Details

Handbook of Composites from Renewable Materials, Polymeric Composites


Handbook of Composites from Renewable Materials, Polymeric Composites


Handbook of Composites from Renewable Materials Volume 6

von: Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler

242,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.03.2017
ISBN/EAN: 9781119224426
Sprache: englisch
Anzahl Seiten: 736

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials </i>comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials.</p> <p>Volume 6 is solely focused on the "<i>Polymeric Composites</i>". Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer-epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in wastewater treatments; study of chitosan cross-linking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues.</p>
<p>Preface xxi</p> <p><b>1 Keratin as Renewable Material to Develop Polymer Composites: Natural and Synthetic Matrices 1<br /></b><i>Flores-Hernandez C.G., Murillo-Segovia B., Martinez-Hernandez A.L. and Velasco-Santos C</i></p> <p>1.1 Introduction 1</p> <p>1.2 Keratin 2</p> <p>1.2.1 Feathers 5</p> <p>1.2.2 Hair and Wool 8</p> <p>1.2.3 Horn 9</p> <p>1.3 Natural Fibers to Reinforce Composite Materials 11</p> <p>1.4 Keratin, an Environmental Friendly Reinforcement for Composite Materials 11</p> <p>1.4.1 Synthetic Matrices 11</p> <p>1.4.1.1 Petroleum-Based Polymers Reinforced with Chicken Feathers 13</p> <p>1.4.1.2 Synthetic Matrices Reinforced with Hair or Wool 18</p> <p>1.4.1.3 Synthetic Matrices Reinforced with Horn 20</p> <p>1.4.2 Natural Matrices 20</p> <p>1.4.2.1 Natural Matrices Reinforced with Chicken Feathers 21</p> <p>1.4.2.2 Natural Matrices Reinforced with Hair or Wool 24</p> <p>1.5 Conclusions 25</p> <p>References 26</p> <p><b>2 Determination of Properties in Composites of Agave Fiber with LDPE and PP Applied Molecular Simulation 31<br /></b><i>Norma-Aurea Rangel-Vazquez and Ricardo Rangel</i></p> <p>2.1 Introduction 31</p> <p>2.1.1 Lignocellulosic Materials 31</p> <p>2.1.1.1 Fibers 32</p> <p>2.1.1.2 Agave 33</p> <p>2.1.1.3 Chemical Treatment of Fibers 34</p> <p>2.1.2 Composites 35</p> <p>2.1.3 Polymers 35</p> <p>2.1.3.1 Polyethylene 37</p> <p>2.1.3.2 Polypropylene (PP) 39</p> <p>2.1.4 Molecular Modelation 39</p> <p>2.1.4.1 Classification 40</p> <p>2.1.4.2 Properties 42</p> <p>2.2 Materials and Methods 44</p> <p>2.2.1 Geometry Optimization 44</p> <p>2.2.2 Structural Parameters 44</p> <p>2.2.3 FTIR 45</p> <p>2.2.4 Molecular Electrostatic Potential Map 45</p> <p>2.3 Results and Discussions 48</p> <p>2.3.1 Geometry Optimization 48</p> <p>2.3.2 Deacetylation of Agave Fiber 49</p> <p>2.3.3 Structural Parameters 50</p> <p>2.3.4 FTIR 50</p> <p>2.3.5 Molecular Electrostatic Potential Map (MESP) 54</p> <p>2.4 Conclusions 54</p> <p>References 55</p> <p><b>3 Hydrogels in Tissue Engineering 59<br /></b><i>Luminita Ioana Buruiana and Silvia Ioan</i></p> <p>3.1 Introduction 59</p> <p>3.2 Classification of Hydrogels 60</p> <p>3.3 Methods of Hydrogels Preparation 61</p> <p>3.4 Hydrogels Characterization 63</p> <p>3.4.1 Mechanical Properties 64</p> <p>3.4.2 Chemical-Physical Analysis 64</p> <p>3.4.3 Morphological Characterization 64</p> <p>3.4.4 Swelling Behavior 65</p> <p>3.4.5 Rheology Measurements 65</p> <p>3.5 Hydrogels Applications in Biology and Medicine 66</p> <p>3.5.1 Hydrogel Scaffolds in Tissue Engineering 66</p> <p>3.5.2 Hydrogels in Drug Delivery Systems 70</p> <p>3.6 Concluding Remarks 73</p> <p>References 74</p> <p><b>4 Smart Hydrogels: Application in Bioethanol Production 79<br /></b><i>Lucinda Mulko, Edith Yslas, Silvestre Bongiovanni Abel, Claudia Rivarola, Cesar Barbero and Diego Acevedo</i></p> <p>4.1 Hydrogels 79</p> <p>4.2 History of Hydrogels 80</p> <p>4.3 The Water in Hydrogels 81</p> <p>4.4 Classifications of Hydrogels 81</p> <p>4.5 Synthesis 82</p> <p>4.6 Hydrogels Synthesized by Free Radical Polymerization 83</p> <p>4.7 Monomers 84</p> <p>4.8 Initiators 84</p> <p>4.9 Cross-Linkers 84</p> <p>4.10 Hydrogel Properties 85</p> <p>4.11 Mechanical Properties 87</p> <p>4.12 Biocompatible Properties 87</p> <p>4.13 Hydrogels: Biomedical Applications 88</p> <p>4.14 Techniques and Supports for Immobilization 89</p> <p>4.15 Entrapment 89</p> <p>4.16 Covalent Binding 90</p> <p>4.17 Cross-Linking 91</p> <p>4.18 Adsorption 91</p> <p>4.19 Hydrogel Applications in Bioethanol Production 92</p> <p>4.20 Classification of Biofuels 92</p> <p>4.21 Ethanol Properties 93</p> <p>4.22 Ethanol Production 95</p> <p>4.23 Feedstock Pretreatment 95</p> <p>4.24 Liquefaction and Saccharification Reactions 97</p> <p>4.25 Fermentation Process 97</p> <p>4.26 Continuous or Discontinuous Process? 98</p> <p>4.27 Simultaneous Saccharification and Fermentation (SSF) Processes 98</p> <p>4.28 Yeast and Enzymes Immobilized 99</p> <p>References 100</p> <p><b>5 Principle Renewable Biopolymers and Their Biomedical Applications 107<br /></b><i>İlayda Duru, Oznur Demir Oğuz, Hayriye Oztatlı, Duygu Ceren Arıkfidan, Hatice Kaya, Elif Donmez and Duygu Ege</i></p> <p>5.1 Collagen 107</p> <p>5.2 Elastin 111</p> <p>5.3 Silk Fibroin 114</p> <p>5.4 Chitosan 116</p> <p>5.5 Chondroitin Sulfate 119</p> <p>5.6 Cellulose 121</p> <p>5.7 Hyaluronic Acid 123</p> <p>5.8 Poly(L-lysine) 126</p> <p>References 128</p> <p><b>6 Application of Hydrogel Biocomposites for Multiple Drug Delivery 139<br /></b><i>S.J. Owonubi, S.C. Agwuncha, E. Mukwevho, B.A. Aderibigbe, E.R. Sadiku, O.F. Biotidara and K. Varaprasad</i></p> <p>6.1 Introduction 140</p> <p>6.2 Sustained Drug Release Systems 142</p> <p>6.3 Controlled Release Systems 143</p> <p>6.3.1 Half-Life of the Drug Formulation 143</p> <p>6.3.2 Absorption 143</p> <p>6.3.3 Metabolism 143</p> <p>6.3.4 Dosage Size 144</p> <p>6.3.5 pH Stability and Aqueous Stability of the Drug Formulation 144</p> <p>6.3.6 Barrier Co-Efficient 144</p> <p>6.3.7 Stability 144</p> <p>6.4 Polymeric Drug Delivery Devices 146</p> <p>6.5 Multiple Drug Delivery Systems 147</p> <p>6.5.1 Supramolecules and <i>In Situ</i>-Forming Hydrogels 149</p> <p>6.5.2 Layer-By-Layer Assembly 150</p> <p>6.5.3 Interpenetrating Polymer Networks (IPNs) 150</p> <p>6.5.4 Application of Hydrogels for Multiple Drug Delivery 151</p> <p>6.5.5 Cancer Treatments 151</p> <p>6.5.6 Diabetes Treatments 152</p> <p>6.6 Tissue Engineering 153</p> <p>6.6.1 Self-Healing 154</p> <p>6.6.2 Molecular Sensing 155</p> <p>6.7 Conclusion 155</p> <p>References 155</p> <p><b>7 Non-Toxic Holographic Materials (Holograms in Sweeteners) 167<br /></b><i>Arturo Olivares-Perez</i></p> <p>7.1 Introduction 167</p> <p>7.2 Sugars as Holographic Recording Medium 168</p> <p>7.2.1 Classification and Nomenclature 168</p> <p>7.2.2 Monosaccharides/Glucose and Fructose 169</p> <p>7.2.2.1 Glucose 169</p> <p>7.2.2.2 Fructose 171</p> <p>7.2.2.3 Disaccharides Sucrose 171</p> <p>7.2.2.4 Polysaccharides, Pectins 174</p> <p>7.2.2.5 Sweeteners Corn Syrup 175</p> <p>7.3 Photosensitizers 176</p> <p>7.3.1 Dyes 177</p> <p>7.3.2 Dyes as Sensitizers 177</p> <p>7.4 Sucrose Preparation and Film Generation 179</p> <p>7.4.1 UV-Visible Spectral Analysis 180</p> <p>7.4.2 Replication of Holographic Gratings is Sucrose 181</p> <p>7.4.2.1 Holographic Code 181</p> <p>7.4.2.2 Soft Mask 181</p> <p>7.4.2.3 Thermosensitive Properties Through Mask 181</p> <p>7.4.2.4 Replication 182</p> <p>7.4.2.5 Diffraction Efficiency 183</p> <p>7.4.3 Sucrose With Dyes 185</p> <p>7.4.3.1 Sugar UV-Visible Spectral Analysis 185</p> <p>7.4.3.2 Holographic Replicas 186</p> <p>7.4.3.3 DE Sugar Tartrazine and Erioglaucine Dye 187</p> <p>7.5 Corn Syrup 188</p> <p>7.5.1 Holographic Replicas of Low and High Frequency 189</p> <p>7.5.2 DE Corn Syrup 191</p> <p>7.6 Hydrophobic Materials 192</p> <p>7.6.1 Hydrophobic Mixture of Pectin Sucrose and Vanilla 192</p> <p>7.6.2 UV-Visible Spectral Analysis 192</p> <p>7.6.3 Holographic Replicas 192</p> <p>7.6.4 DE Hydrophobic Films PSV 193</p> <p>7.7 PSV with Dyes 194</p> <p>7.7.1 UV-Visible Spectral Analysis 194</p> <p>7.7.2 DE Films PSV and Erioglaucine 194</p> <p>7.8 Pineapple Juice as Holographic Recording Material 195</p> <p>7.8.1 Characterization of Pineapple Juice 196</p> <p>7.8.2 Generation of Pineapple Films 196</p> <p>7.8.3 Replication Technique 196</p> <p>7.8.4 DE Pineapple Film 196</p> <p>7.9 Holograms Made with Milk 198</p> <p>7.9.1 Low-Fat Milk Tests 198</p> <p>7.9.2 DE Milk Gratings 198</p> <p>7.9.2.1 Gravity Technique 198</p> <p>7.9.2.2 Spinner Technical 199</p> <p>7.10 Conclusions 200</p> <p>Acknowledgements 200</p> <p>References 200</p> <p><b>8 Bioplasitcizer Epoxidized Vegetable Oils–Based Poly(Lactic Acid) Blends and Nanocomposites 205<br /></b><i>Buong Woei Chieng, Nor Azowa Ibrahim and Yuet Ying Loo</i></p> <p>8.1 Introduction 205</p> <p>8.2 Vegetable Oils 207</p> <p>8.3 Expoxidation of Vegetable Oils 209</p> <p>8.4 Poly(lactic acid) 211</p> <p>8.5 Poly(lactic acid)/Epoxidized Vegetable Oil Blends 213</p> <p>8.5.1 Poly(lactic acid)/Epoxidized Palm Oil Blend 213</p> <p>8.5.2 Poly(lactic acid)/Epoxidized Soybean Oil Blend 217</p> <p>8.5.3 Poly(lactic acid)/Epoxidized Sunflower Oil Blend 219</p> <p>8.5.4 Poly(lactic acid)/Epoxidized Jatropha Oil Blend 220</p> <p>8.6 Polymer/Epoxidized Vegetable Oil Nanocomposites 223</p> <p>8.7 Summary 227</p> <p>References 227</p> <p><b>9 Preparation, Characterization, and Adsorption Properties of Poly(DMAEA) – Cross-Linked Starch Gel Copolymer in Wastewater 233<br /></b><i>Sudhir Kumar Saw</i></p> <p>9.1 Introduction 233</p> <p>9.2 Experimental Procedure 237</p> <p>9.2.1 Materials 237</p> <p>9.2.2 Instrumentation 237</p> <p>9.2.3 Preparation of Cross-Linked Starch Gel 238</p> <p>9.2.4 Preparation of Poly(DMAEA) – Cross-Linked Starch Gel Graft Copolymer 238</p> <p>9.2.5 Determination of Nitrogen 239</p> <p>9.2.6 Experimental Process of Removal of Heavy Metal Ions 239</p> <p>9.2.7 Removal of Dyes 240</p> <p>9.2.8 Recovery of the Prepared Copolymer 240</p> <p>9.3 Results and Discussion 240</p> <p>9.3.1 Effect of pH 240</p> <p>9.3.2 Effect of Extent of Grafting on Metal Removal 242</p> <p>9.3.3 Effect of Adsorbent Dose Used 243</p> <p>9.3.4 Effect of Treatment Time on the Metal Removal 243</p> <p>9.3.5 Effect of Agitation Speed 244</p> <p>9.3.6 Effect of Temperature 245</p> <p>9.3.7 Recovery of Starch 247</p> <p>9.3.8 Removal of Dyes 247</p> <p>9.3.9 Adsorption Kinetics 248</p> <p>9.3.10 Adsorption Isotherm 249</p> <p>9.4 Conclusions 250</p> <p>Acknowledgement 251</p> <p>References 251</p> <p><b>10 Study of Chitosan Cross-Linking Genipin Hydrogels for Absorption of Antifungal Drugs Using Molecular Modeling 255<br /></b><i>Norma Aurea Rangel–Vazquez</i></p> <p>10.1 Introduction 255</p> <p>10.1.1 Polymers 255</p> <p>10.1.1.1 Properties 256</p> <p>10.1.2 Natural Polymers 257</p> <p>10.1.2.1 Chitosan 258</p> <p>10.1.3 Hydrogels 260</p> <p>10.1.3.1 Applications 261</p> <p>10.1.4 Antifungals 261</p> <p>10.1.4.1 Classification 261</p> <p>10.1.4.2 Fluconazole 262</p> <p>10.1.4.3 Voriconazole 263</p> <p>10.1.4.4 Ketoconazole 263</p> <p>10.1.5 Molecular Modeling 264</p> <p>10.2 Methodology 265</p> <p>10.2.1 Geometry Optimization (ΔG) 265</p> <p>10.2.2 Bond Lengths 265</p> <p>10.2.3 FTIR 267</p> <p>10.2.4 MESP 269</p> <p>10.3 Results and Discussions 269</p> <p>10.3.1 Gibbs Free Energy 269</p> <p>10.3.2 Bond Lengths 270</p> <p>10.3.3 FTIR 271</p> <p>10.3.4 MESP 274</p> <p>10.3.5 HOMO/LUMO Orbitals 275</p> <p>10.5.4 Conclusions 281</p> <p>References 282</p> <p><b>11 Pharmaceutical Delivery Systems Composed of Chitosan 285<br /></b><i>Livia N. Borgheti-Cardoso, Fabiana T.M.C. Vicentini, Marcilio S.S. Cunha Filho and Guilherme M. Gelfuso</i></p> <p>11.1 Introduction 285</p> <p>11.2 Chitosan Micro- and Nanoparticles 286</p> <p>11.2.1 Oral Applications 287</p> <p>11.2.2 Topical Formulations 288</p> <p>11.2.3 Ocular Delivery Systems 289</p> <p>11.3 Bioadhesive Chitosan Hydrogels 291</p> <p>11.3.1 Ocular Gel Formulations 292</p> <p>11.3.2 Topical Formulations 293</p> <p>11.4 Chitosan Topical/Transdermal Films 295</p> <p>11.5 Chitosan as Coating Material to Produce Lipid Capsules, Liposomes, Metallic and Magnetic Nanoparticles 296</p> <p>11.6 Oral Beads Based on Chitosan for Controlled Delivery of Drugs 298</p> <p>11.7 Conclusion 300</p> <p>Acknowledgement 300</p> <p>References 300</p> <p><b>12 Eco-Friendly Polymers for Food Packaging 309<br /></b><i>Sweetie R. Kanatt, Shobita. R. Muppalla and S.P. Chawla</i></p> <p>12.1 Introduction 309</p> <p>12.2 Sources of Biopolymers 311</p> <p>12.2.1 Polymers Extracted from Biomass 311</p> <p>12.2.2 Polysaccharides 312</p> <p>12.2.2.1 Starch 312</p> <p>12.2.2.2 Corn Starch 313</p> <p>12.2.2.3 Cassava Starch 314</p> <p>12.2.2.4 Potato Starch 314</p> <p>12.2.2.5 Konjac Glucomannan 314</p> <p>12.2.2.6 Starch Modifications 314</p> <p>12.2.3 Cellulose 315</p> <p>12.2.3.1 Cellulose Derivatives 316</p> <p>12.2.4 Gums 316</p> <p>12.2.4.1 Guar Gum 316</p> <p>12.2.4.2 Locust Bean Gum 317</p> <p>12.2.4.3 Gum Arabic 318</p> <p>12.2.4.4 Pectin 318</p> <p>12.2.4.5 Chitin and Chitosan 319</p> <p>12.2.5 Proteins 319</p> <p>12.2.5.1 Zein 320</p> <p>12.2.5.2 Wheat Gluten 321</p> <p>12.2.5.3 Soy Protein 321</p> <p>12.2.5.4 Whey Protein and Casein 321</p> <p>12.2.5.5 Collagen 322</p> <p>12.2.6 Lipids 322</p> <p>12.2.7 Polymers Obtained from Microbial Sources 323</p> <p>12.2.7.1 Agar 323</p> <p>12.2.7.2 Alginate 323</p> <p>12.2.7.3 Carrageenan 324</p> <p>12.2.7.4 Gellan 324</p> <p>12.2.7.5 Pullulan 325</p> <p>12.2.7.6 Xanthan 325</p> <p>12.2.7.7 Bacterial Cellulose 326</p> <p>12.2.7.8 Polyhydroxyalkonates (PHA) 326</p> <p>12.2.8 Polymers Synthesized from Bio-Derived Monomers 326</p> <p>12.2.8.1 Polylactic Acid (PLA) 326</p> <p>12.3 Properties of Biopolymer Packaging Films 327</p> <p>12.3.1 Physical Properties 327</p> <p>12.3.1.1 Permeability 327</p> <p>12.3.1.2 Oxygen Transmission Rate (OTR) 328</p> <p>12.3.1.3 Water Vapor Transmission Rate (WVTR) 329</p> <p>12.3.1.4 Carbon Dioxide Transmission Rate (CO2TR) 330</p> <p>12.3.2 Mechanical Properties 330</p> <p>12.3.3 Thermal Properties 331</p> <p>12.3.4 Degradation 332</p> <p>12.3.4.1 Biodegradation 332</p> <p>12.4 Composite Films 333</p> <p>12.5 Bionanocomposites 335</p> <p>12.6 Methods for Film Processing 335</p> <p>12.6.1 Casting 336</p> <p>12.6.2 Extrusion 336</p> <p>12.6.3 Injection Molding 336</p> <p>12.6.4 Blow Molding 337</p> <p>12.6.5 Thermoforming 337</p> <p>12.6.6 Foamed Products 337</p> <p>12.7 Applications of Biopolymers in Food Packaging 338</p> <p>12.7.1 Biodegradable Packaging Material 338</p> <p>12.7.2 Active Packaging 338</p> <p>12.7.3 Biopolymers as Edible Packaging 339</p> <p>12.7.3.1 Edible Coating 339</p> <p>12.7.3.2 Fruits and Vegetables 340</p> <p>12.7.3.3 Flesh Foods 341</p> <p>12.7.3.4 Seafoods 341</p> <p>12.7.3.5 Meat and Meat Products 341</p> <p>12.7.3.6 Eggs 341</p> <p>12.7.3.7 Nuts 342</p> <p>12.7.3.8 Dairy Products 342</p> <p>12.7.4 Edible Films 343</p> <p>12.7.4.1 Fruits and Vegetables 343</p> <p> 12.7.4.2 Flesh Foods 343</p> <p>12.7.5 Intelligent Packaging 344</p> <p>12.8 Conclusion and Future Prospects 344</p> <p>References 345</p> <p><b>13 Influence of Surface Modification on the Thermal Stability and Percentage of Crystallinity of Natural Abaca Fiber 353<br /></b><i>Basavaraju Bennehalli, Srinivasa Chikkol Venkateshappa, Rama Devi Punyamurthy, Dhanalakshmi Sampathkumar and Raghu Patel Gowdru Rangana Gowda</i></p> <p>13.1 Introduction 353</p> <p>13.2 Materials and Methods 355</p> <p>13.2.1 Materials 355</p> <p>13.2.2 Alkali Treatment of Abaca Fiber 355</p> <p>13.2.3 Acrylic Acid Treatment of Abaca Fiber 356</p> <p>13.2.4 Acetylation of Abaca Fiber 356</p> <p>13.2.5 Benzoylation of Abaca Fiber 356</p> <p>13.2.6 Permanganate Treatment of Abaca Fiber 356</p> <p>13.2.7 Fourier Transform Infrared Spectroscopy (FTIR) 356</p> <p>13.2.8 Thermogravimetric Analysis (TGA) 356</p> <p>13.2.9 X-Ray Diffraction Analysis (XRD) 357</p> <p>13.3 Results and Discussion 357</p> <p>13.3.1 Chemical Treatment of Fibers 357</p> <p>13.3.2 IR Spectra of Fibers 358</p> <p>13.3.3 Thermogravimetric Analysis (TGA) 361</p> <p>13.3.4 X-Ray Diffraction Analysis (XRD) 369</p> <p>13.4 Conclusions 373</p> <p>References 373</p> <p><b>14 Influence of the Use of Natural Fibers in Composite Materials Assessed on a Life Cycle  Perspective 377<br /></b><i>Hugo Carvalho, Ana Raposo, Ines Ribeiro, Paulo Pecas, Arlindo Silva and Elsa Henriques</i></p> <p>14.1 Introduction 377</p> <p>14.2 Composite Materials: An Overview 379</p> <p>14.2.1 Composites Design 380</p> <p>14.2.2 Fiber-Reinforced Composites and Natural Fibers 380</p> <p>14.2.3 World Production of Natural Fibers 381</p> <p>14.3 Methodology 382</p> <p>14.4 Case Study: Bonnet Component 383</p> <p>14.4.1 Boundary Conditions and Loading 384</p> <p>14.4.2 Materials 384</p> <p>14.4.3 Technical Requirements 385</p> <p>14.4.4 Design Specifications 387</p> <p>14.5 Life Cycle Stages 389</p> <p>14.5.1 Raw Material Acquisition 389</p> <p>14.5.2 Transport 389</p> <p>14.5.3 Manufacturing Phase 390</p> <p>14.5.4 Use Phase 391</p> <p>14.5.5 End of Life Phase 391</p> <p>14.6 Results 391</p> <p>14.6.1 Economic Dimension Evaluation 391</p> <p>14.6.2 Environmental Dimension Evaluation 392</p> <p>14.6.3 Technical Results 392</p> <p>14.6.4 Global Evaluation 394</p> <p>14.6.4.1 Sensitivity Analysis to the Life Cycle Stages 394</p> <p>14.7 Conclusion 395</p> <p>References 396</p> <p><b>15 Plant Polysaccharides Blended Ionotropically Gelled Alginate Multiple Unit Systems for Sustained Drug Release 399<br /></b><i>Dilipkumar Pal and Amit Kumar Nayak</i></p> <p>15.1 Introduction 399</p> <p>15.2 Plant Polysaccharide in Sustained Release Drug Delivery 401</p> <p>15.3 Alginates and Their Ionotropic Gelation 402</p> <p>15.4 Various Plant Polysaccharides-Blended Ionotropically-Gelled Alginate Microparticles/Beads 406</p> <p>15.4.1 Locust Bean Bum-Alginate Blends 406</p> <p>15.4.2 Gum Arabic-Alginate Blends 411</p> <p>15.4.3 Tamarind Seed Polysaccharide-Alginate Blends 412</p> <p>15.4.4 Okra Gum-Alginate Blends 417</p> <p>15.4.5 Fenugreek Seed Mucilage-Alginate Blends 421</p> <p>15.4.6 Ispaghula Husk Mucilage-Alginate Blends 423</p> <p>15.4.7 Aloe Vera Gel-Alginate Blends 424</p> <p>15.4.8 Sterculia Gum-Alginate Blends 425</p> <p>15.4.9 Jackfruit Seed Starch-Alginate Blends 428</p> <p>15.4.10 Potato Starch-Alginate Blends 430</p> <p>15.5 Conclusion 431</p> <p>References 431</p> <p><b>16 Vegetable Oil-Based Polymer Composites: Synthesis, Properties and Their Applications 441<br /></b><i>Shubhalakshmi Sengupta and Dipa Ray</i></p> <p>16.1 Introduction 441</p> <p>16.2 Vegetable Oils 442</p> <p>16.2.1 Composition and Structure of Vegetable Oils 442</p> <p>16.2.2 Properties of Vegetable Oils 443</p> <p>16.3 Vegetable Oils Used for Polymers and Composites 444</p> <p>16.3.1 Synthesis of Polymeric Materials from Vegetable Oils 444</p> <p>16.3.2 Modification of Vegetable Oils and Their Use in Composites 447</p> <p>16.3.2.1 Epoxidized Vegetable Oils and Their Composites 447</p> <p>16.3.2.2 Maleated Vegetable Oils and Their Composites 454</p> <p>16.3.3 Cationic Polymerization of Vegetable Oils and Their Composites 460</p> <p>16.4 Free Radical Polymerization of Vegetable Oils and Their Composites 465</p> <p>16.5 Application Possibilities and Future Directions 465</p> <p>References 466</p> <p><b>17 Applications of Chitosan Derivatives in Wastewater Treatment 471<br /></b><i>Taslim U. Rashid, Md. Sazedul Islam, Sadia Sharmeen, Shanta Biswas, Asaduz Zaman, M. Nuruzzaman Khan, Abul K. Mallik, Papia Haque and Mohammed Mizanur Rahman</i></p> <p>17.1 Introduction 471</p> <p>17.2 Chitin and Chitosan 473</p> <p>17.2.1 Sources of Chitin and Chitosan 474</p> <p>17.2.2 Extraction of Chitosan 474</p> <p>17.2.3 Properties of Chitosan 475</p> <p>17.2.3.1 Degradation 477</p> <p>17.2.3.2 Molecular Weight 477</p> <p>17.2.3.3 Solvent Properties 477</p> <p>17.2.3.4 Mechanical Properties 477</p> <p>17.2.3.5 Adsorption 478</p> <p>17.2.3.6 Cross-Linking Properties of Chitosan 478</p> <p>17.2.3.7 Antioxidant Properties 479</p> <p>17.2.4 Applications of Chitosan 480</p> <p>17.3 Chitosan Derivatives in Wastewater Treatment 481</p> <p>17.3.1 Carboxymethyl-Chitosan (CMC) 481</p> <p>17.3.2 Ethylenediaminetetraaceticacid (EDTA) and Diethylenetriaminepentaacetic Acid (DTPA) Modified Chitosan 483</p> <p>17.3.3 Triethylene-Tetramine Grafted Magnetic Chitosan (Fe3O4-TETA-CMCS) 484</p> <p>17.3.4 Carboxymethyl-Polyaminate Chitosan (DETA-CMCHS) 486</p> <p>17.3.5 Tetraethylenepentamine (TEPA) Modified Chitosan (TEPA-CS) 487</p> <p>17.3.6 Ethylenediamine Modified Chitosan (EDA-CS) 488</p> <p>17.3.7 Epichlorohydrin Cross-Linked Succinyl Chitosan (SCCS) 489</p> <p>17.3.8 N-(2 -Hydroxy-3 Mercaptopropyl)-Chitosan 490</p> <p>17.3.9 Epichlorohydrin Cross-Linked Chitosan (ECH-Chitosan) 490</p> <p>17.3.10 Quaternary Chitosan Salt (QCS) 492</p> <p>17.3.11 Magnetic Chitosan-Isatin Schiff ’s Base Resin (CSIS) 492</p> <p>17.3.12 Chitosan-Fe(III) Hydrogel 493</p> <p>17.4 Adsorption of Heavy Metals on Chitosan Composites from Wastewater 493</p> <p>17.4.1 <i>α</i>-Fe2O3 impregnated Chitosan Beads With As(III) as Imprinted Ions 493</p> <p>17.4.2 Chitosan/Cellulose Composites 494</p> <p>17.4.3 Chitosan/Clinoptilolite Composite 495</p> <p>17.4.4 Chitosan/Sand Composite 496</p> <p>17.4.5 Chitosan/Bentonite Composite 496</p> <p>17.4.6 Chitosan/Cotton Fiber 497</p> <p>17.4.7 Magnetic Thiourea-Chitosan Imprinted Ag+ 498</p> <p>17.4.8 Nano-Hydroxyapatite Chitin/Chitosan Hybrid Biocomposites 498</p> <p>17.5 Adsorption of Dyes on Chitosan Composites from Wastewater 499</p> <p>17.5.1 Fe2O3/Cross-Linked Chitosan Adsorbent 499</p> <p>17.5.2 Chitosan-Lignin Composite 500</p> <p>17.5.3 Chitosan–Polyaniline/ZnO Hybrid Composite 501</p> <p>17.5.4 Coalesced Chitosan Activated Carbon Composite 502</p> <p>17.5.5 Chitosan/Clay Composite 502</p> <p>17.6 Conclusion 504</p> <p>References 504</p> <p><b>18 Novel Lignin-Based Materials as Products for Various Applications 519<br /></b><i>Łukasz Klapiszewski and Teofil Jesionowski</i></p> <p>18.1 Lignin – A General Overview 519</p> <p>18.1.1 A Short History 519</p> <p>18.1.2 Synthesis and Structural Aspects 521</p> <p>18.1.3 Types of Lignin 523</p> <p>18.1.4 Applications of Lignin 528</p> <p>18.2 Lignin/Silica-Based Hybrid Materials 531</p> <p>18.3 Combining of Lignin and Chitin 535</p> <p>18.4 Lignin-Based Products as Functional Materials 540</p> <p>References 543</p> <p><b>19 Biopolymers from Renewable Resources and Thermoplastic Starch Matrix as Polymer Units of Multi–Component Polymer Systems for Advanced Applications 555<br /></b><i>Carmen–Alice Teacă and Ruxanda Bodirlău</i></p> <p>19.1 Introduction 555</p> <p>19.2 Thermoplastic Starch Matrix and its Application for Advanced Composite Materials 557</p> <p>19.3 Biopolymers from Sustainable Renewable Sources 558</p> <p>19.3.1 Chitin 558</p> <p>19.3.2 Wheat Straw 559</p> <p>19.3.3 Spruce Bleached Kraft Pulp 559</p> <p>19.4 Thermoplastic Starch as Polymer Matrix and Biopolymers from Renewable Resources for Composite Materials 560</p> <p>19.4.1 Obtainment 560</p> <p>19.4.1.1 Materials 561</p> <p>19.4.1.2 Preparation of Composites Based on Plasticized Starch and Biopolymers with Addition of Vegetal Fillers 561</p> <p>19.4.2 Investigation Methods and Properties 562</p> <p>19.4.2.1 FTIR Spectroscopy Analysis 562</p> <p>19.4.2.2 Water Uptake Measurements 563</p> <p>19.4.2.3 Optical Properties 567</p> <p>19.4.2.4 Evaluation of the Fillers’ Particle Size 570</p> <p>19.5 Conclusions 570</p> <p>Acknowledgements 572</p> <p>References 572</p> <p><b>20 Chitosan Composites: Preparation and Applications in Removing Water Pollutants 577<br /></b><i>Mohammad Reza Ganjali, Morteza Rezapour, Farnoush Faridbod and Parviz Norouzi</i></p> <p>20.1 Introduction to Chitosan 577</p> <p>20.1.1 Other Derivatives of Chitin 580</p> <p>20.1.2 Properties of Chitosan 580</p> <p>20.1.3 Modification and Derivatization of Chitosan 581</p> <p>20.2 Chitosan Composites 583</p> <p>20.2.1 Activated Clay-Chitosan (ACC) Composites 583</p> <p>20.2.1.1 Attapulgite Clay-Nanocomposite 583</p> <p>20.2.1.2 Composites of Bentonite, Montmorillonite, and Other Types of Clay 584</p> <p>20.2.2 Alginate-Chitosan (AC) Composites 589</p> <p>20.2.3 Cellulose-Chitosan (CC) Composites 589</p> <p>20.2.3.1 Cotton Fiber-Chitosan Composites 591</p> <p>20.2.4 Ceramic Alumina-Chitosan Composites 592</p> <p>20.2.5 Hydroxyapatite-Chitosan Composites 596</p> <p>20.3 Palm Oil Ash-Chitosan Composites 598</p> <p>20.4 Perlite-Chitosan Composites 598</p> <p>20.5 Polymer-Chitosan Composites 599</p> <p>20.5.1 Polyurethane-Chitosan Composites 599</p> <p>20.5.2 Polyvinyl Alcohol-Chitosan Composites 602</p> <p>20.5.3 Polyacrylamide-Chitosan Composites 605</p> <p>20.5.4 Polymethylmethacrylate-Chitosan Composites 607</p> <p>20.5.5 Poly(methacrylic acid)-Chitosan Composites 611</p> <p>20.5.6 Polyvinyl Chloride-Chitosan Composites 612</p> <p>20.5.7 Molecular Imprinted-Chitosan Composites 613</p> <p>20.6 Sand-Chitosan Composites 619</p> <p>20.7 Magnetic Nano-Adsorbents or Micro-Adsorbent 619</p> <p>20.7.1 Chitosan-Based Magnetic Particles 620</p> <p>20.7.2 Modified-Chitosan or Chitosan-Polymer Based Magnetic Composites 627</p> <p>20.7.3 Magnetic Chitosan-Carbon Composites 645</p> <p>20.7.4 Magnetic Composites of Chitosan with Inorganic Compounds 649</p> <p>References 652</p> <p><b>21 Recent Advances in Biopolymer Composites for Environmental Issues 673<br /></b><i>Mazhar Ul Islam, Shaukat Khan, Muhammad Wajid Ullah and Joong Kon Park</i></p> <p>21.1 Introduction 673</p> <p>21.2 Historical Background 674</p> <p>21.3 Some Important Biopolymers 677</p> <p>21.3.1 Bio-Cellulose 678</p> <p>21.3.2 Xanthan and Dextran 679</p> <p>21.3.3 Poly(hydroxyalkanoates) 680</p> <p>21.3.4 Polylactide 680</p> <p>21.3.5 Poly(trimethylene terephthalate) 681</p> <p>21.4 Biopolymer Composites 681</p> <p>21.5 Biodegradability of Biopolymers: An Important Feature for Addressing Environmental Concerns 682</p> <p>21.6 Environmental Aspects of Biopolymers and Biopolymer Composites 684</p> <p>21.6.1 Catalytic Degradation of Contaminants 684</p> <p>21.6.2 Adsorption of Pollutants 685</p> <p>21.6.3 Magnetic Composites 686</p> <p>21.6.4 Pollutant Sensors 686</p> <p>21.7 Future Prospects 686</p> <p>Acknowledgement 687</p> <p>References 687</p> <p>Index 693</p>
<p><b>Vijay Kumar Thakur </b>is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.</p> <p><b>Manju Kumar Thakur </b>has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials. <p><b>Michael R. Kessler </b>is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
<p><b>This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry.</b></p> <p>The <i>Handbook of Composites from Renewable Materials </i>comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. <p>Volume 6 is solely focused on the "<i>Polymeric Composites</i>". Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer-epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in wastewater treatments; study of chitosan cross-linking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues. <p><b>Audience</b><BR>This valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €