Details

Handbook of Flexible and Smart Sheet Forming Techniques


Handbook of Flexible and Smart Sheet Forming Techniques

Industry 4.0 Approaches
1. Aufl.

von: Ajay Kumar, Parveen Kumar, Hari Singh, Vishal Gulati, Pravin Kumar Singh

111,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.08.2023
ISBN/EAN: 9781119986447
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>HANDBOOK OF FLEXIBLE AND SMART SHEET FORMING TECHNIQUES</b> <p><b>Single-source guide to innovative sheet forming techniques and applications, featuring contributions from a range of engineering perspectives</b> <p><i>Handbook of Flexible and Smart Sheet Forming Techniques</i> presents a collection of research on state-of-art techniques developed specifically for flexible and smart sheet forming, with a focus on using analytical strategies and computational, simulation, and AI approaches to develop innovative sheet forming techniques. Bringing together various engineering perspectives, the book emphasizes how these manufacturing techniques intersect with Industry 4.0 technologies for applications in the mechanical, automobile, industrial, aerospace, and medical industries. <p>Research outcomes, illustrations, case studies, and examples are included throughout the text, and are useful for readers who wish to better understand and utilize these new manufacturing technologies. <p>Topics covered in the book include: <ul><li>Concepts, classifications, variants, process cycles, and materials for flexible and smart sheet forming techniques</li> <li>Comparisons between the aforementioned techniques and other conventional sheet forming processes, plus hardware and software requirements for these techniques</li> <li>Parameters, responses, and optimization strategies, mechanics of flexible and smart sheet forming, simulation approaches, and future innovations and directions</li> <li>Recent advancements in the field, including various optimizations like artificial intelligence, Internet of Things, and machine learning techniques</li></ul> <p><i>Handbook of Flexible and Smart Sheet Forming Techniques</i> is an ideal reference guide for academic researchers and industrial engineers in the fields of incremental sheet forming. It also serves as an excellent comprehensive reference source for university students and practitioners in the mechanical, production, industrial, computer science engineering, medical, and pharmaceutical industries.
<p>About the Editors xiii</p> <p>List of Contributors xvii</p> <p>Preface xxi</p> <p><b>1 Incremental Sheet Forming – A State-of-Art Review 1<br /> </b><i>K. S. Rudramamba, M. Rami Reddy, and Mamatha Nakka</i></p> <p>1.1 Introduction to Incremental Sheet Forming 1</p> <p>1.2 Incremental Sheet Forming Process 2</p> <p>1.2.1 Single-Point Incremental Sheet Forming (SPISF) 4</p> <p>1.2.2 Two-Point Incremental Sheet Forming (TPISF) 4</p> <p>1.2.3 Double-Sided Incremental Forming 5</p> <p>1.2.4 Hybrid Incremental Forming 5</p> <p>1.2.5 Thermal-Assisted Incremental Forming (TAIF) 6</p> <p>1.3 Materials for Incremental Sheet Forming 7</p> <p>1.4 Formability Limits with AI Implementation 9</p> <p>1.5 Conclusions and Future Scope 9</p> <p>References 10</p> <p><b>2 Classification of Incremental Sheet Forming 15<br /> </b><i>Rupesh Kumar and Vikas Kumar</i></p> <p>2.1 Introduction 15</p> <p>2.1.1 History 16</p> <p>2.2 Classification of ISF 17</p> <p>2.2.1 Classification Based on Forming Methods of ISF 17</p> <p>2.2.1.1 SPIF 18</p> <p>2.2.1.2 TPIF 19</p> <p>2.2.1.3 MPIF 20</p> <p>2.2.1.4 Hybrid-ISF 20</p> <p>2.2.2 Classification Based on Forming Tools of ISF 20</p> <p>2.2.3 Classification Based on Forming Path of ISF 21</p> <p>2.2.4 Classification Based on Forming Machine of ISF 22</p> <p>2.2.5 Classification Based on Hot Forming of ISF 23</p> <p>2.3 Conclusion 25</p> <p>2.4 Future Work 25</p> <p>References 25</p> <p><b>3 A Review on Effect of Computer-Aided Machining Parameters in Incremental Sheet Forming 29<br /> </b><i>Rupesh Kumar, Vikas Kumar, and Ajay Kumar</i></p> <p>3.1 Introduction 29</p> <p>3.2 Process Parameters 29</p> <p>3.2.1 Effects of Process Parameters on Surface Roughness 30</p> <p>3.2.2 Effect of Process Parameters on Forming Force 31</p> <p>3.2.3 Effect of Process Parameters on Formability 35</p> <p>3.2.4 Effect of Process Parameters on Thickness Distribution 41</p> <p>3.2.5 Effect of Process Parameters on Dimensional Accuracy 42</p> <p>3.2.6 Effect of Process Parameters on the Processing Time 47</p> <p>3.2.7 Effect of Process Parameters on Energy Consumption 48</p> <p>3.3 Conclusion 49</p> <p>3.4 Future Work 51</p> <p>Funding Statement 52</p> <p>Conflicts of Interest 52</p> <p>Acknowledgment 52</p> <p>References 53</p> <p><b>4 Equipment and Operative for Industrializing the SPIF of Ti-6Al-4V 59<br /> </b><i>Mikel Ortiz, Mildred Puerto, Antonio Rubio, Maite Ortiz de Zarate, Edurne Iriondo, and Mariluz Penalva</i></p> <p>4.1 Introduction 59</p> <p>4.2 Materials and Methods 60</p> <p>4.2.1 Original Equipment 60</p> <p>4.2.2 Methodology 62</p> <p>4.3 Results and Discussion 63</p> <p>4.3.1 Hot SPIF System 63</p> <p>4.3.1.1 Forming Temperatures Range 63</p> <p>4.3.1.2 Concept 65</p> <p>4.3.1.3 Heating Units and Control 66</p> <p>4.3.1.4 Forming Tool 72</p> <p>4.3.1.5 Costs Assessment 72</p> <p>4.3.2 Hot SPIF of Ti-6Al-4V 75</p> <p>4.3.2.1 Overview 75</p> <p>4.3.2.2 Temperature Cycles 76</p> <p>4.3.2.3 Practices for Higher Accuracy 79</p> <p>4.3.2.4 Subsequent Operations 83</p> <p>4.4 Conclusion 89</p> <p>References 90</p> <p><b>5 Texture Development During Incremental Sheet Forming (ISF): A State-of-the-Art Review 93<br /> </b><i>Tushar R. Dandekar and Rajesh K. Khatirkar</i></p> <p>5.1 Introduction 93</p> <p>5.2 Crystallographic Texture 94</p> <p>5.2.1 Introduction to Crystallographic Texture 94</p> <p>5.2.2 Texture Evolution During ISF 96</p> <p>5.2.2.1 Texture Evolution During ISF of Aluminum Alloys 96</p> <p>5.2.2.2 Texture Development in ISF of AA1050 Alloy in Three Stages of SPIF 97</p> <p>5.3 Microstructure Evolution During ISF 102</p> <p>5.3.1 Microstructures 102</p> <p>5.3.2 Microstructure Evolution During ISF in Various Materials 103</p> <p>5.3.2.1 AA5052 Aluminum Alloy 103</p> <p>5.3.2.2 Dual Phase (DP590) Steel 105</p> <p>5.4 Deformation Mechanism During ISF 107</p> <p>5.4.1 Membrane Strain 107</p> <p>5.4.2 Shear Deformation 108</p> <p>5.4.3 Bending Under Tension (BUT) 110</p> <p>5.5 Future Scope 111</p> <p>5.6 Summary 111</p> <p>Abbreviations 112</p> <p>References 112</p> <p><b>6 Analyses of Stress and Forces in Single-Point Incremental Sheet Metal Forming 117<br /> </b><i>Swapnil Deokar and Prashant K. Jain</i></p> <p>6.1 Introduction 117</p> <p>6.1.1 Classification of ISF Based on Forming Methods 118</p> <p>6.2 Experimental Setup 119</p> <p>6.2.1 Machining Parameters in ISF 119</p> <p>6.2.2 Tool Path Strategies 120</p> <p>6.3 FE Analysis of ISF 121</p> <p>6.3.1 Analysis of Stress on Parts 121</p> <p>6.3.2 Forces Behavior in ISF 122</p> <p>6.3.3 Stress Effect on Thinning Part 122</p> <p>6.3.4 Applications of ISF 124</p> <p>6.3.5 Result and Discussion 124</p> <p>6.3.5.1 Stress Behavior 124</p> <p>6.3.5.2 Force Behavior 125</p> <p>6.3.5.3 Thinning Characteristics 125</p> <p>6.4 Conclusion 126</p> <p>6.5 Future work 126</p> <p>References 126</p> <p><b>7 Finite Element Simulation Approach in Incremental Sheet Forming Process 129<br /> </b><i>Archana Jaglan, Namrata Dogra, Ajay Kumar, and Parveen Kumar</i></p> <p>7.1 Introduction 129</p> <p>7.2 Finite Element Simulation 130</p> <p>7.2.1 Definition 130</p> <p>7.2.2 History of Finite Element Method 131</p> <p>7.2.3 Various Software Used for Finite Element Simulation in Incremental Sheet Forming Process 133</p> <p>7.2.4 Categories and Types of Finite Element Method Simulation 134</p> <p>7.2.5 Application of Finite Element Simulation in Incremental Sheet Forming Process 135</p> <p>7.2.6 Advantages of Finite Element Simulation in Incremental Sheet Forming Process 137</p> <p>7.3 Conclusion 138</p> <p>References 138</p> <p><b>8 Detection of Defect in Sheet Metal Industry: An Implication of Fault Tree Analysis 141<br /> </b><i>Soumyajit Das</i></p> <p>8.1 Introduction 141</p> <p>8.2 Methodology 142</p> <p>8.2.1 Data Collection 142</p> <p>8.2.2 Problem Description 142</p> <p>8.2.3 FMEA Analysis 143</p> <p>8.2.4 Fault Tree Analysis 143</p> <p>8.2.5 Fishbone Diagram 145</p> <p>8.3 Result and Analysis 146</p> <p>8.4 Discussion 148</p> <p>8.5 Conclusion 149</p> <p>References 150</p> <p><b>9 Integration of IoT, Fog- and Cloud-Based Computing-Oriented Communication Protocols in Smart Sheet Forming 151<br /> </b><i>Monisha Awasthi, Anamika Rana, Sushma Malik, and Ankur Goel</i></p> <p>9.1 Introduction 151</p> <p>9.2 Background 154</p> <p>9.3 Communication Protocol Overview 156</p> <p>9.3.1 HTTP: Hyper Text Transfer Protocol 157</p> <p>9.3.2 CoAP: Constrained Application Protocols 157</p> <p>9.3.3 MQTT: MQ Telemetry Transport 158</p> <p>9.3.4 DDS: Data Distribution Services 159</p> <p>9.3.5 AMQP: Advanced Message Queuing Protocol 160</p> <p>9.3.6 XMPP: Extensible Messaging and Presence Protocol 160</p> <p>9.4 Comparative Study of Communication Protocol for IoT Premise 161</p> <p>9.5 IOT, FOG, and CLOUD (ITCFBC) Are Interrelated 162</p> <p>9.6 Challenges and Related Issues 162</p> <p>9.7 Conclusion and Future Scope 164</p> <p>References 164</p> <p><b>10 Blockchain for the Internet of Things and Industry 4.0 Application 167<br /> </b><i>Dhirendra Siddharth, Dilip Kumar Jang Bahadur Saini, and Sunil Kumar</i></p> <p>10.1 Introduction 167</p> <p>10.2 Blockchain’s Application in a Wide Range of Industries 168</p> <p>10.2.1 Supply Chain 168</p> <p>10.2.2 Financial Transactions 168</p> <p>10.2.3 Encryption of Data 168</p> <p>10.2.4 Product Information 168</p> <p>10.2.5 Peer-to-Peer Trading 168</p> <p>10.3 Blockchain Plays in the Future of Our Economy 169</p> <p>10.3.1 The End of Corruption 169</p> <p>10.3.2 Integrity 169</p> <p>10.3.3 Contracts Without the Middle Person 170</p> <p>10.3.4 No Financial Stand 170</p> <p>10.3.5 Easier Management Without Analytics 170</p> <p>10.4 Changes in Society Using the Internet of Things and Blockchain 170</p> <p>10.4.1 Changes Through Blockchain 170</p> <p>10.4.2 Changes Through the Internet of Things 171</p> <p>10.5 Blockchain Transform Industries and the Economy 171</p> <p>10.6 Blockchain Support Swinburne’s Industry 4.0 Strategy 172</p> <p>10.7 Blockchain Technology’s Impact on the Digital Economy 173</p> <p>10.7.1 Changes in the Architecture 173</p> <p>10.7.2 Networking and Verification Expenses Are Reduced 173</p> <p>10.7.3 Automation 174</p> <p>10.8 Chains Are Being Revolutionized by Blockchain Technology 174</p> <p>10.8.1 Manual Procedures Are Being Replaced 175</p> <p>10.8.2 Increased Traceability 175</p> <p>10.8.3 Reliability and Trustworthiness Are Being Improved 175</p> <p>10.8.4 Processing Transactions in a Timely and Effective Manner 175</p> <p>10.9 Businesses That Use Blockchain Technology 175</p> <p>10.9.1 Blockchain Can Boost Supply Chain Value 175</p> <p>10.10 Real-World Use Cases for dApps and Smart Contracts 176</p> <p>10.10.1 Financial Use Cases for Smart Contracts 176</p> <p>10.10.2 Gaming Using Blockchain Technology: NFTs and Smart Contracts 177</p> <p>10.10.3 Blockchain and Smart Contracts in the Legal Industry 177</p> <p>10.10.4 Real Estate and Blockchain 177</p> <p>10.10.5 Creating DAOs with Smart Contracts for Corporate Structures 178</p> <p>10.10.6 Smart Contracts in Emerging Technology Applications 178</p> <p>10.10.7 Smart Contracts’ Potential Benefits in Other Industries 178</p> <p>10.11 Blockchain Is About to Revolutionize the Courtroom 179</p> <p>10.11.1 Enhanced Security Levels 179</p> <p>10.11.2 Better Agreements 180</p> <p>10.12 Conclusion 180</p> <p>References 180</p> <p><b>11 Experimental Study on the Fabrication of Plain Weave Copper Strips Mesh-Embedded Hybrid Composite and Its Benefits Over Traditional Sheet Metal 183<br /> </b><i>Ravindra Chopra, Mukesh Kumar, and Nahid Akhtar</i></p> <p>11.1 Introduction 183</p> <p>11.1.1 Composite Material: Overview 183</p> <p>11.1.2 Classification of Composite Materials 183</p> <p>11.1.3 Fiber-Reinforced Plastic (FRP) Composite Material 183</p> <p>11.1.4 Advantages of Composites 185</p> <p>11.1.5 Why Composites Are Replacing Traditional Sheet Metals 185</p> <p>11.1.5.1 High Degree of Strength 185</p> <p>11.1.5.2 Longer Life Span 186</p> <p>11.1.5.3 Composites Allow New Design Possibilities 186</p> <p>11.1.6 Applications of Hybrid Composites Over Sheet Metals 186</p> <p>11.1.7 Failure Modes 186</p> <p>11.1.8 Concerns About Disposal and Reuse 186</p> <p>11.1.9 Problem Definition 187</p> <p>11.1.10 Layout of the Project 187</p> <p>11.1.11 Research Objectives 187</p> <p>11.1.12 Research Application 187</p> <p>11.2 Proposed Methodology 188</p> <p>11.3 Experimental Procedure 188</p> <p>11.3.1 Raw Materials 188</p> <p>11.3.1.1 E-Glass Fiber (CSM) 190</p> <p>11.3.1.2 Epoxy Resin (Araldite LY556) 191</p> <p>11.3.1.3 Hardener (Aradur HY951) 191</p> <p>11.3.1.4 Flat Copper Sheet 191</p> <p>11.3.2 Mold Preparation 192</p> <p>11.3.3 Releasing Agent 193</p> <p>11.3.4 Plain Weave Copper Strips Mesh Preparation 193</p> <p>11.3.5 Composite Preparation 193</p> <p>11.3.6 De-Molding Process 196</p> <p>11.3.7 Mechanical and Physical Studies of GFRP and Hybrid Composites 196</p> <p>11.3.7.1 Tensile Strength Testing 197</p> <p>11.3.7.2 Flexural Strength Testing 201</p> <p>11.3.7.3 Izod Impact Strength Testing 202</p> <p>11.3.7.4 Shore D Hardness Testing 202</p> <p>11.3.7.5 Density Testing 203</p> <p>11.4 Results and Discussions 205</p> <p>11.4.1 Tensile Strength 205</p> <p>11.4.2 Flexural Strength 206</p> <p>11.4.3 Izod Impact Strength 207</p> <p>11.4.4 Shore D Hardness 208</p> <p>11.4.5 Density 209</p> <p>11.5 Conclusions 210</p> <p>11.6 Future Scope 211</p> <p>References 211</p> <p><b>12 Application of Reconfigurable System Thinking in Reconfigurable Bending Machine and Assembly Systems 213<br /> </b><i>Khumbulani Mpofu, Boitumelo Innocent Ramatsetse, Olasumbo Ayodeji Makinde, and Olayinka Mohammed Olabanji</i></p> <p>12.1 Introduction: Background and Overview 213</p> <p>12.1.1 Definition of Key Terms 213</p> <p>12.2 Description of Machining, Bending, and Assembly Processes 214</p> <p>12.3 Related Works on Manufacturing Systems 214</p> <p>12.4 Conventional Sheet Metal Bending and Assembly System Technologies 215</p> <p>12.4.1 Conventional Sheet Metal Bending Technologies 215</p> <p>12.5 Trends and Evolution of Manufacturing System Paradigms 218</p> <p>12.5.1 Classification of Press Brake Machines 218</p> <p>12.5.2 Classification of Assembly System Technologies 221</p> <p>12.5.2.1 Assembly Systems and Their Mode of Configuration 222</p> <p>12.5.2.2 Assembly Systems Based on Their Mode of Operation 222</p> <p>12.5.3 Application of RMS in Sheet Metal Bending Process 223</p> <p>12.6 Case Studies for Application of RMS in Bending Operations 224</p> <p>12.6.1 Description RBPM Machine 224</p> <p>12.6.2 RMS Characteristics for RBPM Machine 226</p> <p>12.7 Scalability Planning for RMS 227</p> <p>12.7.1 Convertibility Assessment for Reconfigurable Manufacturing Systems 229</p> <p>12.7.1.1 Incremental Conversion 230</p> <p>12.7.1.2 Routing Connections 230</p> <p>12.7.1.3 Routing Modules 230</p> <p>12.8 Modularity Assessment for Reconfigurable Systems 236</p> <p>12.9 Case Studies for Application of RMS in Assembly Operations 239</p> <p>12.9.1 Description Reconfigurable Assembly Fixture 239</p> <p>12.9.2 RMS Characteristics for RAF Machine 240</p> <p>12.10 Conclusions 242</p> <p>References 243</p> <p><b>13 Application of Incremental Sheet Forming (ISF) Toward Biomedical and Medical Implants 247<br /> </b><i>Ajay Kumar, Parveen Kumar, Namrata Dogra, and Archana Jaglan</i></p> <p>13.1 Introduction 247</p> <p>13.1.1 Conventional Manufacturing Process 247</p> <p>13.1.2 Incremental Sheet Forming 249</p> <p>13.2 Classification of ISF 249</p> <p>13.3 Process Parameters of ISF 250</p> <p>13.3.1 Tool Path 251</p> <p>13.3.2 Tool Size 251</p> <p>13.3.3 Tool Rotation 251</p> <p>13.3.4 Sheet Material 251</p> <p>13.3.5 Forming Speed 251</p> <p>13.3.6 Step Size 252</p> <p>13.4 Materials for Fabrication of Implants 252</p> <p>13.5 Methods of Implant Manufacturing 253</p> <p>13.6 Applications of ISF Process 253</p> <p>13.6.1 Cranial Implant 253</p> <p>13.6.2 Facial Implant 255</p> <p>13.6.3 Denture Base 257</p> <p>13.6.4 Knee Prosthesis 257</p> <p>13.7 Challenges of ISF Process 259</p> <p>13.8 Future Scope of ISF 260</p> <p>13.9 Conclusion 261</p> <p>References 261</p> <p>Index 265</p>
<p><b>Ajay, Ph.D.</b> is Associate Professor in the Department of Mechanical Engineering, School of Engineering and Technology, JECRC University, Jaipur, Rajasthan, India. <p><b>Parveen</b> is an Assistant Professor in the Department of Mechanical Engineering, Rawal Institute of Engineering and Technology, Faridabad, Haryana, India. <p><b>Hari Singh, Ph.D.</b> is a Professor in the Mechanical Engineering Department at NIT Kurukshetra, Haryana, India. <p><b>Vishal Gulati, Ph.D.</b> is a Professor in the Mechanical Engineering Department at Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India. <p><b>Pravin Kumar Singh,</b> Senior IP Analyst, Clarivate, India.
<p><b>Single-source guide to innovative sheet forming techniques and applications, featuring contributions from a range of engineering perspectives</b> <p><i>Handbook of Flexible and Smart Sheet Forming Techniques</i> presents a collection of research on state-of-art techniques developed specifically for flexible and smart sheet forming, with a focus on using analytical strategies and computational, simulation, and AI approaches to develop innovative sheet forming techniques. Bringing together various engineering perspectives, the book emphasizes how these manufacturing techniques intersect with Industry 4.0 technologies for applications in the mechanical, automobile, industrial, aerospace, and medical industries. <p>Research outcomes, illustrations, case studies, and examples are included throughout the text, and are useful for readers who wish to better understand and utilize these new manufacturing technologies. <p>Topics covered in the book include: <ul><li>Concepts, classifications, variants, process cycles, and materials for flexible and smart sheet forming techniques</li> <li>Comparisons between the aforementioned techniques and other conventional sheet forming processes, plus hardware and software requirements for these techniques</li> <li>Parameters, responses, and optimization strategies, mechanics of flexible and smart sheet forming, simulation approaches, and future innovations and directions</li> <li>Recent advancements in the field, including various optimizations like artificial intelligence, Internet of Things, and machine learning techniques</li></ul> <p><i>Handbook of Flexible and Smart Sheet Forming Techniques</i> is an ideal reference guide for academic researchers and industrial engineers in the fields of incremental sheet forming. It also serves as an excellent comprehensive reference source for university students and practitioners in the mechanical, production, industrial, computer science engineering, medical, and pharmaceutical industries.

Diese Produkte könnten Sie auch interessieren:

Projektmanagement und Prozessmessung
Projektmanagement und Prozessmessung
von: Ernst Jankulik, Peter Kuhlang, Roland Piff
PDF ebook
51,99 €
Project Management
Project Management
von: Harold Kerzner
PDF ebook
71,99 €