Details

Integration of Distributed Generation in the Power System


Integration of Distributed Generation in the Power System


IEEE Press Series on Power and Energy Systems, Band 79 1. Aufl.

von: Math H. J. Bollen, Fainan Hassan

141,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.08.2011
ISBN/EAN: 9781118029015
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. <p> There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high.</p> <p> The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration of new, more environmentally friendly, sources of energy in the power grid. With this book the authors aim to bring some clarity to the debate allowing all stakeholders together to move to a solution. This book will introduce systematic and transparent methods for quantifying the impact of DG on the power grid.</p>
<i>PREFACE</i> <b>xi</b> <p><i>ACKNOWLEDGMENTS</i> <b>xiii</b></p> <p><b>CHAPTER 1</b> <i>INTRODUCTION</i> <b>1</b></p> <p><b>CHAPTER 2</b> <i>SOURCES OF ENERGY</i> <b>6</b></p> <p>2.1 Wind Power <b>7</b></p> <p>2.1.1 Status <b>7</b></p> <p>2.1.2 Properties <b>7</b></p> <p>2.1.3 Variations in Wind Speed <b>8</b></p> <p>2.1.4 Variations in Production Capacity <b>10</b></p> <p>2.1.5 The Weibull Distribution of Wind Speed <b>20</b></p> <p>2.1.6 Power Distribution as a Function of the Wind Speed <b>22</b></p> <p>2.1.7 Distribution of the Power Production <b>26</b></p> <p>2.1.8 Expected Energy Production <b>29</b></p> <p>2.2 Solar Power <b>30</b></p> <p>2.2.1 Status <b>30</b></p> <p>2.2.2 Properties <b>31</b></p> <p>2.2.3 Space Requirements <b>32</b></p> <p>2.2.4 Photovoltaics <b>33</b></p> <p>2.2.5 Location of the Sun in the Sky <b>35</b></p> <p>2.2.6 Cloud Coverage <b>39</b></p> <p>2.2.7 Seasonal Variations in Production Capacity <b>42</b></p> <p>2.2.8 Fast Variations with Time <b>46</b></p> <p>2.3 Combined Heat-and-Power <b>50</b></p> <p>2.3.1 Status <b>50</b></p> <p>2.3.2 Options for Space Heating <b>51</b></p> <p>2.3.3 Properties <b>52</b></p> <p>2.3.4 Variation in Production with Time <b>53</b></p> <p>2.3.5 Correlation Between CHP and Consumption <b>56</b></p> <p>2.4 Hydropower <b>59</b></p> <p>2.4.1 Properties of Large Hydro <b>60</b></p> <p>2.4.2 Properties of Small Hydro <b>61</b></p> <p>2.4.3 Variation with Time <b>61</b></p> <p>2.5 Tidal Power <b>65</b></p> <p>2.6 Wave Power <b>66</b></p> <p>2.7 Geothermal Power <b>67</b></p> <p>2.8 Thermal Power Plants <b>68</b></p> <p>2.9 Interface with the Grid <b>71</b></p> <p>2.9.1 Direct Machine Coupling with the Grid <b>72</b></p> <p>2.9.2 Full Power Electronics Coupling with the Grid <b>73</b></p> <p>2.9.3 Partial Power Electronics Coupling to the Grid <b>75</b></p> <p>2.9.4 Distributed Power Electronics Interface <b>79</b></p> <p>2.9.5 Impact of the Type of Interface on the Power System <b>80</b></p> <p>2.9.6 Local Control of Distributed Generation <b>81</b></p> <p><b>CHAPTER 3</b> <i>POWER SYSTEM PERFORMANCE</i> <b>84</b></p> <p>3.1 Impact of Distributed Generation on the Power System <b>84</b></p> <p>3.1.1 Changes Taking Place <b>84</b></p> <p>3.1.2 Impact of the Changes <b>85</b></p> <p>3.1.3 How Severe Is This? <b>86</b></p> <p>3.2 Aims of the Power System <b>87</b></p> <p>3.3 Hosting Capacity Approach <b>88</b></p> <p>3.4 Power Quality <b>91</b></p> <p>3.4.1 Voltage Quality <b>92</b></p> <p>3.4.2 Current Quality <b>92</b></p> <p>3.4.3 Multiple Generator Tripping <b>93</b></p> <p>3.5 Voltage Quality and Design of Distributed Generation <b>95</b></p> <p>3.5.1 Normal Operation; Variations <b>96</b></p> <p>3.5.2 Normal Events <b>96</b></p> <p>3.5.3 Abnormal Events <b>97</b></p> <p>3.6 Hosting Capacity Approach for Events <b>98</b></p> <p>3.7 Increasing the Hosting Capacity <b>100</b></p> <p><b>CHAPTER 4</b> <i>OVERLOADING AND LOSSES</i> <b>102</b></p> <p>4.1 Impact of Distributed Generation <b>102</b></p> <p>4.2 Overloading: Radial Distribution Networks <b>105</b></p> <p>4.2.1 Active Power Flow Only <b>105</b></p> <p>4.2.2 Active and Reactive Power Flow <b>108</b></p> <p>4.2.3 Case Study 1: Constant Production <b>109</b></p> <p>4.2.4 Case Study 2: Wind Power <b>110</b></p> <p>4.2.5 Case Study 3: Wind Power with Induction Generators <b>111</b></p> <p>4.2.6 Case Study 4: Solar Power with a Hotel <b>111</b></p> <p>4.2.7 Minimum Consumption <b>115</b></p> <p>4.3 Overloading: Redundancy and Meshed Operation <b>116</b></p> <p>4.3.1 Redundancy in Distribution Networks <b>116</b></p> <p>4.3.2 Meshed Operation <b>117</b></p> <p>4.3.3 Redundancy in Meshed Networks <b>119</b></p> <p>4.4 Losses <b>122</b></p> <p>4.4.1 Case Study 1: Constant Production <b>124</b></p> <p>4.4.2 Case Study 2: Wind Power <b>125</b></p> <p>4.5 Increasing the Hosting Capacity <b>126</b></p> <p>4.5.1 Increasing the Loadability <b>126</b></p> <p>4.5.2 Building New Connections <b>127</b></p> <p>4.5.3 Intertrip Schemes <b>127</b></p> <p>4.5.4 Advanced Protection Schemes <b>128</b></p> <p>4.5.5 Energy Management Systems <b>131</b></p> <p>4.5.6 Power Electronics Approach <b>133</b></p> <p>4.5.7 Demand Control <b>136</b></p> <p>4.5.8 Risk-Based Approaches <b>137</b></p> <p>4.5.9 Prioritizing Renewable Energy <b>139</b></p> <p>4.5.10 Dynamic Loadability <b>139</b></p> <p><b>CHAPTER 5</b> <i>VOLTAGE MAGNITUDE VARIATIONS</i> <b>141</b></p> <p>5.1 Impact of Distributed Generation <b>141</b></p> <p>5.2 Voltage Margin and Hosting Capacity <b>144</b></p> <p>5.2.1 Voltage Control in Distribution Systems <b>144</b></p> <p>5.2.2 Voltage Rise Owing to Distributed Generation <b>146</b></p> <p>5.2.3 Hosting Capacity <b>147</b></p> <p>5.2.4 Induction Generators <b>149</b></p> <p>5.2.5 Measurements to Determine the Hosting Capacity <b>150</b></p> <p>5.2.6 Estimating the Hosting Capacity Without Measurements <b>151</b></p> <p>5.2.7 Choosing the Overvoltage Limit <b>153</b></p> <p>5.2.8 Sharing the Hosting Capacity <b>156</b></p> <p>5.3 Design of Distribution Feeders <b>156</b></p> <p>5.3.1 Basic Design Rules <b>156</b></p> <p>5.3.2 Terminology <b>157</b></p> <p>5.3.3 An Individual Generator Along a Medium-Voltage Feeder <b>158</b></p> <p>5.3.4 Low-Voltage Feeders <b>163</b></p> <p>5.3.5 Series and Shunt Compensation <b>166</b></p> <p>5.4 A Numerical Approach to Voltage Variations <b>168</b></p> <p>5.4.1 Example for Two-stage Boosting <b>168</b></p> <p>5.4.2 General Expressions for Two-Stage Boosting <b>170</b></p> <p>5.4.3 Single-Stage Boosting <b>171</b></p> <p>5.4.4 Microgeneration <b>171</b></p> <p>5.5 Tap Changers with Line-Drop Compensation <b>174</b></p> <p>5.5.1 Transformer with One Single Feeder <b>174</b></p> <p>5.5.2 Adding a Generator <b>175</b></p> <p>5.5.3 Calculating the Hosting Capacity <b>177</b></p> <p>5.5.4 Multiple Feeders from the Same Transformer <b>178</b></p> <p>5.6 Probabilistic Methods for Design of Distribution Feeders <b>181</b></p> <p>5.6.1 Need for Probabilistic Methods <b>181</b></p> <p>5.6.2 The System Studied <b>181</b></p> <p>5.6.3 Probability Density and Distribution Functions <b>182</b></p> <p>5.6.4 Distributions of Functions of Random Variables <b>182</b></p> <p>5.6.5 Mean and Standard Deviation <b>183</b></p> <p>5.6.6 Normal Distributions <b>184</b></p> <p>5.6.7 Stochastic Calculations Using Measurements <b>185</b></p> <p>5.6.8 Generation with Constant Production <b>190</b></p> <p>5.6.9 Adding Wind Power <b>191</b></p> <p>5.7 Statistical Approach to Hosting Capacity <b>192</b></p> <p>5.8 Increasing the Hosting Capacity <b>197</b></p> <p>5.8.1 New or Stronger Feeders <b>198</b></p> <p>5.8.2 Alternative Methods for Voltage Control <b>199</b></p> <p>5.8.3 Accurate Measurement of the Voltage Magnitude Variations <b>200</b></p> <p>5.8.4 Allowing Higher Overvoltages <b>201</b></p> <p>5.8.5 Risk-Based Approach to Overvoltages <b>202</b></p> <p>5.8.6 Overvoltage Protection <b>203</b></p> <p>5.8.7 Overvoltage Curtailment <b>204</b></p> <p>5.8.8 Dynamic Voltage Control <b>209</b></p> <p>5.8.9 Compensating the Generator’s Voltage Variations <b>210</b></p> <p>5.8.10 Distributed Generation with Voltage Control <b>211</b></p> <p>5.8.11 Coordinated Voltage Control <b>218</b></p> <p>5.8.12 Increasing the Minimum Load <b>221</b></p> <p><b>CHAPTER 6</b> <i>POWER QUALITY DISTURBANCES</i> <b>223</b></p> <p>6.1 Impact of Distributed Generation <b>223</b></p> <p>6.2 Fast Voltage Fluctuations <b>225</b></p> <p>6.2.1 Fast Fluctuations in Wind Power <b>226</b></p> <p>6.2.2 Fast Fluctuations in Solar Power <b>228</b></p> <p>6.2.3 Rapid Voltage Changes <b>228</b></p> <p>6.2.4 Very Short Variations <b>230</b></p> <p>6.2.5 Spread of Voltage Fluctuations <b>233</b></p> <p>6.3 Voltage Unbalance <b>237</b></p> <p>6.3.1 Weaker Transmission System <b>237</b></p> <p>6.3.2 Stronger Distribution System <b>238</b></p> <p>6.3.3 Large Single-Phase Generators <b>240</b></p> <p>6.3.4 Many Single-Phase Generators <b>242</b></p> <p>6.4 Low-Frequency Harmonics <b>247</b></p> <p>6.4.1 Wind Power: Induction Generators <b>248</b></p> <p>6.4.2 Generators with Power Electronics Interfaces <b>250</b></p> <p>6.4.3 Synchronous Generators <b>251</b></p> <p>6.4.4 Measurement Example <b>252</b></p> <p>6.4.5 Harmonic Resonances <b>254</b></p> <p>6.4.6 Weaker Transmission Grid <b>266</b></p> <p>6.4.7 Stronger Distribution Grid <b>267</b></p> <p>6.5 High-Frequency Distortion <b>270</b></p> <p>6.5.1 Emission by Individual Generators <b>271</b></p> <p>6.5.2 Grouping Below and Above 2 kHz <b>274</b></p> <p>6.5.3 Limits Below and Above 2 kHz <b>275</b></p> <p>6.6 Voltage Dips <b>278</b></p> <p>6.6.1 Synchronous Machines: Balanced Dips <b>279</b></p> <p>6.6.2 Synchronous Machines: Unbalanced Dips <b>282</b></p> <p>6.6.3 Induction Generators and Unbalanced Dips <b>287</b></p> <p>6.7 Increasing the Hosting Capacity <b>291</b></p> <p>6.7.1 Strengthening the Grid <b>292</b></p> <p>6.7.2 Emission Limits for Generator Units <b>292</b></p> <p>6.7.3 Emission Limits for Other Customers <b>293</b></p> <p>6.7.4 Higher Disturbance Levels <b>294</b></p> <p>6.7.5 Passive Harmonic Filters <b>296</b></p> <p>6.7.6 Power Electronics Converters <b>296</b></p> <p>6.7.7 Reducing the Number of Dips <b>297</b></p> <p>6.7.8 Broadband and High-Frequency Distortion <b>298</b></p> <p><b>CHAPTER 7</b> <i>PROTECTION</i> <b>299</b></p> <p>7.1 Impact of Distributed Generation <b>299</b></p> <p>7.2 Overcurrent Protection <b>303</b></p> <p>7.2.1 Upstream and Downstream Faults <b>303</b></p> <p>7.2.2 Hosting Capacity <b>304</b></p> <p>7.2.3 Fuse–Recloser Coordination <b>305</b></p> <p>7.2.4 Inverse-Time Overcurrent Protection <b>308</b></p> <p>7.3 Calculating the Fault Currents <b>310</b></p> <p>7.3.1 Upstream Faults <b>310</b></p> <p>7.3.2 Downstream Faults <b>320</b></p> <p>7.3.3 Induction Generators, Power Electronics, and Motor Load <b>325</b></p> <p>7.4 Calculating the Hosting Capacity <b>326</b></p> <p>7.5 Busbar Protection <b>333</b></p> <p>7.6 Excessive Fault Current <b>334</b></p> <p>7.7 Generator Protection <b>336</b></p> <p>7.7.1 General Requirements <b>336</b></p> <p>7.7.2 Insufficient Fault Current <b>337</b></p> <p>7.7.3 Noncontrolled Island Operation <b>340</b></p> <p>7.7.4 Islanding Detection <b>342</b></p> <p>7.7.5 Harmonic Resonance During Island Operation <b>354</b></p> <p>7.7.6 Protection Coordination <b>357</b></p> <p>7.8 Increasing the Hosting Capacity <b>358</b></p> <p>7.8.1 Dedicated Feeder <b>359</b></p> <p>7.8.2 Increased Generator Impedance <b>360</b></p> <p>7.8.3 Generator Tripping <b>360</b></p> <p>7.8.4 Time-Current Setting <b>361</b></p> <p>7.8.5 Adding an Additional Circuit Breaker <b>362</b></p> <p>7.8.6 Directional Protection <b>362</b></p> <p>7.8.7 Differential or Distance Protection <b>363</b></p> <p>7.8.8 Advanced Protection Schemes <b>363</b></p> <p>7.8.9 Islanding Protection <b>365</b></p> <p><b>CHAPTER 8</b> <i>TRANSMISSION SYSTEM OPERATION</i> <b>367</b></p> <p>8.1 Impact of Distributed Generation <b>367</b></p> <p>8.2 Fundamentals of Transmission System Operation <b>371</b></p> <p>8.2.1 Operational Reserve and (<i>N</i> – 1) Criterion <b>372</b></p> <p>8.2.2 Different Types of Reserve <b>373</b></p> <p>8.2.3 Automatic or Manual Secondary Control <b>375</b></p> <p>8.3 Frequency Control, Balancing, and Reserves <b>376</b></p> <p>8.3.1 The Need for Reserves <b>376</b></p> <p>8.3.2 Primary Control and Reserves <b>377</b></p> <p>8.3.3 Secondary Control and Reserves <b>382</b></p> <p>8.3.4 Tertiary Control and Reserves <b>389</b></p> <p>8.3.5 Impact of Decay in Production on Reserves <b>393</b></p> <p>8.4 Prediction of Production and Consumption <b>398</b></p> <p>8.5 Restoration after a Blackout <b>403</b></p> <p>8.6 Voltage Stability <b>405</b></p> <p>8.6.1 Short-Term Voltage Stability <b>406</b></p> <p>8.6.2 Long-Term Voltage Stability <b>410</b></p> <p>8.7 Kinetic Energy and Inertia Constant <b>417</b></p> <p>8.8 Frequency Stability <b>422</b></p> <p>8.9 Angular Stability <b>425</b></p> <p>8.9.1 One Area Against the Infinite Grid <b>425</b></p> <p>8.9.2 Impact of Distributed Generation: Before the Fault <b>429</b></p> <p>8.9.3 Impact of Distributed Generation: During the Fault <b>430</b></p> <p>8.9.4 Impact of Distributed Generation: Critical Fault-Clearing Time <b>431</b></p> <p>8.9.5 Impact of Distributed Generation: After the Fault <b>435</b></p> <p>8.9.6 Impact of Distributed Generation: Importing Area <b>436</b></p> <p>8.10 Fault Ride-Through <b>437</b></p> <p>8.10.1 Background <b>437</b></p> <p>8.10.2 Historical Cases <b>439</b></p> <p>8.10.3 Immunity Requirements <b>440</b></p> <p>8.10.4 Achieving Fault Ride-Through <b>445</b></p> <p>8.11 Storage <b>447</b></p> <p>8.12 HVDC and Facts <b>451</b></p> <p>8.13 Increasing the Hosting Capacity <b>457</b></p> <p>8.13.1 Alternative Scheduling of Reserves <b>457</b></p> <p>8.13.2 Increasing the Transfer Capacity <b>458</b></p> <p>8.13.3 Large-Scale Energy Storage <b>458</b></p> <p>8.13.4 Distributed Generation as Reserve <b>459</b></p> <p>8.13.5 Consumption as Reserve <b>460</b></p> <p>8.13.6 Requirements on Distributed Generation <b>461</b></p> <p>8.13.7 Reactive Power Control <b>461</b></p> <p>8.13.8 Probabilistic Methods <b>462</b></p> <p>8.13.9 Development of Standard Models for Distributed Generation <b>464</b></p> <p><b>CHAPTER 9</b> <i>CONCLUSIONS</i> <b>465</b></p> <p><i>BIBLIOGRAPHY</i> <b>471</b></p> <p><i>INDEX</i> <b>497</b></p>
The author’s organization of the book is superb, and the write-up with appropriate examples is very clear.  The book will be useful to those who have good prior knowledge in power engineering including power electronics and renewable energy sources.  The book offers a very comprehensive discussion of modern power system operation with distributed generation by  renewable energy sources.  It describes sources of energy, power system performance, overloading and losses, voltage variations, power quality disturbances, faults and protection, and transmission  with distributed generation. Many examples are given with emphasis of European system. It is an excellent reference book for modern power engineers.<br /> —Dr. Bimal K. Bose, Condra Chair of Excellence/Emeritus in Power Electronics, University of Tennessee
<p>MATH H.J. BOLLEN, PhD, is Senior Specialist with STRI AB, Gothenburg, Sweden; Professor in Electric Power Engineering at Luleå University of Technology, Skellefteå, Sweden; and a technical expert with the Energy Markets Inspectorate in Eskilstuna, Sweden. He is a Fellow of the IEEE.</p> <p>FAINAN HASSAN, PhD, is with the Alstom Grid (previously Areva T&D), Research & Technology Centre, Stafford, United Kingdom. A member of the IEEE, she has also worked as a seniorengineer for STRI AB, Gothenburg, Sweden.</p>
<p>A forward-thinking power-system viewpoint on the increased integration of distributed generation into the grid</p> <p>Alternative, renewable sources of energy are often referred to as "distributed generation" (DG). The electric power system plays an essential role in transporting and allowing the use of this energy, and much controversy surrounds the question of the true hosting capacity of the grid when it comes to DG. This book introduces systematic and transparent methods for quantifying the effect of DG on the power system, either at a specific grid location or in the grid as a whole. It shows how to calculate—and increase—the hosting capacity for different types of networks and various types of DG, with emphasis on wind power, solar power, and combined heat and power.</p> <p>This book is the first to explain the background of the "hosting capacity approach"—using the existing power system as a starting point and considering how DG changes the performance of the system when no additional measures are taken—and to provide numerous examples. The heart of the book outlines the problems surrounding the integration of DG in detail: increased risk of overload and increased losses; increased risk of overvoltages; increased levels of power-quality disturbances; incorrect operation of the protection; and the impact on power-system stability and operation. Specific solutions are discussed, ranging from building more lines and using power-electronics control to smart grids and microgrids. Theoretical models and research results are also presented.</p> <p>This is also the first book to go into detail on both the "shallow" and "deep" impact of DG; it describes the impact of small generation on the distribution system and on the operation of the transmission system. Emphasizing that the introduction of DG should not result in unacceptable performance of the power grid, the authors discuss several improvements that could be made in the network, on either the production or consumption side, to enable this.</p> <p>Integration of Distributed Generation in the Power System is an important resource for engineers and researchers working on power systems and the connection/integration of DG to the power system; equipment manufacturers; wind-power developers; government regulators; and undergraduate and postgraduate students in the power engineering and energy fields.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €