Details

Impedance Source Power Electronic Converters


Impedance Source Power Electronic Converters


IEEE Press 1. Aufl.

von: Yushan Liu, Haitham Abu-Rub, Baoming Ge, Frede Blaabjerg, Omar Ellabban, Poh Chiang Loh

92,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.08.2016
ISBN/EAN: 9781119037101
Sprache: englisch
Anzahl Seiten: 424

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Impedance Source Power Electronic Converters</i> brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters.</p> <p>Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters.</p> <p>Key features:</p> <ul> <li>Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies.</li> <li>Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods.</li> <li>Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems.</li> <li>Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications.</li> <li>Provides an overview of existing challenges, solutions and future trends.</li> <li>Supported by calculation examples, simulation models and results. </li> </ul> <p>Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.</p>
<p>Preface xii</p> <p>Acknowledgment xiv</p> <p>Bios xv</p> <p><b>1 Background and Current Status 1</b></p> <p>1.1 General Introduction to Electrical Power Generation 1</p> <p>1.1.1 Energy Systems 1</p> <p>1.1.2 Existing Power Converter Topologies 5</p> <p>1.2 Z‐Source Converter as Single‐Stage Power Conversion System 10</p> <p>1.3 Background and Advantages Compared to Existing Technology 11</p> <p>1.4 Classification and Current Status 13</p> <p>1.5 Future Trends 15</p> <p>1.6 Contents Overview 15</p> <p>Acknowledgment 16</p> <p>References 16</p> <p><b>2 Voltage</b><b>‐</b><b>Fed Z</b><b>‐</b><b>Source/Quasi</b><b>‐</b><b>Z</b><b>‐</b><b>Source Inverters 20</b></p> <p>2.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Inverters 20</p> <p>2.2 Modeling of Voltage‐Fed qZSI 23</p> <p>2.2.1 Steady‐State Model 23</p> <p>2.2.2 Dynamic Model 25</p> <p>2.3 Simulation Results 30</p> <p>2.3.1 Simulation of qZSI Modeling 30</p> <p>2.3.2 Circuit Simulation Results of Control System 31</p> <p>2.4 Conclusion 33</p> <p>References 33</p> <p><b>3 Current</b><b>‐</b><b>Fed Z</b><b>‐</b><b>Source Inverter 35</b></p> <p>3.1 Introduction 35</p> <p>3.2 Topology Modification 37</p> <p>3.3 Operational Principles 39</p> <p>3.3.1 Current‐Fed Z‐Source Inverter 39</p> <p>3.3.2 Current‐Fed Quasi‐Z‐Source Inverter 41</p> <p>3.4 Modulation 44</p> <p>3.5 Modeling and Control 46</p> <p>3.6 Passive Components Design Guidelines 47</p> <p>3.7 Discontinuous Operation Modes 48</p> <p>3.8 Current‐Fed Z‐Source Inverter/Current‐Fed Quasi‐Z‐Source</p> <p>Inverter Applications 51</p> <p>3.9 Summary 52</p> <p>References 52</p> <p><b>4 Modulation Methods and Comparison 54</b></p> <p>4.1 Sinewave Pulse‐Width Modulations 54</p> <p>4.1.1 Simple Boost Control 55</p> <p>4.1.2 Maximum Boost Control 55</p> <p>4.1.3 Maximum Constant Boost Control 56</p> <p>4.2 Space Vector Modulations 57</p> <p>4.2.1 Traditional SVM 57</p> <p>4.2.2 SVMs for ZSI/qZSI 57</p> <p>4.3 Pulse‐Width Amplitude Modulation 63</p> <p>4.4 Comparison of All Modulation Methods 63</p> <p>4.4.1 Performance Analysis 64</p> <p>4.4.2 Simulation and Experimental Results 64</p> <p>4.5 Conclusion 72</p> <p>References 72</p> <p><b>5 Control of Shoot</b><b>‐</b><b>Through Duty Cycle: An Overview 74</b></p> <p>5.1 Summary of Closed‐Loop Control Methods 74</p> <p>5.2 Single‐Loop Methods 75</p> <p>5.3 Double‐Loop Methods 76</p> <p>5.4 Conventional Regulators and Advanced Control Methods 76</p> <p>References 77</p> <p><b>6 Z</b><b>‐</b><b>Source Inverter: Topology Improvements Review 78</b></p> <p>6.1 Introduction 78</p> <p>6.2 Basic Topology Improvements 79</p> <p>6.2.1 Bidirectional Power Flow 79</p> <p>6.2.2 High‐Performance Operation 80</p> <p>6.2.3 Low Inrush Current 80</p> <p>6.2.4 Soft‐Switching 80</p> <p>6.2.5 Neutral Point 82</p> <p>6.2.6 Reduced Leakage Current 82</p> <p>6.2.7 Joint Earthing 82</p> <p>6.2.8 Continuous Input Current 82</p> <p>6.2.9 Distributed Z‐Network 85</p> <p>6.2.10 Embedded Source 85</p> <p>6.3 Extended Boost Topologies 87</p> <p>6.3.1 Switched Inductor Z‐Source Inverter 87</p> <p>6.3.2 Tapped‐Inductor Z‐Source Inverter 93</p> <p>6.3.3 Cascaded Quasi‐Z‐Source Inverter 94</p> <p>6.3.4 Transformer‐Based Z‐Source Inverter 97</p> <p>6.3.5 High Frequency Transformer Isolated Z‐Source Inverter 103</p> <p>6.4 L‐Z‐Source Inverter 103</p> <p>6.5 Changing the ZSI Topology Arrangement 105</p> <p>6.6 Conclusion 109</p> <p>References 109</p> <p><b>7 Typical Transformer</b><b>‐</b><b>Based Z</b><b>‐</b><b>Source/Quasi</b><b>‐</b><b>Z</b><b>‐</b><b>Source Inverters 113</b></p> <p>7.1 Fundamentals of Trans‐ZSI 113</p> <p>7.1.1 Configuration of Current‐Fed and Voltage‐Fed Trans‐ZSI 113</p> <p>7.1.2 Operating Principle of Voltage‐Fed Trans‐ZSI 116</p> <p>7.1.3 Steady‐State Model 117</p> <p>7.1.4 Dynamic Model 119</p> <p>7.1.5 Simulation Results 121</p> <p>7.2 LCCT‐ZSI/qZSI 122</p> <p>7.2.1 Configuration and Operation of LCCT‐ZSI 122</p> <p>7.2.2 Configuration and Operation of LCCT‐qZSI 124</p> <p>7.2.3 Simulation Results 126</p> <p>7.3 Conclusion 127</p> <p>Acknowledgment 127</p> <p>References 127</p> <p><b>8 Z</b><b>‐</b><b>Source/Quasi</b><b>‐</b><b>Z</b><b>‐</b><b>Source AC</b><b>‐</b><b>DC Rectifiers 128</b></p> <p>8.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Rectifiers 128</p> <p>8.2 Operating Principle 129</p> <p>8.3 Dynamic Modeling 130</p> <p>8.3.1 DC‐Side Dynamic Model of qZSR 130</p> <p>8.3.2 AC‐Side Dynamic Model of Rectifier Bridge 132</p> <p>8.4 Simulation Results 134</p> <p>8.5 Conclusion 137</p> <p>References 137</p> <p><b>9 Z</b><b>‐</b><b>Source DC</b><b>‐</b><b>DC Converters 138</b></p> <p>9.1 Topologies 138</p> <p>9.2 Comparison 140</p> <p>9.3 Example Simulation Model and Results 141</p> <p>References 147</p> <p><b>10 Z</b><b>‐</b><b>Source Matrix Converter 148</b></p> <p>10.1 Introduction 148</p> <p>10.2 Z‐Source Indirect Matrix Converter (All‐Silicon Solution) 151</p> <p>10.2.1 Different Topology Configurations 151</p> <p>10.2.2 Operating Principle and Equivalent Circuits 153</p> <p>10.2.3 Parameter Design of the QZS‐Network 156</p> <p>10.2.4 QZSIMC (All‐Silicon Solution) Applications 157</p> <p>10.3 Z‐Source Indirect Matrix Converter (Not All‐Silicon Solution) 158</p> <p>10.3.1 Different Topology Configurations 158</p> <p>10.3.2 Operating Principle and Equivalent Circuits 160</p> <p>10.3.3 Parameter Design of the QZS Network 164</p> <p>10.3.4 ZS/QZSIMC (Not All‐Silicon Solution) Applications 164</p> <p>10.4 Z‐Source Direct Matrix Converter 167</p> <p>10.4.1 Alternative Topology Configurations 167</p> <p>10.4.2 Operating Principle and Equivalent Circuits 170</p> <p>10.4.3 Shoot‐Through Boost Control Method 171</p> <p>10.4.4 Applications of the QZSDMC 175</p> <p>10.5 Summary 177</p> <p>References 177</p> <p><b>11 Energy Stored Z</b><b>‐</b><b>Source/Quasi</b><b>‐</b><b>Z</b><b>‐</b><b>Source Inverters 179</b></p> <p>11.1 Energy Stored Z‐Source/Quasi‐Z Source Inverters 179</p> <p>11.1.1 Modeling of qZSI with Battery 180</p> <p>11.1.2 Controller Design 182</p> <p>11.2 Example Simulations 188</p> <p>11.2.1 Case 1: SOCmin < SOC < SOCmax 188</p> <p>11.2.2 Case 2: Avoidance of Battery Overcharging 190</p> <p>11.3 Conclusion 192</p> <p>References 193</p> <p><b>12 Z</b><b>‐</b><b>Source Multilevel Inverters 194</b></p> <p>12.1 Z‐Source NPC Inverter 194</p> <p>12.1.1 Configuration 194</p> <p>12.1.2 Operating Principles 195</p> <p>12.1.3 Modulation Scheme 200</p> <p>12.2 Z‐Source/Quasi‐Z‐Source Cascade Multilevel Inverter 206</p> <p>12.2.1 Configuration 206</p> <p>12.2.2 Operating Principles 208</p> <p>12.2.3 Modulation Scheme 209</p> <p>12.2.4 System‐Level Modeling and Control 213</p> <p>12.2.5 Simulation Results 219</p> <p>12.3 Conclusion 224</p> <p>Acknowledgment 224</p> <p>References 224</p> <p><b>13 Design of Z</b><b>‐</b><b>Source and Quasi</b><b>‐</b><b>Z</b><b>‐</b><b>Source Inverters 226</b></p> <p>13.1 Z‐Source Network Parameters 226</p> <p>13.1.1 Inductance and Capacitance of Three‐Phase qZSI 226</p> <p>13.1.2 Inductance and Capacitance of Single‐Phase qZSI 227</p> <p>13.2 Loss Calculation Method 233</p> <p>13.2.1 H‐bridge Device Power Loss 233</p> <p>13.2.2 qZS Diode Power Loss 236</p> <p>13.2.3 qZS Inductor Power Loss 236</p> <p>13.2.4 qZS Capacitor Power Loss 237</p> <p>13.3 Voltage and Current Stress 237</p> <p>13.4 Coupled Inductor Design 239</p> <p>13.5 Efficiency, Cost, and Volume Comparison with Conventional Inverter 239</p> <p>13.5.1 Efficiency Comparison 239</p> <p>13.5.2 Cost and Volume Comparison 240</p> <p>13.6 Conclusion 242</p> <p>References 243</p> <p><b>14 Applications in Photovoltaic Power Systems 244</b></p> <p>14.1 Photovoltaic Power Characteristics 244</p> <p>14.2 Typical Configurations of Single‐Phase and Three‐Phase Systems 245</p> <p>14.3 Parameter Design Method 245</p> <p>14.4 MPPT Control and System Control Methods 248</p> <p>14.5 Examples Demonstration 249</p> <p>14.5.1 Single‐Phase qZS PV System and Simulation Results 249</p> <p>14.5.2 Three‐Phase qZS PV Power System and Simulation Results 249</p> <p>14.5.3 1 MW/11 kV qZS CMI Based PV Power System and Simulation Results 250</p> <p>14.6 Conclusion 253</p> <p>References 255</p> <p><b>15 Applications in Wind Power 256</b></p> <p>15.1 Wind Power Characteristics 256</p> <p>15.2 Typical Configurations 257</p> <p>15.3 Parameter Design 257</p> <p>15.4 MPPT Control and System Control Methods 259</p> <p>15.5 Simulation Results of a qZS Wind Power System 261</p> <p>15.6 Conclusion 264</p> <p>References 265</p> <p><b>16 Z</b><b>‐</b><b>Source Inverter for Motor Drives Application: A Review 266</b></p> <p>16.1 Introduction 266</p> <p>16.2 Z‐Source Inverter Feeding a Permanent Magnet Brushless DC Motor 269</p> <p>16.3 Z‐Source Inverter Feeding a Switched Reluctance Motor 270</p> <p>16.4 Z‐Source Inverter Feeding a Permanent Magnet Synchronous Motor 273</p> <p>16.5 Z‐Source Inverter Feeding an Induction Motor 276</p> <p>16.5.1 Scalar Control (V/F) Technique for ZSI‐IM Drive System 276</p> <p>16.5.2 Field Oriented Control Technique for ZSI‐IM Drive System 279</p> <p>16.5.3 Direct Torque Control (DTC) Technique for ZSI‐IM Drive System 279</p> <p>16.5.4 Predictive Torque Control for ZSI‐IM Drive System 283</p> <p>16.6 Multiphase Z‐Source Inverter Motor Drive System 283</p> <p>16.7 Two‐Phase Motor Drive System with Z‐Source Inverter 286</p> <p>16.8 Single‐Phase Induction Motor Drive System Using Z‐Source Inverter 286</p> <p>16.9 Z‐Source Inverter for Vehicular Applications 286</p> <p>16.10 Conclusion 289</p> <p>References 290</p> <p><b>17 Impedance Source Multi</b><b>‐</b><b>Leg Inverters 295</b></p> <p>17.1 Impedance Source Four‐Leg Inverter 295</p> <p>17.1.1 Introduction 295</p> <p>17.1.2 Unbalanced Load Analysis Based on Fortescue Components 296</p> <p>17.1.3 Effects of Unbalanced Load Condition 297</p> <p>17.1.4 Inverter Topologies for Unbalanced Loads 300</p> <p>17.1.5 Z‐Source Four‐Leg Inverter 302</p> <p>17.1.6 Switching Schemes for Three‐Phase Four‐Leg Inverter 310</p> <p>17.1.7 Buck/Boost Conversion Modes Analysis 316</p> <p>17.2 Impedance Source Five‐Leg (Five‐Phase) Inverter 319</p> <p>17.2.1 Five‐Phase VSI Model 319</p> <p>17.2.2 Space Vector PWM for a Five‐Phase Standard VSI 322</p> <p>17.2.3 Space Vector PWM for Five‐Phase qZSI 323</p> <p>17.2.4 Discontinuous Space Vector PWM for Five‐Phase qZSI 324</p> <p>17.3 Summary 326</p> <p>References 326</p> <p><b>18 Model Predictive Control of Impedance Source Inverter 329</b></p> <p>18.1 Introduction 329</p> <p>18.2 Overview of Model Predictive Control 330</p> <p>18.3 Mathematical Model of the Z‐Source Inverters 331</p> <p>18.3.1 Overview of Topologies 331</p> <p>18.3.2 Three‐Phase Three‐Leg Inverter Model 333</p> <p>18.3.3 Three‐Phase Four‐Leg Inverter Model 335</p> <p>18.3.4 Multiphase Inverter Model 338</p> <p>18.4 Model Predictive Control of the Z‐Source Three‐Phase Three‐Leg Inverter 342</p> <p>18.5 Model Predictive Control of the Z‐Source Three‐Phase Four‐Leg Inverter 349</p> <p>18.5.1 Discrete‐Time Model of the Output Current for Four‐Leg Inverter 349</p> <p>18.5.2 Control Algorithm 350</p> <p>18.6 Model Predictive Control of the Z‐Source Five‐Phase Inverter 350</p> <p>18.6.1 Discrete‐Time Model of the Five‐Phase Load 352</p> <p>18.6.2 Cost Function for the Load Current 353</p> <p>18.6.3 Control Algorithm 353</p> <p>18.7 Performance Investigation 353</p> <p>18.8 Summary 359</p> <p>References 359</p> <p><b>19 Grid Integration of Quasi</b><b>‐</b><b>Z Source Based PV Multilevel Inverter 362</b></p> <p>19.1 Introduction 362</p> <p>19.2 Topology and Modeling 363</p> <p>19.3 Grid Synchronization 364</p> <p>19.4 Power Flow Control 365</p> <p>19.4.1 Proportional Integral Controller 366</p> <p>19.4.2 Model Predictive Control 372</p> <p>19.5 Low Voltage Ride‐Through Capability 379</p> <p>19.6 Islanding Protection 381</p> <p>19.6.1 Active Frequency Drift (AFD) 383</p> <p>19.6.2 Sandia Frequency Shift (SFS) 383</p> <p>19.6.3 Slip‐Mode Frequency Shift (SMS) 383</p> <p>19.6.4 Simulation Results 384</p> <p>19.7 Conclusion 387</p> <p>References 387</p> <p><b>20 Future Trends 390</b></p> <p>20.1 General Expectation 390</p> <p>20.1.1 Volume and Size Reduction by Wide Band‐Gap Devices 390</p> <p>20.1.2 Parameters Minimization for Single‐Phase qZS Inverter 391</p> <p>20.1.3 Novel Control Methods 392</p> <p>20.1.4 Future Applications 392</p> <p>20.2 Illustration of Using Wide Band Gap Devices 393</p> <p>20.2.1 Impact on Z‐Source Network 394</p> <p>20.2.2 Analysis and Evaluation of SiC Device Based qZSI 395</p> <p>20.3 Conclusion 398</p> <p>References 398</p> <p>Index 401</p>
<p>"Power engineers developing Z-source converters, and those who want to learn about this new topology, will find this book to be a very useful resource. It is very well written, clearly explains the technical details of the Z-source convert-er, and incorporates many circuit designs and applications." (<i>IEEE Electrical Insulation magazine</i> 04/05/2017)</p>
<p><b><b>Yushan Liu, Texas A&M University at Qatar, Qatar<br /></b></b>Dr Yushan Liu received her B.Sc. degree in automation from Beijing Institute of Technology (China) in 2008 and her Ph.D. in electrical engineering from Beijing Jiaotong University (China) in 2014. She is currently Postdoctoral Research Associate in the Department of Electrical and Computer Engineering, Texas A&M University at Qatar. Her research interests include Z-source converters, cascade multilevel converters, photovoltaic power integration, renewable energy systems, and pulsewidth modulation techniques.</p> <p><b>Haitham Abu-Rub, Texas A&M University at Qatar, Qatar<br /></b>Dr Abu-Rub holds two PhD degrees, one in electrical engineering from Gdansk University of Technology, Poland, and the second in humanities from Gdansk University. Since 2006, Dr Abu-Rub has been an Associate Professor at Texas A&M University at Qatar. His main research interest is energy conversion systems and he is currently leading potential projects on PV and hybrid renewable power generation systems with different types of converters. He is the first author of three books, co-author of five book chapters, an active IEEE member and an editor of three IEEE Transactions. </p> <p><b>Baoming Ge, Texas A&M University, Texas, USA<br /></b>Dr Baoming Ge received his PhD degree in electrical engineering from Zhejiang University, China, in 2000. He is currently working simultaneously at the Electrical and Computer Engineering Department of Texas A&M University, USA, and within the School of Electrical Engineering at Beijing Jiaotong University where his research interests include renewable energy power generation, electrical machines and control, power electronics systems and control theories and applications. Dr Ge has published more than 150 Journal and Conference papers, authored one book and two book chapters, holds seven patents in topics of impedance source converters/inverters and sustainable energy and is an active IEEE member.</p> <p><b>Frede Blaabjerg, Aalborg University, Denmark<br /></b>Dr Frede Blaabjerg received his PhD degree from Aalborg University in 1988. He became an Assistant Professor in 1992, an Associate Professor in 1996, and a Full Professor of Power Electronics and Drives in 1998. His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics and adjustable speed drives. Dr Blaabjerg has published approximately 300 journal papers in the field of power electronics and its applications, served as Editor-in-Chief of the IEEE Transactions on Power Electronics between 2006 and 2012 and has won numerous prestigious awards for his work in power electronics.</p> <p><b>Omar Ellabban, Texas A&M University at Qatar, Qatar<br /></b>Dr Omar Ellabban received his B.Sc. degree in Electrical Machines and Power Engineering from Helwan University (Egypt) and his M.Sc. degree in Electrical Machines and Power Engineering from Cairo University (Egypt)<br />and his Ph.D. in electrical engineering from Vrije Universiteit Brussel (Belgium) in 1998, 2005, and 2011 respectively. In 2012, he joined Texas A&M University at Qatar, Doha, Qatar, as a Post-Doctoral Research Associate and an Assistant Research Scientist in 2013, where he is involved in different renewable energy projects. His current research interests include automatic control, motor drives, power electronics, electric vehicles, switched reluctance motor, renewable energy, and smart grid.</p>
<p><i>Impedance Source Power Electronic Converters</i> brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters.</p> <p>Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters.</p> <p>Key features:</p> <ul> <li>Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies.</li> <li>Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods.</li> <li>Presents the latest power conversion solutions that aim to advance the role of power electronics into industries and sustainable energy conversion systems.</li> <li>Compares impedance source converter/inverter applications in renewable energy power generation and electric vehicles as well as different industrial applications.</li> <li>Provides an overview of existing challenges, solutions and future trends.</li> <li>Supported by calculation examples, simulation models and results. </li> </ul> <p>Highly accessible, this is an invaluable resource for researchers, postgraduate/graduate students studying power electronics and its application in industry and renewable energy conversion as well as practising R&D engineers. Readers will be able to apply the presented material for the future design of the next generation of efficient power electronic converters/inverters.</p>

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €