Details

Hybrid Electric Vehicles


Hybrid Electric Vehicles

Principles and Applications with Practical Perspectives
Automotive Series 2. Aufl.

von: Chris Mi, M. Abul Masrur

109,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.09.2017
ISBN/EAN: 9781118970539
Sprache: englisch
Anzahl Seiten: 600

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The latest developments in the field of hybrid electric vehicles</b></p> <p><i>Hybrid Electric Vehicles</i> provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues.</p> <p><i>Hybrid Electric Vehicles, Second Edition</i> is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology.</p> <ul> <li>Completely updated with new chapters</li> <li>Covers recent developments, breakthroughs, and technologies, including new drive topologies</li> <li>Explains HEV fundamentals and applications</li> <li>Offers a holistic perspective on vehicle electrification</li> </ul> <p><i>Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition</i> is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.</p>
<p>About the Authors xvii</p> <p>Preface to the First Edition xxi</p> <p>Preface to the Second Edition xxv</p> <p><b>1 Introduction 1</b></p> <p>1.1 Sustainable Transportation 2</p> <p>1.1.1 Population, Energy, and Transportation 3</p> <p>1.1.2 Environment 4</p> <p>1.1.3 Economic Growth 7</p> <p>1.1.4 New Fuel Economy Requirement 7</p> <p>1.2 A Brief History of HEVs 7</p> <p>1.3 Why EVs Emerged and Failed in the 1990s, and What We Can Learn 10</p> <p>1.4 Architectures of HEVs 11</p> <p>1.4.1 Series HEVs 12</p> <p>1.4.2 Parallel HEVs 13</p> <p>1.4.3 Series–Parallel HEVs 14</p> <p>1.4.4 Complex HEVs 15</p> <p>1.4.5 Diesel Hybrids 15</p> <p>1.4.6 Other Approaches to Vehicle Hybridization 16</p> <p>1.4.7 Hybridization Ratio 16</p> <p>1.5 Interdisciplinary Nature of HEVs 17</p> <p>1.6 State of the Art of HEVs 17</p> <p>1.6.1 Toyota Prius 21</p> <p>1.6.2 The Honda Civic 21</p> <p>1.6.3 The Ford Escape 21</p> <p>1.6.4 The Two?]Mode Hybrid 21</p> <p>1.7 Challenges and Key Technology of HEVs 24</p> <p>1.8 The Invisible Hand–Government Support 25</p> <p>1.9 Latest Development in EV and HEV, China’s Surge in EV Sales 27</p> <p>References 29</p> <p><b>2 Concept of Hybridization of the Automobile 31</b></p> <p>2.1 Vehicle Basics 31</p> <p>2.1.1 Constituents of a Conventional Vehicle 31</p> <p>2.1.2 Vehicle and Propulsion Load 31</p> <p>2.1.3 Drive Cycles and Drive Terrain 34</p> <p>2.2 Basics of the EV 36</p> <p>2.2.1 Why EV? 36</p> <p>2.2.2 Constituents of an EV 36</p> <p>2.2.3 Vehicle and Propulsion Loads 38</p> <p>2.3 Basics of the HEV 39</p> <p>2.3.1 Why HEV? 39</p> <p>2.3.2 Constituents of an HEV 40</p> <p>2.4 Basics of Plug?]In Hybrid Electric Vehicle (PHEV) 40</p> <p>2.4.1 Why PHEV? 40</p> <p>2.4.2 Constituents of a PHEV 41</p> <p>2.4.3 Comparison of HEV and PHEV 42</p> <p>2.5 Basics of Fuel Cell Vehicles (FCVs) 42</p> <p>2.5.1 Why FCV? 42</p> <p>2.5.2 Constituents of a FCV 43</p> <p>2.5.3 Some Issues Related to Fuel Cells 43</p> <p>Reference 43</p> <p><b>3 HEV Fundamentals 45</b></p> <p>3.1 Introduction 45</p> <p>3.2 Vehicle Model 46</p> <p>3.3 Vehicle Performance 49</p> <p>3.4 EV Powertrain Component Sizing 52</p> <p>3.5 Series Hybrid Vehicle 55</p> <p>3.6 Parallel Hybrid Vehicle 60</p> <p>3.6.1 Electrically Peaking Hybrid Concept 61</p> <p>3.6.2 ICE Characteristics 66</p> <p>3.6.3 Gradability Requirement 66</p> <p>3.6.4 Selection of Gear Ratio from ICE to Wheel 67</p> <p>3.7 Wheel Slip Dynamics 68</p> <p>References 71</p> <p><b>4 Advanced HEV Architectures and Dynamics of HEV Powertrain 73</b></p> <p>4.1 Principle of Planetary Gears 73</p> <p>4.2 Toyota Prius and Ford Escape Hybrid Powertrain 76</p> <p>4.3 GM Two?]Mode Hybrid Transmission 80</p> <p>4.3.1 Operating Principle of the Two?]Mode Powertrain 80</p> <p>4.3.2 Mode 0: Vehicle Launch and Backup 81</p> <p>4.3.3 Mode 1: Low Range 82</p> <p>4.3.4 Mode 2: High Range 83</p> <p>4.3.5 Mode 3: Regenerative Braking 84</p> <p>4.3.6 Transition between Modes 0, 1, 2, and 3 84</p> <p>4.4 Dual?]Clutch Hybrid Transmissions 87</p> <p>4.4.1 Conventional DCT Technology 87</p> <p>4.4.2 Gear Shift Schedule 87</p> <p>4.4.3 DCT?]Based Hybrid Powertrain 88</p> <p>4.4.4 Operation of DCT?]Based Hybrid Powertrain 90</p> <p>4.4.4.1 Motor?]Alone Mode 90</p> <p>4.4.4.2 Combined Mode 90</p> <p>4.4.4.3 Engine?]Alone Mode 90</p> <p>4.4.4.4 Regenerative Braking Mode 90</p> <p>4.4.4.5 Power Split Mode 91</p> <p>4.4.4.6 Standstill Charge Mode 91</p> <p>4.4.4.7 Series Hybrid Mode 92</p> <p>4.5 Hybrid Transmission Proposed by Zhang et al. 92</p> <p>4.5.1 Motor?]Alone Mode 92</p> <p>4.5.2 Combined Power Mode 93</p> <p>4.5.3 Engine?]Alone Mode 94</p> <p>4.5.4 Electric CVT Mode 94</p> <p>4.5.5 Energy Recovery Mode 94</p> <p>4.5.6 Standstill Mode 94</p> <p>4.6 Renault IVT Hybrid Transmission 95</p> <p>4.7 Timken Two?]Mode Hybrid Transmission 96</p> <p>4.7.1 Mode 0: Launch and Reverse 96</p> <p>4.7.2 Mode 1: Low?]Speed Operation 97</p> <p>4.7.3 Mode 2: High?]Speed Operation 97</p> <p>4.7.4 Mode 4: Series Operating Mode 97</p> <p>4.7.5 Mode Transition 98</p> <p>4.8 Tsai’s Hybrid Transmission 99</p> <p>4.9 Hybrid Transmission with Both Speed and Torque Coupling Mechanism 100</p> <p>4.10 Toyota Highlander and Lexus Hybrid, E?]Four?]Wheel Drive 102</p> <p>4.11 CAMRY Hybrid 103</p> <p>4.12 Chevy Volt Powertrain 104</p> <p>4.13 Non?]Ideal Gears in the Planetary System 106</p> <p>4.14 Dynamics of the Transmission 107</p> <p>4.15 Conclusions 108</p> <p>References 108</p> <p><b>5 Plug?]In Hybrid Electric Vehicles 111</b></p> <p>5.1 Introduction to PHEVs 111</p> <p>5.1.1 PHEVs and EREVs 111</p> <p>5.1.2 Blended PHEVs 112</p> <p>5.1.3 Why PHEV? 112</p> <p>5.1.4 Electricity for PHEV Use 114</p> <p>5.2 PHEV Architectures 115</p> <p>5.3 Equivalent Electric Range of Blended PHEVs 115</p> <p>5.4 Fuel Economy of PHEVs 116</p> <p>5.4.1 Well?]to?]Wheel Efficiency 116</p> <p>5.4.2 PHEV Fuel Economy 117</p> <p>5.4.3 Utility Factor 118</p> <p>5.5 Power Management of PHEVs 119</p> <p>5.6 PHEV Design and Component Sizing 121</p> <p>5.7 Component Sizing of EREVs 122</p> <p>5.8 Component Sizing of Blended PHEVs 123</p> <p>5.9 HEV to PHEV Conversions 123</p> <p>5.9.1 Replacing the Existing Battery Pack 123</p> <p>5.9.2 Adding an Extra Battery Pack 125</p> <p>5.9.3 Converting Conventional Vehicles to PHEVs 126</p> <p>5.10 Other Topics on PHEVs 126</p> <p>5.10.1 End?]of?]Life Battery for Electric Power Grid Support 126</p> <p>5.10.2 Cold Start Emissions Reduction in PHEVs 126</p> <p>5.10.3 Cold Weather/Hot Weather Performance Enhancement in PHEVs 127</p> <p>5.10.4 PHEV Maintenance 127</p> <p>5.10.5 Safety of PHEVs 128</p> <p>5.11 Vehicle?]to?]Grid Technology 129</p> <p>5.11.1 PHEV Battery Charging 129</p> <p>5.11.2 Impact of G2V 131</p> <p>5.11.3 The Concept of V2G 135</p> <p>5.11.4 Advantages of V2G 136</p> <p>5.11.5 Case Studies of V2G 137</p> <p>5.12 Conclusion 140</p> <p>References 140</p> <p><b>6 Special Hybrid Vehicles 143</b></p> <p>6.1 Hydraulic Hybrid Vehicles 143</p> <p>6.1.1 Regenerative Braking in HHVs 146</p> <p>6.2 Off?]Road HEVs 148</p> <p>6.2.1 Hybrid Excavators 151</p> <p>6.2.2 Hybrid Excavator Design Considerations 157</p> <p>6.3 Diesel HEVs 163</p> <p>6.4 Electric or Hybrid Ships, Aircraft, and Locomotives 164</p> <p>6.4.1 Ships 164</p> <p>6.4.2 Aircraft 167</p> <p>6.4.3 Locomotives 170</p> <p>6.5 Other Industrial Utility Application Vehicles 172</p> <p>References 173</p> <p>Further Reading 174</p> <p><b>7 HEV Applications for Military Vehicles 175</b></p> <p>7.1 Why HEVs Can Be Beneficial for Military Applications 175</p> <p>7.2 Ground Vehicle Applications 176</p> <p>7.2.1 Architecture – Series, Parallel, Complex 176</p> <p>7.2.2 Vehicles that Are of Most Benefit 178</p> <p>7.3 Non?]Ground?]Vehicle Military Applications 180</p> <p>7.3.1 Electromagnetic Launchers 181</p> <p>7.3.2 Hybrid?]Powered Ships 181</p> <p>7.3.3 Aircraft Applications 183</p> <p>7.3.4 Dismounted Soldier Applications 183</p> <p>7.4 Ruggedness Issues 185</p> <p>References 186</p> <p>Further Reading 187</p> <p><b>8 Diagnostics, Prognostics, Reliability, EMC, and Other Topics </b><b>Related to HEVs 189</b></p> <p>8.1 Diagnostics and Prognostics in HEVs and EVs 189</p> <p>8.1.1 Onboard Diagnostics 189</p> <p>8.1.2 Prognostics Issues 192</p> <p>8.2 Reliability of HEVs 195</p> <p>8.2.1 Analyzing the Reliability of HEV Architectures 196</p> <p>8.2.2 Reliability and Graceful Degradation 199</p> <p>8.2.3 Software Reliability Issues 201</p> <p>8.3 Electromagnetic Compatibility (EMC) Issues 203</p> <p>8.4 Noise Vibration Harshness (NVH), Electromechanical, and Other Issues 205</p> <p>8.5 End?]of?]Life Issues 207</p> <p>References 208</p> <p>Further Reading 209</p> <p><b>9 Power Electronics in HEVs 211</b></p> <p>9.1 Introduction 211</p> <p>9.2 Principles of Power Electronics 212</p> <p>9.3 Rectifiers Used in HEVs 214</p> <p>9.3.1 Ideal Rectifier 214</p> <p>9.3.2 Practical Rectifier 215</p> <p>9.3.3 Single?]Phase Rectifier 216</p> <p>9.3.4 Voltage Ripple 218</p> <p>9.4 Buck Converter Used in HEVs 221</p> <p>9.4.1 Operating Principle 221</p> <p>9.4.2 Nonlinear Model 222</p> <p>9.5 Non?]Isolated Bidirectional DC–DC Converter 223</p> <p>9.5.1 Operating Principle 223</p> <p>9.5.2 Maintaining Constant Torque Range and Power Capability 225</p> <p>9.5.3 Reducing Current Ripple in the Battery 226</p> <p>9.5.4 Regenerative Braking 228</p> <p>9.6 Voltage Source Inverter 229</p> <p>9.7 Current Source Inverter 229</p> <p>9.8 Isolated Bidirectional DC–DC Converter 231</p> <p>9.8.1 Basic Principle and Steady State Operations 231</p> <p>9.8.1.1 Heavy Load Conditions 232</p> <p>9.8.1.2 Light Load Condition 234</p> <p>9.8.1.3 Output Voltage 234</p> <p>9.8.1.4 Output Power 236</p> <p>9.8.2 Voltage Ripple 236</p> <p>9.9 PWM Rectifier in HEVs 242</p> <p>9.9.1 Rectifier Operation of Inverter 242</p> <p>9.10 EV and PHEV Battery Chargers 243</p> <p>9.10.1 Forward/Flyback Converters 244</p> <p>9.10.2 Half?]Bridge DC–DC Converter 245</p> <p>9.10.3 Full?]Bridge DC–DC Converter 245</p> <p>9.10.4 Power Factor Correction Stage 246</p> <p>9.10.4.1 Decreasing Impact on the Grid 246</p> <p>9.10.4.2 Decreasing the Impact on the Switches 247</p> <p>9.10.5 Bidirectional Battery Chargers 247</p> <p>9.10.6 Other Charger Topologies 249</p> <p>9.10.7 Contactless Charging 249</p> <p>9.10.8 Wireless Charging 250</p> <p>9.11 Modeling and Simulation of HEV Power Electronics 251</p> <p>9.11.1 Device?]Level Simulation 251</p> <p>9.11.2 System?]Level Model 252</p> <p>9.12 Emerging Power Electronics Devices 253</p> <p>9.13 Circuit Packaging 254</p> <p>9.14 Thermal Management of HEV Power Electronics 254</p> <p>9.15 Conclusions 257</p> <p>References 257</p> <p><b>10 Electric Machines and Drives in HEVs 261</b></p> <p>10.1 Introduction 261</p> <p>10.2 Induction Motor Drives 262</p> <p>10.2.1 Principle of Induction Motors 262</p> <p>10.2.2 Equivalent Circuit of Induction Motor 265</p> <p>10.2.3 Speed Control of Induction Machine 267</p> <p>10.2.4 Variable Frequency, Variable Voltage Control of Induction Motors 269</p> <p>10.2.5 Efficiency and Losses of Induction Machine 270</p> <p>10.2.6 Additional Loss in Induction Motors Due to PWM Supply 271</p> <p>10.2.7 Field?]Oriented Control of Induction Machine 278</p> <p>10.3 Permanent Magnet Motor Drives 287</p> <p>10.3.1 Basic Configuration of PM Motors 287</p> <p>10.3.2 Basic Principle and Operation of PM Motors 290</p> <p>10.3.3 Magnetic Circuit Analysis of IPM Motors 295</p> <p>10.3.3.1 Unsaturated Motor 300</p> <p>10.3.3.2 Saturated Motor 301</p> <p>10.3.3.3 Operation under Load 303</p> <p>10.3.3.4 Flux Concentration 303</p> <p>10.3.4 Sizing of Magnets in PM Motors 304</p> <p>10.3.4.1 Input Power 306</p> <p>10.3.4.2 Direct?]Axis Armature Reaction Factor 306</p> <p>10.3.4.3 Magnetic Usage Ratio and Flux Leakage Coefficient 306</p> <p>10.3.4.4 Maximum Armature Current 307</p> <p>10.3.4.5 Inner Power Angle 307</p> <p>10.3.5 Eddy Current Losses in the Magnets of PM Machines 308</p> <p>10.4 Switched Reluctance Motors 310</p> <p>10.5 Doubly Salient Permanent Magnet Machines 311</p> <p>10.6 Design and Sizing of Traction Motors 315</p> <p>10.6.1 Selection of A and B 315</p> <p>10.6.2 Speed Rating of the Traction Motor 316</p> <p>10.6.3 Determination of the Inner Power 316</p> <p>10.7 Thermal Analysis and Modeling of Traction Motors 316</p> <p>10.7.1 The Thermal Resistance of the Air Gap, Rag 317</p> <p>10.7.2 The Radial Conduction Thermal Resistance of the Rotor Core, Rrs 318</p> <p>10.7.3 The Radial Conduction Thermal Resistance of the Poles, Rmr 319</p> <p>10.7.4 The Thermal Resistance of the Shaft, Rshf 319</p> <p>10.7.5 The Radial Conduction Thermal Resistance of Stator Teeth, Rst 320</p> <p>10.7.6 The Radial Conduction Thermal Resistance of the Stator Yoke, Rsy 320</p> <p>10.7.7 The Conduction Thermal Resistance between the Windings and Stator, Rws 320</p> <p>10.7.8 Convective Thermal Resistance Between Windings External to the Stator and Adjoining Air, Rwa 321</p> <p>10.8 Conclusions 323</p> <p>References 323</p> <p><b>11 Electric Energy Sources and Storage Devices 333</b></p> <p>11.1 Introduction 333</p> <p>11.2 Characterization of Batteries 335</p> <p>11.2.1 Battery Capacity 335</p> <p>11.2.2 Energy Stored in a Battery 335</p> <p>11.2.3 State of Charge in Battery (SOC) and Measurement of SOC 335</p> <p>11.2.3.1 SOC Determination 336</p> <p>11.2.3.2 Direct measurement 336</p> <p>11.2.3.3 Amp?]hr Based Measurement 337</p> <p>11.2.3.4 Some Better Methods 337</p> <p>11.2.3.5 Initialization Process 338</p> <p>11.2.4 Depth of Discharge (DOD) of a Battery 339</p> <p>11.2.5 Specific Power and Energy Density 339</p> <p>11.2.6 Ampere?]Hour (Charge and Discharge) Efficiency 339</p> <p>11.2.7 Number of Deep Cycles and Battery Life 340</p> <p>11.2.8 Some Practical Issues About Batteries and Battery Life 341</p> <p>11.2.8.1 Acronyms and Definitions 344</p> <p>11.2.8.2 State of Health Issue in Batteries 348</p> <p>11.2.8.3 Two?]Pulse Load Method to Evaluate State of Health of a Battery [4, 6] 349</p> <p>11.2.8.4 Battery Management Implementation 352</p> <p>11.2.8.5 What to Do with All the Above Information 353</p> <p>11.3 Comparison of Energy Storage Technologies 355</p> <p>11.3.1 Lead Acid Battery 355</p> <p>11.3.2 Nickel Metal Hydride Battery 356</p> <p>11.3.3 Lithium?]Ion Battery 356</p> <p>11.4 Ultracapacitors 356</p> <p>11.5 Electric Circuit Model for Batteries and Ultracapacitors 358</p> <p>11.5.1 Battery Modeling 358</p> <p>11.5.2 Electric Circuit Models for Ultracapacitors 359</p> <p>11.6 Flywheel Energy Storage System 361</p> <p>11.7 Fuel Cell Based Hybrid Vehicular Systems 364</p> <p>11.7.1 Introduction to Fuel Cells 364</p> <p>11.7.1.1 Types of Fuel Cells 364</p> <p>11.7.2 System Level Applications 364</p> <p>11.7.3 Fuel Cell Modeling 366</p> <p>11.8 Summary and Discussion 368</p> <p>References 369</p> <p>Further Reading 369</p> <p><b>12 Battery Modeling 371</b></p> <p>12.1 Introduction 371</p> <p>12.2 Modeling of Nickel Metal Hydride (NiMH) Battery 372</p> <p>12.2.1 Chemistry of an NiMH Battery 372</p> <p>12.3 Modeling of Lithium?]Ion (Li?]Ion) Battery 374</p> <p>12.3.1 Chemistry in Li?]Ion Battery 374</p> <p>12.4 Parameter Estimation for Battery Models 375</p> <p>12.5 Example Case of Using Battery Model in an EV System 377</p> <p>12.6 Summary and Observations on Modeling</p> <p>and Simulation for Batteries 382</p> <p>References 383</p> <p>Further Reading 383</p> <p><b>13 EV and PHEV Battery Charger Design 385</b></p> <p>13.1 Introduction 385</p> <p>13.2 Main Features of the LLC Resonant Charger 387</p> <p>13.2.1 Analysis in the Time Domain 387</p> <p>13.2.2 Operation Modes and Distribution Analysis 389</p> <p>13.3 Design Considerations for an LLC Converter for a PHEV Battery Charger 393</p> <p>13.4 Charging Trajectory Design 396</p> <p>13.4.1 Key Design Parameters 396</p> <p>13.4.2 Design Constraints 399</p> <p>13.5 Design Procedures 401</p> <p>13.6 Experimental Results 401</p> <p>13.7 Conclusions 407</p> <p>References 407</p> <p><b>14 Modeling and Simulation of Electric and Hybrid Vehicles 409</b></p> <p>14.1 Introduction 409</p> <p>14.2 Fundamentals of Vehicle System Modeling 410</p> <p>14.3 HEV Modeling Using ADVISOR 412</p> <p>14.4 HEV Modeling Using PSAT 416</p> <p>14.5 Physics?]Based Modeling 416</p> <p>14.5.1 RCF Modeling Technique 417</p> <p>14.5.2 Hybrid Powertrain Modeling 418</p> <p>14.5.3 Modeling of a DC Machine 418</p> <p>14.5.4 Modeling of DC–DC Boost Converter 419</p> <p>14.5.5 Modeling of Vehicle Dynamics 420</p> <p>14.5.6 Wheel Slip Model 421</p> <p>14.6 Bond Graph and Other Modeling Techniques 424</p> <p>14.6.1 Bond Graph Modeling for HEVs 424</p> <p>14.6.2 HEV Modeling Using PSIM 425</p> <p>14.6.3 HEV Modeling Using Simplorer and V?]Elph 427</p> <p>14.7 Consideration of Numerical Integration Methods 428</p> <p>14.8 Conclusion 428</p> <p>References 428</p> <p><b>15 HEV Component Sizing and Design Optimization 433</b></p> <p>15.1 Introduction 433</p> <p>15.2 Global Optimization Algorithms for HEV Design 434</p> <p>15.2.1 DIRECT 434</p> <p>15.2.2 Simulated Annealing 438</p> <p>15.2.2.1 Algorithm Description 438</p> <p>15.2.2.2 Tunable Parameters 439</p> <p>15.2.2.3 Flow Chart 440</p> <p>15.2.3 Genetic Algorithms 441</p> <p>15.2.3.1 Flow Chart 441</p> <p>15.2.3.2 Operators and Selection Method 441</p> <p>15.2.3.3 Tunable Parameters 443</p> <p>15.2.4 Particle Swarm Optimization 443</p> <p>15.2.4.1 Algorithm Description 443</p> <p>15.2.4.2 Flow Chart 444</p> <p>15.2.5 Advantages/Disadvantages of Different Optimization Algorithms 444</p> <p>15.2.5.1 DIRECT 444</p> <p>15.2.5.2 SA 445</p> <p>15.2.5.3 GA 445</p> <p>15.2.5.4 PSO 446</p> <p>15.3 Model?]in?]the?]Loop Design Optimization Process 446</p> <p>15.4 Parallel HEV Design Optimization Example 447</p> <p>15.5 Series HEV Design Optimization Example 452</p> <p>15.5.1 Control Framework of a Series HEV Powertrain 454</p> <p>15.5.2 Series HEV Parameter Optimization 454</p> <p>15.5.3 Optimization Results 456</p> <p>15.6 Conclusion 459</p> <p>References 459</p> <p><b>16 Wireless Power Transfer for Electric Vehicle Applications 461</b></p> <p>16.1 Introduction 461</p> <p>16.2 Fundamental Theory 464</p> <p>16.3 Magnetic Coupler Design 468</p> <p>16.3.1 Coupler for Stationary Charging 469</p> <p>16.3.2 Coupler for Dynamic Charging 471</p> <p>16.4 Compensation Network 473</p> <p>16.5 Power Electronics Converters and Power Control 475</p> <p>16.6 Methods of Study 477</p> <p>16.7 Additional Discussion 479</p> <p>16.7.1 Safety Concerns 479</p> <p>16.7.2 Vehicle to Grid Benefits 481</p> <p>16.7.3 Wireless Communications 481</p> <p>16.7.4 Cost 481</p> <p>16.8 A Double?]Sided LCC Compensation Topology and its Parameter Design 482</p> <p>16.8.1 The Double?]Sided LCC Compensation Topology 482</p> <p>16.8.2 Parameter Tuning for Zero Voltage Switching 486</p> <p>16.8.3 Parameter Design 491</p> <p>16.8.4 Simulation and Experiment Results 495</p> <p>16.8.4.1 Simulation Results 495</p> <p>16.8.4.2 Experimental Results 497</p> <p>16.9 An LCLC Based Wireless Charger Using Capacitive Power Transfer Principle 502</p> <p>16.9.1 Circuit Topology Design 504</p> <p>16.9.2 Capacitance Analysis 506</p> <p>16.9.3 A 2.4 kW CPT System Design 506</p> <p>16.9.4 Experiment 507</p> <p>16.10 Summary 511</p> <p>References 511</p> <p><b>17 Vehicular Power Control Strategy and Energy Management 521</b></p> <p>17.1 A Generic Framework, Definition, and Needs 521</p> <p>17.2 Methodology to Implement 523</p> <p>17.2.1 Methodologies for Optimization 528</p> <p>17.2.2 Cost Function Optimization 531</p> <p>17.3 Benefits of Energy Management 536</p> <p>References 536</p> <p>Further Reading 537</p> <p><b>18 Commercialization and Standardization of HEV Technology and Future Transportation 539</b></p> <p>18.1 What Is Commercialization and Why Is It Important for HEVs? 539</p> <p>18.2 Advantages, Disadvantages, and Enablers of Commercialization 539</p> <p>18.3 Standardization and Commercialization 540</p> <p>18.4 Commercialization Issues and Effects on Various Types of Vehicles 541</p> <p>18.5 Commercialization of HEVs for Trucks and Off?]Road Applications 542</p> <p>18.6 Commercialization and Future of HEVs and Transportation 543</p> <p>Further Reading 543</p> <p><b>19 A Holistic Perspective on Vehicle Electrification 545</b></p> <p>19.1 Vehicle Electrification – What Does it Involve? 545</p> <p>19.2 To What Extent Should Vehicles Be Electrified? 545</p> <p>19.3 What Other Industries Are Involved or Affected in Vehicle Electrification? 547</p> <p>19.4 A More Complete Picture Towards Vehicle Electrification 548</p> <p>19.5 The Ultimate Issue: To Electrify Vehicles or Not? 551</p> <p>Further Reading 553</p> <p>Index 555</p>
<p><strong>Chris Mi, PhD,</strong> is the Professor and Chair of Electrical and Computer Engineering, and Director of DTE Power Electronics Laboratory at San Diego State University. <p><strong>M. Abul Masrur, PhD, </strong>is an Adjunct Professor at the University of Detroit Mercy, where he has been teaching courses on Advanced Electric and Hybrid Vehicles, Vehicular Power Systems, Electric Drives, and Power Electronics.
<p><strong> The latest developments in the field of hybrid electric vehicles</strong> <p><em>Hybrid Electric Vehicles</em> provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. <p> <em>Hybrid Electric Vehicles, Second Edition</em> is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. <ul> <li>Completely updated with new chapters</li> <li>Covers recent developments, breakthroughs, and technologies, including new drive topologies</li> <li>Explains HEV fundamentals and applications</li> <li>Offers a holistic perspective on vehicle electrification</li> </ul> <br> <p><em>Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition</em> is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €