Details

Hydrocarbon Chemistry


Hydrocarbon Chemistry


3. Aufl.

von: George A. Olah, Arpad Molnar, G. K. Surya Prakash

395,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 29.08.2017
ISBN/EAN: 9781119390527
Sprache: englisch
Anzahl Seiten: 1216

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book provides an unparalleled contemporary assessment of hydrocarbon chemistry – presenting basic concepts, current research, and future applications.<br /><br />•    Comprehensive and updated review and discussion of the field of hydrocarbon chemistry<br />•    Includes literature coverage since the publication of the previous edition<br />•    Expands or adds coverage of: carboxylation, sustainable hydrocarbons, extraterrestrial hydrocarbons<br />•    Addresses a topic of special relevance in contemporary science, since hydrocarbons play a role as a possible replacement for coal, petroleum oil, and natural gas as well as their environmentally safe use<br />•    Reviews of prior edition: “...literature coverage is comprehensive and ideal for quickly reviewing specific topics...of most value to industrial chemists...” (Angewandte Chemie) and “...useful for chemical engineers as well as engineers in the chemical and petrochemical industries.” (Petroleum Science and Technology)
<p><b>Volume 1</b></p> <p>Preface to the Third Edition xiii</p> <p>Preface to the Second Edition xv</p> <p>Preface to the First Edition xvii</p> <p>Introduction xix</p> <p><b>Introduction and General Aspects 1</b></p> <p>1.1 Hydrocarbons and Their Classes 1</p> <p>1.2 Energy–Hydrocarbon Relationships 2</p> <p>1.3 Hydrocarbon Sources 4</p> <p>Extraterrestrial Hydrocarbons 15</p> <p>1.4 Hydrocarbon Production from Natural Sources 16</p> <p>1.5 Hydrocarbon Synthesis 20</p> <p>1.6 Nonrenewable and Renewable Hydrocarbons 27</p> <p>1.7 Regenerative Hydrocarbons from CO2 Emission Capture and Recycling 29</p> <p>1.8 Hydrocarbon Functionalization Reactions 30</p> <p>1.9 Use of Hydrocarbons, Petroleum Oil 35</p> <p>1.9.1 Energy Generation, Storage, and Delivery: Heating 36</p> <p>1.9.2 Transportation Fuels 36</p> <p>1.9.3 Chemical Products, Plastics, and Pharmaceuticals 38</p> <p>References 38</p> <p><b>Hydrocarbons from Petroleum and Natural Gas 49</b></p> <p>2.1 Cracking 49</p> <p>2.2 Reforming 62</p> <p>Hydroforming 64</p> <p>Metal-Catalyzed Reforming 65</p> <p>2.3 Dehydrogenation with Olefin Production 71</p> <p>Heterogeneous Catalysts 73</p> <p>Homogeneous Catalysts 78</p> <p>C2–C3 Alkenes 85</p> <p>C4 Alkenes 86</p> <p>Buta-1,3-diene and Isoprene 87</p> <p>Higher Olefins 88</p> <p>Styrene 88</p> <p>2.4 Upgrading of Natural-Gas Liquids 89</p> <p>2.5 Aromatics Production 89</p> <p>References 102</p> <p><b>Synthesis from C Sources 125</b></p> <p>3.1 Aspects of C1 Chemistry 126</p> <p>3.2 Chemical Reduction to Methanol and Oxygenates; Recycling of CO2 127</p> <p>Heterogeneous Hydrogenation 129</p> <p>Homogeneous Hydrogenation 137</p> <p>Ionic Reduction 143</p> <p>Electrochemical and Electrocatalytic Reduction 143</p> <p>Photoreduction 146</p> <p>Enzymatic Reduction 148</p> <p>3.3 Fischer–Tropsch Chemistry 149</p> <p>3.4 Oxygenation of Methane 166</p> <p>Methanol Synthesis 166</p> <p>3.5 Oligocondensation of Methane 173</p> <p>3.6 Hydrocarbons from Methane Derivatives 186</p> <p>Methanol Conversion to Hydrocarbons 186</p> <p>Methanol to Hydrocarbon Technologies 196</p> <p>Methanol to Gasoline 196</p> <p>Methanol to Olefin 197</p> <p>Methanol to Propylene 198</p> <p>References 200</p> <p><b>Isomerization 237</b></p> <p>4.1 Acid-Catalyzed and Bifunctional Isomerization 238</p> <p>Mechanism 243</p> <p>Side-Chain Isomerization 250</p> <p>Positional Isomerization 250</p> <p>4.2 Base-Catalyzed Isomerization 262</p> <p>4.2.1 Alkenes 262</p> <p>4.3 Metal-Catalyzed Isomerization 266</p> <p>4.4 Pericyclic Rearrangements 277</p> <p>4.5 Practical Applications 284</p> <p>Alkanes 284</p> <p>Alkenes 285</p> <p>4.5.2 Isomerization of Xylenes 286</p> <p>References 287</p> <p><b>Alkylations 305</b></p> <p>5.1 Acid-Catalyzed Alkylation 305</p> <p>Alkylolysis (Alkylative Cleavage) 317</p> <p>Alkylation of Alkenes with Organic Halides 318</p> <p>Alkylation of Alkynes 320</p> <p>Alkylation with Carbonyl Compounds: The Prins Reaction 320</p> <p>Catalysts 324</p> <p>Alkylation with Alkyl Halides 326</p> <p>Alkylation with Alkenes 331</p> <p>Alkylation with Alkanes 335</p> <p>Alkylation with Other Reagents 338</p> <p>5.2 Base-Catalyzed Alkylation 350</p> <p>5.3 Alkylation through Organometallics 352</p> <p>5.4 Miscellaneous Alkylations 356</p> <p>5.5 Practical Applications 360</p> <p>References 369</p> <p><b>Addition Reactions 389</b></p> <p>6.1 Hydration 389</p> <p>Production of Alcohols by Hydration of Alkenes 395</p> <p>Production of Octane-Enhancing Oxygenates 396</p> <p>Acetaldehyde 397</p> <p>6.2 HX Addition 398</p> <p>Alkenes 398</p> <p>Dienes 403</p> <p>Alkynes 404</p> <p>Ethyl Chloride 411</p> <p>Hydrochlorination of Buta-1,3-diene 411</p> <p>Vinyl Chloride 411</p> <p>Ethylene Chlorohydrin 412</p> <p>Propylene Chlorohydrin 412</p> <p>Adiponitrile 412</p> <p>Acrylonitrile 413</p> <p>6.3 Halogen Addition 413</p> <p>Vinyl Chloride 422</p> <p>Chlorination of Buta-1,3-diene 424</p> <p>6.4 Addition to Form C–N Bonds 424</p> <p>6.5 Addition to Form C–O, C–S, and C–P Bonds 433</p> <p>6.6 Hydrometalation 439</p> <p>Alkenes 440</p> <p>Dienes 446</p> <p>Alkynes 448</p> <p>Alkenes 452</p> <p>Dienes 456</p> <p>Alkynes 457</p> <p>6.7 Halometalation 462</p> <p>6.8 Solvometalation 465</p> <p>6.9 Carbometalation 466</p> <p>6.10 Cycloaddition 471</p> <p>References 477</p> <p><b>Carbonylation and Carboxylation 509</b></p> <p>7.1 Carbonylation 509</p> <p>Hydroformylation in Biphasic Solvent Systems 515</p> <p>The Use of Heterogeneous Catalysts 516</p> <p>Hydroformylation of Higher Alkenes 518</p> <p>Hydroformylation of Internal Alkenes 519</p> <p>Asymmetric Hydroformylation 520</p> <p>7.2 Carboxylation 533</p> <p>Saturated Hydrocarbons 534</p> <p>Aromatic Hydrocarbons 536</p> <p>Hydrocarboxylation and hydroesterification 539</p> <p>Aminocarboxylation 545</p> <p>Neocarboxylic Acids 547</p> <p>Hydrocarboxymethylation of Long-Chain Alkenes 547</p> <p>Propionic Acid 547</p> <p>Acrylic Acid and Acrylates 548</p> <p>References 548</p> <p><b>Acylation 569</b></p> <p>8.1 Acylation of Aromatics 569</p> <p>New Soluble Catalysts 573</p> <p>Solid Catalysts 575</p> <p>The Gattermann–Koch Reaction 577</p> <p>The Gattermann Reaction 579</p> <p>Other Formylations 580</p> <p>8.2 Acylation of Aliphatic Compounds 581</p> <p>References 586</p> <p>Index 000</p> <p><b>Volume 2</b></p> <p>Preface to the Third Edition xi</p> <p>Preface to the Second Edition xiii</p> <p>Preface to the First Edition xv</p> <p>Introduction xvii</p> <p><b>Oxidation–Oxygenation 593</b></p> <p>9.1 Oxidation of Alkanes 594</p> <p>Autoxidation of Alkanes 594</p> <p>Oxidation of Methane 596</p> <p>Oxidation with Stoichiometric Oxidants 606</p> <p>Oxidation Catalyzed by Enzymes and Metalloporphyrins 613</p> <p>Metal-Catalyzed Oxidation in the Homogeneous Phase 616</p> <p>Oxidation Induced by Heterogeneous Catalysts 619</p> <p>Metal Oxidants 623</p> <p>Electrophilic Reagents 624</p> <p>Oxygenolysis 628</p> <p>9.2 Oxidation of Alkenes 630</p> <p>Direct Oxidation with Stoichiometric Oxidants 630</p> <p>Metal-Catalyzed Epoxidation 635</p> <p>Epoxidation Catalyzed by Metalloporphyrins 644</p> <p>Asymmetric Epoxidation 647</p> <p>Autoxidation 650</p> <p>Reactions with Singlet Oxygen 650</p> <p>Bis-Hydroxylation 656</p> <p>Bis-Acetoxylation 663</p> <p>Oxidation with Palladium in the Homogeneous Phase 664</p> <p>Oxidation with Other Reagents 669</p> <p>Vinylic Acetoxylation 671</p> <p>Ozonation 673</p> <p>Mechanism 673</p> <p>Synthetic Applications 676</p> <p>Other Oxidants 678</p> <p>Allylic Hydroxylation and Acyloxylation 681</p> <p>Oxidation to α,β-Unsaturated Carbonyl Compounds 686</p> <p>9.3 Oxidation of Alkynes 690</p> <p>9.4 Oxidation of Aromatics 693</p> <p>Oxidation to Phenols 693</p> <p>Ring Acyloxylation 701</p> <p>Oxidation to Quinones 702</p> <p>Oxidation to Arene Oxides and Arene Diols 703</p> <p>Oxidation with Singlet Oxygen 704</p> <p>Oxidation of Methyl-Substituted Aromatics 706</p> <p>Oxidation of Other Arenes 708</p> <p>Benzylic Acetoxylation 711</p> <p>9.5 Practical Applications 712</p> <p>Acetic Acid 712</p> <p>Maleic Anhydride 713</p> <p>Oxidation of Cyclohexane 715</p> <p>Oxidation of Cyclododecane 715</p> <p>sec-Alcohols 715</p> <p>Ethylene Oxide 716</p> <p>Propylene Oxide 718</p> <p>Acetaldehyde and Acetone 719</p> <p>Vinyl Acetate 719</p> <p>1,4-Diacetoxybut-2-ene 720</p> <p>Acrolein and Acrylic Acid 720</p> <p>Methacrolein and Methacrylic Acid 721</p> <p>Acrylonitrile 721</p> <p>Other Processes 722</p> <p>Phenol and Acetone 722</p> <p>Benzoic Acid 723</p> <p>Terephthalic Acid 723</p> <p>Maleic Anhydride 724</p> <p>Phthalic Anhydride 725</p> <p>Anthraquinone 727</p> <p>References 727</p> <p><b>Heterosubstitution 795</b></p> <p>10.1 Electrophilic (Acid-Catalyzed) Substitution 795</p> <p>Halogenation 796</p> <p>Nitration 798</p> <p>Sulfuration 799</p> <p>Halogenation 800</p> <p>Nitration 804</p> <p>Sulfonation 808</p> <p>Synthesis of Sulfoxides and Sulfones 810</p> <p>Chlorobenzene 811</p> <p>Nitration of Benzene and Toluene 811</p> <p>Sulfonation of Benzene and Alkylbenzenes 811</p> <p>10.2 Free-Radical Substitution 812</p> <p>Chlorination 812</p> <p>Fluorination 817</p> <p>Bromination 818</p> <p>Iodination 819</p> <p>Side-Chain Halogenation of Arylalkanes 819</p> <p>Chlorination of Alkanes 824</p> <p>Side-Chain Chlorination of Toluene 826</p> <p>Unsaturated Chlorides 826</p> <p>Sulfochlorination of Alkanes 827</p> <p>Nitroalkanes 827</p> <p>10.3 Formation of C–N Bonds 827</p> <p>10.4 Formation of Carbon–Metal Bonds 831</p> <p>Borylation 837</p> <p>Silylation 840</p> <p>Al, Ge, and Sn Derivatives 841</p> <p>10.5 Miscellaneous Derivatives 842</p> <p>References 843</p> <p><b>Reduction–Hydrogenation 863</b></p> <p>11.1 Heterogeneous Catalytic Hydrogenation 864</p> <p>Mechanism 866</p> <p>Stereochemistry 870</p> <p>11.2 Homogeneous Catalytic Hydrogenation 886</p> <p>Mechanism 891</p> <p>Selectivity and Stereochemistry 893</p> <p>Asymmetric Hydrogenation 896</p> <p>11.3 Transfer Hydrogenation 904</p> <p>11.4 Chemical and Electrochemical Reduction 906</p> <p>Mechanism 911</p> <p>Selectivity 911</p> <p>11.5 Ionic Hydrogenation 913</p> <p>11.6 Hydrogenolysis of Saturated Hydrocarbons 918</p> <p>11.7 Practical Applications 931</p> <p>C2 Hydrorefining 931</p> <p>C3 Hydrorefining 931</p> <p>C4 Hydrorefining 931</p> <p>Gasoline Hydrorefining 932</p> <p>References 934</p> <p><b>Metathesis 959</b></p> <p>12.1 Metathesis of Acyclic Alkenes 960</p> <p>12.2 Alkane Metathesis 973</p> <p>12.3 Metathesis of Alkynes 976</p> <p>12.4 Ring-Closing Metathesis 978</p> <p>12.5 Ring-Opening Metathesis and Ring-Opening Metathesis Polymerization 979</p> <p>12.6 Practical Applications 983</p> <p>References 986</p> <p><b>Oligomerization and Polymerization 1001</b></p> <p>13.1 Oligomerization 1001</p> <p>Practical Applications 1006</p> <p>Alkenes 1008</p> <p>Alkynes 1013</p> <p>Cyclooligomerization 1014</p> <p>Practical Applications 1018</p> <p>13.2 Polymerization 1021</p> <p>Ziegler–Natta Catalysts 1038</p> <p>The Phillips Catalyst 1041</p> <p>Group IV Metallocene Catalysts 1042</p> <p>Postmetallocene Catalysts 1047</p> <p>Stereoregular Polymerization of Propylene 1058</p> <p>Isospecific Polymerization 1059</p> <p>Syndiospecific Polymerization 1064</p> <p>Stereoregular Polymerization of Dienes 1065</p> <p>Ethylene Polymers 1072</p> <p>Polypropylene 1074</p> <p>Polybutylenes 1075</p> <p>Styrene Polymers 1076</p> <p>Polydienes 1077</p> <p>References 1078</p> <p><b>Outlook 1111</b></p> <p>14.1 Sustainable Hydrocarbon Chemistry for the Future 1111</p> <p>14.2 Extraterrestrial Hydrocarbon Chemistry 1114</p> <p>References 1115</p> <p>Index 000</p>
<p><b> GEORGE A. OLAH, PhD,</b> was awarded the undivided 1994 Nobel Prize in Chemistry. He was a Distinguished Professor of Chemistry, Chemical Engineering and Materials Science; Donald P. and Katherine B. Loker Chair in Organic Chemistry; and Founding Director of the Loker Hydrocarbon Research Institute at the University of Southern California, Los Angeles. He passed away on March 8, 2017. <p><b> ÁRPÁD MOLNÁR, DSc,</b> is an Emeritus Professor at the University of Szeged, Hungary, and a Senior Fellow of the Loker Hydrocarbon Research Institute at the University of Southern California. <p><b> G. K. SURYA PRAKASH, PhD,</b> is the George A. and Judith A. Olah Nobel Laureate Chair Professor and the Director of the Loker Hydrocarbon Research Institute at the University of Southern California.
<p> Reviews of the 2nd Edition: <p> "...literature coverage is comprehensive and ideal for quickly reviewing specific topics... of most value to industrial chemists..." <p><i> Angewandte Chemie International Edition </i> <p> "...industrial chemists, college and university teachers, and students will find the book very useful and a valuable addition to their bookshelves...useful for chemical engineers as well as engineers in the chemical and petrochemical industries." <p><i> Petroleum Science and Technology </i> <p> "...valuable to a wide range of readers...." <p><i> Energy Sources </i> <p> "...useful to anyone needing information about the important field of hydrocarbons, and the updates in this edition's references are especially valuable...highly recommended." <p><i> Choice </i> <p> "...will be a continuing first-source of vital information for this core component of contemporary organic chemistry." <p><i> Journal of the American Chemical Society </i> <p> Building on the legacy of its successful predecessor, this revision of <i>Hydrocarbon Chemistry</i> begins by discussing the general aspects of hydrocarbons, the separation of hydrocarbons from natural sources, and the synthesis from C1 precursors with recent developments for possible future applications. Each successive chapter deals with a specific type of hydrocarbon transformation. <p> Since the publication of the 2<sup>nd</sup> edition, the field of hydrocarbon chemistry has rapidly grown and expanded both in its scientific scope and significances and provides the most promising approach to replace oil and, eventually, all fossil fuel. It is also able to render the use of still existing substantial fossil fuels environmentally adaptable by capturing and recycling CO<sub>2</sub> and recycling it through material to new fuels and chemical raw material – developments that lead to this third edition.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €