Details

Integrated Computational Materials Engineering (ICME) for Metals


Integrated Computational Materials Engineering (ICME) for Metals

Concepts and Case Studies
1. Aufl.

von: Mark F. Horstemeyer

215,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.02.2018
ISBN/EAN: 9781119018391
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies</b> </p> <p>This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—<i>Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies</i> focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. </p> <p>The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. <i>Integrated Computational Materials Engineering (ICME) For Metals: Case Studies</i> educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more.</p> <ul> <li>Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys</li> <li>Demonstrates several practical engineering problems to encourage industry to employ ICME ideas</li> <li>Introduces a new simulation-based design paradigm</li> <li>Provides web access to microstructure-sensitive models and experimental database</li> </ul> <p><i>Integrated Computational Materials Engineering (ICME) For Metals: Case Studies</i> is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.</p>
<p>List of Contributors xix</p> <p>Foreword xxvii</p> <p>Preface xxix</p> <p><b>1 Definition of ICME 1<br /></b><i>Mark F. Horstemeyer and S. S. Sahay</i></p> <p>1.1 What ICME Is NOT 1</p> <p>1.1.1 Adding Defects into a MechanicalTheory 1</p> <p>1.1.2 Adding Microstructures to Finite Element Analysis (FEA) 2</p> <p>1.1.3 Comparing Modeling Results to Structure–Property Experimental Results 2</p> <p>1.1.4 Computational Materials 2</p> <p>1.1.5 Design Materials for Manufacturing (Process–Structure–Property Relationships) 3</p> <p>1.1.6 Simulation through the Process Chain 3</p> <p>1.2 What ICME Is 4</p> <p>1.2.1 Background 4</p> <p>1.2.2 ICME Definition 5</p> <p>1.2.3 Uncertainty 8</p> <p>1.2.4 ICME Cyberinfrastructure 9</p> <p>1.3 Industrial Perspective 10</p> <p>1.4 Summary 15</p> <p>References 15</p> <p><b>Section I Body-Centered Cubic Materials 19</b></p> <p><b>2 From Electrons to Atoms: Designing an Interatomic Potential for Fe–C Alloys 21<br /></b><i>Laalitha S. I. Liyanage, Seong-Gon Kim, Jeff Houze, Sungho Kim, Mark A. Tschopp, M. I. Baskes, and Mark</i> <i>F. Horstemeyer</i></p> <p>2.1 Introduction 21</p> <p>2.2 Methods 23</p> <p>2.2.1 MEAM Calculations 24</p> <p>2.2.2 DFT Calculations 24</p> <p>2.3 Single-Element Potentials 25</p> <p>2.3.1 Energy versus Volume Curves 25</p> <p>2.3.1.1 Single-Element Material Properties 29</p> <p>2.4 Construction of Fe–C Alloy Potential 29</p> <p>2.5 Structural and Elastic Properties of Cementite 35</p> <p>2.5.1 Single-Crystal Elastic Properties 36</p> <p>2.5.2 Polycrystalline Elastic Properties 37</p> <p>2.5.3 Surface Energies 37</p> <p>2.5.4 Interstitial Energies 38</p> <p>2.6 Properties of Hypothetical Crystal Structures 38</p> <p>2.6.1 Energy versus Volume Curves for B1 and L12 Structures 38</p> <p>2.6.2 Elastic Constants for B1 and L12 Structures 40</p> <p>2.7 Thermal Properties of Cementite 40</p> <p>2.7.1 Thermal Stability of Cementite 40</p> <p>2.7.2 Melting Temperature Simulation 40</p> <p>2.7.2.1 Preparation of Two-Phase Simulation Box 41</p> <p>2.7.2.2 Two-Phase Simulation 41</p> <p>2.8 Summary and Conclusions 44</p> <p>Acknowledgments 45</p> <p>References 45</p> <p><b>3 Phase-Field Crystal Modeling: Integrating Density Functional Theory, Molecular Dynamics, and Phase-FieldModeling 49<br /></b><i>Mohsen Asle Zaeem and Ebrahim Asadi</i></p> <p>3.1 Introduction to Phase-Field and Phase-Field Crystal Modeling 49</p> <p>3.2 Governing Equations of Phase-Field Crystal (PFC) Models Derived from Density FunctionalTheory (DFT) 53</p> <p>3.2.1 One-Mode PFC model 53</p> <p>3.2.2 Two-Mode PFC Model 55</p> <p>3.3 PFC Model Parameters by Molecular Dynamics Simulations 57</p> <p>3.4 Case Study: Solid–Liquid Interface Properties of Fe 59</p> <p>3.5 Case Study: Grain Boundary Free Energy of Fe at Its Melting Point 63</p> <p>3.6 Summary and Future Directions 65</p> <p>References 66</p> <p><b>4 Simulating Dislocation Plasticity in BCCMetals by Integrating Fundamental Concepts with Macroscale Models 71<br /></b><i>Hojun Lim, Corbett C. Battaile, and Christopher R.Weinberger</i></p> <p>4.1 Introduction 71</p> <p>4.2 Existing BCC Models 73</p> <p>4.3 Crystal Plasticity Finite Element Model 85</p> <p>4.4 Continuum-Scale Model 90</p> <p>4.5 Engineering Scale Applications 92</p> <p>4.6 Summary 99</p> <p>References 101</p> <p><b>5 Heat Treatment and Fatigue of a Carburized and Quench Hardened Steel Part 107<br /></b><i>Zhichao (Charlie)Li and B. Lynn Ferguson</i></p> <p>5.1 Introduction 107</p> <p>5.2 Modeling Phase Transformations and Mechanics of Steel Heat Treatment 108</p> <p>5.3 Data Required for Modeling Quench Hardening Process 112</p> <p>5.3.1 Dilatometry Data 113</p> <p>5.3.2 Mechanical Property Data 114</p> <p>5.3.3 Thermal Property Data 114</p> <p>5.3.4 Process Data 114</p> <p>5.3.5 Furnace Heating 115</p> <p>5.3.6 Gas Carburization 116</p> <p>5.3.7 Immersion Quenching 116</p> <p>5.4 Heat Treatment Simulation of a Gear 118</p> <p>5.4.1 Description of Gear Geometry, FEA Model, and Problem Statement 119</p> <p>5.4.2 Carburization and Air Cooling Modeling 120</p> <p>5.4.3 Quench Hardening Process Modeling 122</p> <p>5.4.4 Comparison of Model and Experimental Results 128</p> <p>5.4.5 Tooth Bending Fatigue Data and LoadingModel 129</p> <p>5.5 Summary 132</p> <p>References 134</p> <p><b>6 Steel Powder Metal Modeling 137<br /></b><i>Y. Hammi, T. Stone, H. Doude, L. Arias Tucker, P. G. Allison, and Mark F. Horstemeyer</i></p> <p>6.1 Introduction 137</p> <p>6.2 Material: Steel Alloy 137</p> <p>6.3 ICME Modeling Methodology 139</p> <p>6.3.1 Compaction 139</p> <p>6.3.1.1 Macroscale Compaction Model 139</p> <p>6.3.1.2 CompactionModel Calibration 146</p> <p>6.3.1.3 Validation 146</p> <p>6.3.1.4 CompactionModel Sensitivity and Uncertainty Analysis 148</p> <p>6.3.2 Sintering 151</p> <p>6.3.2.1 Atomistic 152</p> <p>6.3.2.2 Theory and Simulations 152</p> <p>6.3.2.3 Sintering Structure–Property Relations 155</p> <p>6.3.2.4 Sintering ConstitutiveModeling 160</p> <p>6.3.2.5 SinteringModel Implementation and Calibration 163</p> <p>6.3.2.6 Sintering Validation for an Automotive Main Bearing Cap 165</p> <p>6.3.3 Performance/Durability 165</p> <p>6.3.3.1 Monotonic Conditions 167</p> <p>6.3.3.2 Plasticity-Damage Structure–Property Relations 167</p> <p>6.3.3.3 Plasticity-DamageModel and Calibration 168</p> <p>6.3.3.4 Validation and Uncertainty 173</p> <p>6.3.3.5 Main Bearing Cap 174</p> <p>6.3.3.6 Fatigue 176</p> <p>6.3.4 Optimization 188</p> <p>6.3.4.1 Design of Experiments (DOE) 189</p> <p>6.3.4.2 Results and Discussion 191</p> <p>6.4 Summary 193</p> <p>References 194</p> <p><b>7 Microstructure-Sensitive, History-Dependent Internal State Variable Plasticity-Damage Model for a</b> <b>Sequential Tubing Process 199<br /></b><i>H. E. Cho, Y. Hammi, D. K. Francis, T. Stone, Y. Mao, K. Sullivan, J.Wilbanks, R. Zelinka, and Mark F.</i> <i>Horstemeyer</i></p> <p>7.1 Introduction 199</p> <p>7.2 Internal State Variable (ISV) Plasticity-DamageModel 202</p> <p>7.2.1 History Effects 202</p> <p>7.2.2 Constitutive Equations 202</p> <p>7.3 Simulation Setups 207</p> <p>7.4 Results 209</p> <p>7.4.1 ISV Plasticity-DamageModel Calibration and Validation 209</p> <p>7.4.2 Simulations of the Forming Process (Step 1) 210</p> <p>7.4.3 Simulations of Sizing Process (Step 3) 213</p> <p>7.4.4 Simulations of First Annealing Process (Step 4) 217</p> <p>7.4.5 Simulations of Drawing Processes (Steps 5 and 6) 225</p> <p>7.4.6 Simulations of Second Annealing Process (Step 7) 230</p> <p>7.5 Conclusions 232</p> <p>References 233</p> <p>Section II Hexagonal Close Packed (HCP) Materials 235</p> <p><b>8 Electrons to Phases of Magnesium 237<br /></b><i>Bi-Cheng Zhou,William YiWang, Zi-Kui Liu, and Raymundo Arroyave</i></p> <p>8.1 Introduction 237</p> <p>8.2 Criteria for the Design of Advanced Mg Alloys 238</p> <p>8.3 Fundamentals of the ICME Approach Designing the Advanced Mg Alloys 238</p> <p>8.3.1 Roadmap of ICME Approach 238</p> <p>8.3.2 Fundamentals of Computational Thermodynamics 239</p> <p>8.3.3 Electronic Structure Calculations of Materials Properties 241</p> <p>8.3.3.1 First-Principles Calculations for Finite Temperatures 242</p> <p>8.3.3.2 First-Principles Calculations of Solid Solution Phase 244</p> <p>8.3.3.3 First-Principles Calculations of Interfacial (Cohesive) Energy 245</p> <p>8.3.3.4 Equation of States (EOSs) and Elastic Moduli 245</p> <p>8.3.3.5 Deformation Electron Density 246</p> <p>8.3.3.6 Diffusion Coefficient 246</p> <p>8.4 Data-DrivenMg Alloy Design – Application of ICME Approach 248</p> <p>8.4.1 Electronic Structure 248</p> <p>8.4.2 Thermodynamic Properties 253</p> <p>8.4.3 Phase Stability and Phase Diagrams 253</p> <p>8.4.3.1 Database Development 253</p> <p>8.4.3.2 Application of CALPHAD in Mg Alloy Design 255</p> <p>8.4.4 Kinetic Properties 260</p> <p>8.4.5 Mechanical Properties 262</p> <p>8.4.5.1 Elastic Constants 262</p> <p>8.4.5.2 Stacking Fault Energy and Ideal Strength Impacted by Alloying Elements 265</p> <p>8.4.5.3 Prismatic and Pyramidal Slips Activated by Lattice Distortion 270</p> <p>8.5 Outlook/Future Trends 272</p> <p>Acknowledgments 272</p> <p>References 273</p> <p><b>9 Multiscale Statistical Study of Twinning in HCP Metals 283<br /></b><i>C.N. Tomé, I.J. Beyerlein, R.J. McCabe, and J.Wang</i></p> <p>9.1 Introduction 283</p> <p>9.2 Crystal Plasticity Modeling of Slip and Twinning 286</p> <p>9.2.1 Crystal Plasticity Models 288</p> <p>9.2.2 Incorporating Twinning Into Crystal Plasticity Formulations 290</p> <p>9.2.3 Incorporating Hardening into Crystal Plasticity Formulations 294</p> <p>9.3 Introducing Lower Length Scale Statistics in Twin Modeling 300</p> <p>9.3.1 The Atomic Scale 301</p> <p>9.3.2 Mesoscale Statistical Characterization of Twinning 302</p> <p>9.3.3 Mesoscale StatisticalModeling of Twinning 305</p> <p>9.3.3.1 Stochastic Model for Twinning 306</p> <p>9.3.3.2 Stress Associated with Twin Nucleation 308</p> <p>9.3.3.3 Stress Associated with Twin Growth 311</p> <p>9.4 Model Implementation 312</p> <p>9.4.1 Comparison with Bulk Measurements 314</p> <p>9.4.2 Comparison with Statistical Data from EBSD 318</p> <p>9.5 The Continuum Scale 322</p> <p>9.5.1 Bending Simulations of Zr Bars 324</p> <p>9.6 Summary 330</p> <p>Acknowledgment 331</p> <p>References 331</p> <p><b>10 Cast Magnesium Alloy Corvette Engine Cradle 337<br /></b><i>Haley Doude, David Oglesby, Philipp M. Gullett, Haitham El Kadiri, Bohumir Jelinek,Michael I. Baskes,</i> <i>Andrew Oppedal, Youssef Hammi, and Mark F. Horstemeyer</i></p> <p>10.1 Introduction 337</p> <p>10.2 Modeling Philosophy 338</p> <p>10.3 Multiscale Continuum Microstructure-Property Internal State Variable (ISV) Model 340</p> <p>10.4 Electronic Structures 340</p> <p>10.5 Atomistic Simulations for Magnesium Using the Modified Embedded Atom Method (MEAM) Potential 341</p> <p>10.5.1 MEAM Calibration for Magnesium 342</p> <p>10.5.2 MEAM Validation for Magnesium 342</p> <p>10.5.3 Atomistic Simulations of Mg–Al in Monotonic Loadings 343</p> <p>10.6 Mesomechanics: Void Growth and Coalescence 347</p> <p>10.6.1 Mesomechanical Simulation MaterialModel for Cylindrical and Spherical Voids 350</p> <p>10.6.2 Mesomechanical Finite Element Cylindrical and Spherical Voids Results 350</p> <p>10.6.3 Discussion of Cylindrical and Spherical Voids 351</p> <p>10.7 Macroscale Modeling and Experiments 353</p> <p>10.7.1 Plasticity-Damage Internal State Variable (ISV) Model 353</p> <p>10.7.2 Macroscale Plasticity-Damage Internal State Variable (ISV) Model Calibration 356</p> <p>10.7.3 Macroscale Microstructure-Property ISV Model Validation Experiments on AM60B: Notch Specimens 363</p> <p>10.7.3.1 Finite Element Setup 365</p> <p>10.7.3.2 ISV Model Validation Simulations with Notch Test Data 365</p> <p>10.8 Structural-Scale Corvette Engine Cradle Analysis 366</p> <p>10.8.1 Cradle Finite Element Model 366</p> <p>10.8.2 Cradle Porosity Distribution Mapping 367</p> <p>10.8.3 Structural-Scale Modeling Results 369</p> <p>10.8.4 Corvette Engine Cradle Experiments 370</p> <p>10.9 Summary 372</p> <p>References 373</p> <p><b>11 Using an Internal State Variable (ISV)–Multistage Fatigue (MSF) Sequential Analysis for the Design of a Cast AZ91 Magnesium Alloy Front-End Automotive Component 377<br /></b><i>Marco Lugo,WilburnWhittington, Youssef Hammi, Clémence Bouvard, Bin Li, David K. Francis, Paul</i> <i>T.Wang, and Mark F. Horstemeyer</i></p> <p>11.1 Introduction 377</p> <p>11.2 Integrated Computational Materials Engineering and Design 379</p> <p>11.2.1 Processing–Structure–Property Relationships and Design 380</p> <p>11.2.2 Integrated Computational Materials Engineering (ICME) and MultiscaleModeling 382</p> <p>11.2.3 Overview of the Internal State Variable (ISV)–Multistage Fatigue (MSF) 383</p> <p>11.3 Mechanical and Microstructure Analysis of a Cast AZ91 Mg Alloy Shock Tower 385</p> <p>11.3.1 Shock Tower Microstructure Characterization 386</p> <p>11.3.2 Shock Tower Monotonic Mechanical Behavior 387</p> <p>11.3.3 Fatigue Behavior of an AZ91 Mg Alloy 389</p> <p>11.3.3.1 Strain-life Fatigue Behavior for an AZ91 Mg Alloy 389</p> <p>11.3.3.2 Fractographic Analysis 391</p> <p>11.4 A Microstructure-Sensitive Internal State Variable (ISV) Plasticity-DamageModel 391</p> <p>11.5 Microstructure-SensitiveMultistage Fatigue (MSF) Model for an AZ91 Mg Alloy 393</p> <p>11.5.1 The Multistage Fatigue (MSF) Model 394</p> <p>11.5.1.1 Incubation Regime 394</p> <p>11.5.1.2 Microstructurally Small Crack (MSC) Growth Regime 395</p> <p>11.5.2 Calibration of the MSF Model for the AZ91 Alloy 396</p> <p>11.6 Internal State Variable (ISV)–Multistage Fatigue (MSF) Model Finite Element Simulations 398</p> <p>11.6.1 Finite ElementModel 398</p> <p>11.6.2 Shock Tower Distribution Mapping of Microstructural Properties 399</p> <p>11.6.3 Finite Element Simulations 401</p> <p>11.6.3.1 Case 1 Homogeneous Material State Calculation (FEA #1) 401</p> <p>11.6.3.2 Case 4 Heterogeneous Porosity Calculation (FEA #5) 401</p> <p>11.6.3.3 Case 3 Heterogeneous Pore Size Calculation (FEA #4) 401</p> <p>11.6.3.4 Case 2 Heterogeneous Material State Calculation (FEA #2) 402</p> <p>11.6.4 Fatigue Tests and Finite Element Results 402</p> <p>11.7 Summary 406</p> <p>References 407</p> <p><b>Section III Face-Centered Cubic (FCC) Materials 411</b></p> <p><b>12 Electronic Structures and Materials Properties Calculations of Ni and Ni-Based Superalloys 413<br /></b><i>Chelsey Z. Hargather, ShunLi Shang, and Zi-Kui Liu</i></p> <p>12.1 Introduction 413</p> <p>12.2 Designing the Next Generation of Ni-Base Superalloys Using the ICME Approach 414</p> <p>12.3 Density FunctionalTheory as the Basis for an ICME Approach to Ni-Base Superalloy Development 416</p> <p>12.3.1 Fundamental Concepts of Density FunctionalTheory 416</p> <p>12.3.2 Fundamentals ofThermodynamic Modeling (the CALPHAD Approach) 419</p> <p>12.4 Theoretical Background and Computational Procedure 421</p> <p>12.4.1 First-Principles Calculation of Elastic Constants 421</p> <p>12.4.2 First-Principles Calculations of Stacking Fault Energy 422</p> <p>12.4.3 First-Principles Calculations of Dilute Impurity Diffusion Coefficients 423</p> <p>12.4.4 Finite-Temperature First-Principles Calculations 426</p> <p>12.4.5 Computational Details as Implemented in VASP 427</p> <p>12.5 Ni-Base Superalloy Design using the ICME Approach 427</p> <p>12.5.1 Finite Temperature Thermodynamics 427</p> <p>12.5.1.1 Application to CALPHAD Modeling 428</p> <p>12.5.2 Mechanical Properties 430</p> <p>12.5.2.1 Elastic Constants Calculations 430</p> <p>12.5.2.2 Stacking Fault Energy Calculations 431</p> <p>12.5.3 Diffusion Coefficients 433</p> <p>12.5.4 Designing Ni-Base Superalloy Systems Using the ICME Approach 434</p> <p>12.5.4.1 CALPHAD Modeling used for Ni-Base Superalloy Design 434</p> <p>12.5.4.2 Using a Mechanistic Model to Predict a Relative Creep Rates in Ni-X Alloys 438</p> <p>12.6 Conclusions and Future Directions 440</p> <p>Acknowledgments 441</p> <p>References 441</p> <p><b>13 Nickel Powder Metal Modeling Illustrating Atomistic-Continuum Friction Laws 447<br /></b><i>T. Stone and Y. Hammi</i></p> <p>13.1 Introduction 447</p> <p>13.2 ICME Modeling Methodology 447</p> <p>13.2.1 Compaction 447</p> <p>13.2.2 Macroscale Plasticity Model for PowderMetals 448</p> <p>13.3 Atomistic Studies 452</p> <p>13.3.1 SimulationMethod and Setup 452</p> <p>13.3.2 Simulation Results and Discussion 455</p> <p>13.4 Summary 461</p> <p>References 462</p> <p><b>14 Multiscale Modeling of Pure Nickel 465<br /></b><i>S.A. Brauer, I. Aslam, A. Bowman, B. Huddleston, J. Hughes, D. Johnson,W.B. Lawrimore II, L.A.</i> <i>Peterson,W. Shelton, and Mark F. Horstemeyer</i></p> <p>14.1 Introduction 465</p> <p>14.2 Bridge 1: Electronics to Atomistics and Bridge 4: Electronics to the Continuum 468</p> <p>14.2.1 Electronics Principles Calibration Using Density FunctionalTheory (DFT) 470</p> <p>14.2.2 Density FunctionalTheory Background 470</p> <p>14.2.3 Upscaling Information from DFT 472</p> <p>14.2.3.1 Energy–Volume 473</p> <p>14.2.3.2 Elastic Moduli 473</p> <p>14.2.3.3 Generalized Stacking Fault Energy (GSFE) 473</p> <p>14.2.3.4 Vacancy Formation Energy 474</p> <p>14.2.3.5 Surface Formation Energy 474</p> <p>14.2.4 MEAM Background and Theory 474</p> <p>14.2.5 Validation of Atomistic Results Using the MEAM Potential 476</p> <p>14.3 Bridge 2: Atomistics to Dislocation Dynamics and Bridge 5: Atomistics to the Continuum 478</p> <p>14.3.1 Upscaling MEAM/LAMMPS to Determine the Dislocation Mobility 480</p> <p>14.3.2 MEAM/LAMMPS Validation and Uncertainty 481</p> <p>14.4 Bridge 3: Dislocation Dynamics to Crystal Plasticity and Bridge 6: Dislocation Dynamics to the Continuum 483</p> <p>14.4.1 Dislocation Dynamics Background 483</p> <p>14.4.2 Crystal Plasticity Background 487</p> <p>14.4.3 Crystal Plasticity Voce Hardening Equation Calibration 489</p> <p>14.4.4 Crystal Plasticity Finite Element Method to Determine the Polycrystalline Stress–strain Behavior 490</p> <p>14.5 Bridge 7: Crystal Plasticity to the Continuum 493</p> <p>14.5.1 Macroscale Constitutive Model Calibration 499</p> <p>14.6 Bridge 8: Macroscale Calibration to Structural Scale Simulations 500</p> <p>14.6.1 Validation of Multiscale Methodology 503</p> <p>14.6.2 Experimental and Simulation Results 504</p> <p>14.7 Summary 505</p> <p>Acknowledgments 506</p> <p>References 506</p> <p><b>Section IV Design of Materials and Structures 513</b></p> <p><b>15 Predicting Constitutive Equations for Materials Design: A Conceptual Exposition 515<br /></b><i>Chung H. Goh, Adam P. Dachowicz, Peter C. Collins, Janet K. Allen, and FarrokhMistree</i></p> <p>15.1 Introduction 515</p> <p>15.2 Frame of Reference 516</p> <p>15.3 Critical Review of the Literature 518</p> <p>15.3.1 Constitutive Equation (CEQ) 518</p> <p>15.3.2 Various Types of Power-Law Flow Rules in CP Algorithm 519</p> <p>15.3.3 Comparison of FEM versus VFM 520</p> <p>15.3.4 AI-based KDD Process 521</p> <p>15.4 Crystal Plasticity-Based Virtual Experiment Model 522</p> <p>15.4.1 Description of CPVEM 522</p> <p>15.4.2 Various Types of Power-Law Flow Rules 523</p> <p>15.5 Hierarchical Strategy for Developing a Constitutive EQuation (CEQ) ExpansionModel 524</p> <p>15.5.1 ComputationalModel for Developing a CEQ ExpansionModel 524</p> <p>15.5.1.1 CPVEM for Predicting CEQ Patterns 525</p> <p>15.5.1.2 Identifying CEQ Patterns for TAV 526</p> <p>15.5.1.3 Virtual FieldsMethod (VFM) Model for Predicting Material Properties for New Ti-Al-X (TAX) Materials 527</p> <p>15.5.2 Big Data Control Based on Ontology Integration 528</p> <p>15.6 Closing Remarks 531 Nomenclature 533</p> <p>Acknowledgments 534</p> <p>References 534</p> <p><b>16 A Computational Method for the Design of Materials Accounting for the Process–Structure–Property– Performance(PSPP) Relationship 539<br /></b><i>Chung H. Goh, Adam P. Dachowicz, Janet K. Allen, and FarrokhMistree</i></p> <p>16.1 Introduction 539</p> <p>16.2 Frame of Reference 540</p> <p>16.3 IntegratedMultiscale Robust Design (IMRD) 542</p> <p>16.4 Roll Pass Design 544</p> <p>16.4.1 Roll Pass Sequence and Design Parameters 545</p> <p>16.4.2 Flow Stress Prediction Model 548</p> <p>16.4.3 Wear Coefficient 549</p> <p>16.5 Microstructure Evolution Model 549</p> <p>16.5.1 Recrystallization 550</p> <p>16.5.2 Austenite Grain Size (AGS) Prediction 551</p> <p>16.5.3 Ferrite Grain Size (FGS) Prediction 554</p> <p>16.6 Exploring the Feasible Solution Space 555</p> <p>16.6.1 Developing Roll Pass Design and The Analysis and FE Models 556</p> <p>16.6.2 DevelopingModules andTheir Corresponding Model Descriptions 557</p> <p>16.6.2.1 Module 1. AGS Prediction Model (f1) 557</p> <p>16.6.2.2 Module 2. FGS Prediction Model (f2) 557</p> <p>16.6.2.3 Module 3. Structure–Property Correlation 557</p> <p>16.6.2.4 Module 4. Property–Performance Correlation 558</p> <p>16.6.3 IMRD Step 1 in Figure 16.8: Deductive Exploration 559</p> <p>16.6.4 IMRD Step 2 in Figure 16.8: Inductive Exploration 560</p> <p>16.6.5 IMRD Step 3 in Figure 16.8: Trade-offs among Competing Goals 562</p> <p>16.6.6 Exploration of Solution Space 562</p> <p>16.7 Results and Discussion 563</p> <p>16.8 Closing Remarks 568</p> <p>Acknowledgments 569</p> <p>Nomenclature 569</p> <p>References 571</p> <p>Section V Education 573</p> <p><b>17 An Engineering Virtual Organization For CyberDesign (EVOCD): A Cyberinfrastructure for Integrated</b> <b>Computational Materials Engineering (ICME) 575<br /></b><i>Tomasz Haupt, Nitin Sukhija, and Mark F. Horstemeyer</i></p> <p>17.1 Introduction 575</p> <p>17.2 Engineering Virtual Organization for CyberDesign 578</p> <p>17.3 Functionality of EVOCD 580</p> <p>17.3.1 Knowledge Management:Wiki 580</p> <p>17.3.2 Repository of Codes 582</p> <p>17.3.3 Repository of Data 583</p> <p>17.3.4 OnlineModel Calibration Tools 585</p> <p>17.3.4.1 DMGfit 588</p> <p>17.3.4.2 MultiState Fatigue (MSF) 591</p> <p>17.3.4.3 Modified Embedded Atom Method (MEAM) Parameter Calibration (MPC) 593</p> <p>17.4 Protection of Intellectual Property 595</p> <p>17.5 Cyberinfrastructure for EVOCD 598</p> <p>17.5.1 User Interface 598</p> <p>17.5.2 EVOCD Services 600</p> <p>17.5.3 Service Integration 600</p> <p>17.6 Conclusions 601</p> <p>References 601</p> <p><b>18 Integrated Computational Materials Engineering (ICME) Pedagogy 605<br /></b><i>Nitin Sukhija, Tomasz Haupt, and Mark F. Horstemeyer</i></p> <p>18.1 Introduction 605</p> <p>18.2 Methodology 608</p> <p>18.3 Course Curriculum 610</p> <p>18.3.1 ICME for Design 611</p> <p>18.3.2 Presentation and Team Formation 613</p> <p>18.3.3 ICME Cyberinfrastructure and Basic Skills 613</p> <p>18.3.4 Bridging Length Scales 614</p> <p>18.3.4.1 Quantum Methods 614</p> <p>18.3.4.2 Atomistic Methods 615</p> <p>18.3.4.3 Dislocation Dynamics Methods 617</p> <p>18.3.4.4 Crystal Plasticity 618</p> <p>18.3.4.5 Macroscale Continuum Modeling 619</p> <p>18.3.5 ICMEWiki Contributions 621</p> <p>18.3.6 Grading and Evaluation 622</p> <p>18.4 Assessment 623</p> <p>18.5 Benefits or Relevance of the LearningMethodology 628</p> <p>18.6 Conclusions and Future Directions 629</p> <p>Acknowledgments 630</p> <p>References 630</p> <p><b>19 Summary 633<br /></b><i>Mark F. Horstemeyer</i></p> <p>19.1 Introduction 633</p> <p>19.2 Chapter 1 ICME Definition: Takeaway Point 633</p> <p>19.3 Chapter 2: Takeaway Point 634</p> <p>19.4 Chapter 3: Takeaway Point 634</p> <p>19.5 Chapter 4: Takeaway Point 634</p> <p>19.6 Chapter 5: Takeaway Point 634</p> <p>19.7 Chapter 6: Takeaway Point 634</p> <p>19.8 Chapter 7: Takeaway Point 634</p> <p>19.9 Chapter 8: Takeaway Point 635</p> <p>19.10 Chapter 9: Takeaway Point 635</p> <p>19.11 Chapter 10: Takeaway Point 635</p> <p>19.12 Chapter 11: Takeaway Point 635</p> <p>19.13 Chapter 12: Takeaway Point 635</p> <p>19.14 Chapter 13: Takeaway Point 635</p> <p>19.15 Chapter 14: Takeaway Point 636</p> <p>19.16 Chapter 15: Takeaway Point 636</p> <p>19.17 Chapter 16: Takeaway Point 636</p> <p>19.18 Chapter 17: Takeaway Point 636</p> <p>19.19 Chapter 18: Takeaway Point 636</p> <p>19.20 ICME Future 637</p> <p>19.20.1 ICME Future: Metals 637</p> <p>19.20.2 ICME Future: Non-Metals 637</p> <p>19.20.2.1 Polymers 637</p> <p>19.20.2.2 Ceramics 639</p> <p>19.20.2.3 Concrete 641</p> <p>19.20.2.4 Biological Materials 641</p> <p>19.20.2.5 Earth Materials 643</p> <p>19.20.2.6 Space Materials 644</p> <p>19.21 Summary 644</p> <p>References 645</p> <p>Index 647</p>
<p><b>MARK F. HORSTEMEYER, P<small>H</small>D,</b> is currently a professor in the Mechanical Engineering Department at Mississippi State University, holding a Chair position for the Center for Advanced Vehicular Systems (CAVS) in Computational Solid Mechanics, and is also a Giles Distinguished Professor at MSU.
<p><b>FOCUSES ENTIRELY ON DEMYSTIFYING THE FIELD AND SUBJECT OF ICME AND PROVIDES STEP-BY-STEP GUIDANCE ON ITS INDUSTRIAL APPLICATION VIA CASE STUDIES</b> <p>This highly-anticipated follow-up to Mark F. Horstemeyer's pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—<i>Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies</i> focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. <p>The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. <i>Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies</i> educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. <ul> <li>Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys</li> <li>Demonstrates several practical engineering problems to encourage industry to employ ICME ideas</li> <li>Introduces a new simulation-based design paradigm</li> <li>Provides web access to microstructure-sensitive models and experimental database</li> </ul> <p><i>Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies</i> is a must-have book for senior level undergraduates, first-year graduate level students, and industry researchers aiming to comprehend and employ ICME in the design and development of new materials.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €