p> <p>11.6.7 Cruise Control System 215</p> <p>11.6.8 Traffic Sign and Traffic Light Recognition 215</p> <p>11.6.9 Map Supported Systems 216</p> <p>11.6.10 Vehicle Interior Observation 217</p> <p>11.7 Conclusions 217</p> <p>References 218</p> <p><b>12 Review of Legal Aspects Relating to Advanced Driver Assistance Systems 220<br /> </b><i>Alastair R. Ruddle and Lester Low</i></p> <p>12.1 Introduction 220</p> <p>12.2 Vehicle Type Approval 221</p> <p>12.3 Trends in Vehicle Automation 223</p> <p>12.3.1 EU Policy 223</p> <p>12.3.2 Brake Assist Systems 223</p> <p>12.3.3 Advanced Vehicle Systems 225</p> <p>12.3.4 Advanced Driving Assistance Systems 226</p> <p>12.3.5 Categorization of Vehicle Automation Levels 227</p> <p>12.4 Vienna Convention on Road Traffic 227</p> <p>12.4.1 Implications for Driving Assistance Systems 230</p> <p>12.4.2 Proposed Amendments 231</p> <p>12.4.3 Implications for Autonomous Driving 233</p> <p>12.5 Liability Issues 234</p> <p>12.5.1 Identifying Responsibilities 234</p> <p>12.5.2 Event Data Recorders 236</p> <p>12.6 Best Practice for Complex Systems Development 237</p> <p>12.6.1 Safety Case 238</p> <p>12.6.2 Safety Development Processes 239</p> <p>12.6.3 ECWVTA Requirements 240</p> <p>12.6.4 Cyber Security Issues 241</p> <p>12.7 Conclusions 242</p> <p>Acknowledgements 243</p> <p>References 243</p> <p><b>Part 5 Applications and Services for Users and Traffic Managers 247</b></p> <p><b>13 Traffic Management Systems </b>249<br /> <i>António Amador, Rui Dias, Tiago Dias and Tomé Canas</i></p> <p>13.1 Introduction 249</p> <p>13.1.1 Objectives 249</p> <p>13.1.2 Traffic Management 250</p> <p>13.1.3 Traffic Environments 251</p> <p>13.2 Traffic Management Framework 253</p> <p>13.2.1 Inputs 255</p> <p>13.2.2 Analysis 260</p> <p>13.2.3 Outputs 265</p> <p>13.3 Key Stakeholders 266</p> <p>13.4 Traffic Management Centres 266</p> <p>13.4.1 Scope 267</p> <p>13.4.2 Operation Platforms 268</p> <p>13.5 Conclusions 270</p> <p>References 271</p> <p><b>14 The Use of Cooperative ITS in Urban Traffic Management 272<br /> </b><i>Sadko Mand?uka, Edouard Ivanjko, Miroslav Vujić, Pero Škorput</i><i>and Martin Gregurić</i></p> <p>14.1 Introduction 272</p> <p>14.2 Cooperative Ramp Metering 274</p> <p>14.2.1 Ramp Metering 275</p> <p>14.2.2 Cooperation between Local Ramp Meters 277</p> <p>14.2.3 Cooperation between Ramp Metering and Other Traffic Management Systems 278</p> <p>14.3 Incident Management in Urban Areas 280</p> <p>14.4 Public Transport Cooperative Priorities 284</p> <p>14.5 Conclusions 287</p> <p>Acknowledgment 287</p> <p>References 288</p> <p><b>15 Methodology for an Intelligent in‐Car Traffic Information Management System 289<br /> </b><i>Nerea Aguiriano, Alfonso Brazalez and Luis Matey</i></p> <p>15.1 Introduction 289</p> <p>15.2 Validation Framework 291</p> <p>15.3 HMI Design Methodology 292</p> <p>15.3.1 Signal Model 295</p> <p>15.3.2 Interpretation Model 296</p> <p>15.3.3 Representation Model 302</p> <p>15.4 Case Study 305</p> <p>15.4.1 Signal Model for Received Messages 305</p> <p>15.4.2 Interpretation Model 306</p> <p>15.4.3 Representation Model 310</p> <p>15.5 Conclusions 311</p> <p>References 311</p> <p><b>16 New Approaches in User Services Development for Multimodal Trip Planning 313</b><br /> <i>Asier Moreno, Itziar Salaberria and Diego Lopez‐de‐Ipiña</i></p> <p>16.1 Introduction 313</p> <p>16.1.1 Multimodal Transport 314</p> <p>16.1.2 Travel User Services 315</p> <p>16.2 Travel Planning Information Systems 316</p> <p>16.2.1 Standard Travel Planning Services 316</p> <p>16.2.2 Transit Information Formats and Standards 319</p> <p>16.2.3 New Trends in Transit Information 320</p> <p>16.3 Integrating Linked Open Data for Multimodal Transportation 321</p> <p>16.3.1 Related Work 323</p> <p>16.3.2 Management and Provision of Multimodal Transport Semantic Information 324</p> <p>16.4 Conclusions 328</p> <p>References 329</p> <p>Index 331</p>
<p><b>EDITED BY </b></p> <p><b>Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva </b> </br> Deusto Institute of Technology (DeustoTech) – University of Deusto, Spain<br> <b>Ignacio García-Zuazola</b><br> Loughborough University, UK
<p><b>INTELLIGENT TRANSPORT SYSTEMS</b></p> <p><b>TECHNOLOGIES AND APPLICATIONS</b> <p>This book provides a systematic overview of Intelligent Transportation Systems (ITS), offering an insight into the reference architectures developed within the main research projects. It delves into each of the layers of such architectures, from physical to application layer, describing the technological issues which are being currently faced by some of the most important ITS research groups. The book concludes with some end-user services and applications deployed by industrial partners. <p>The book is a well-balanced combination of academic contributions and industrial applications in the field of Intelligent Transportation Systems. It includes the most representative technologies and research results achieved by some of the most relevant research groups working on ITS, collated to show the chances of generating industrial solutions to be deployed in real transportation environments.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €