Details

Global Climate Change and Plant Stress Management


Global Climate Change and Plant Stress Management


1. Aufl.

von: Mohammad Wahid Ansari, Anil Kumar Singh, Narendra Tuteja

145,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.07.2023
ISBN/EAN: 9781119858546
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Global Climate Change and Plant Stress Management</b> <p><b>Understand the impact of climate change on plant growth with this timely introduction</b> <p>Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. <p><i>Global Climate Change and Plant Stress Management</i> presents a comprehensive guide to the effects of global climate change on plants and plant metabolism. It introduces and describes each climate change-related condition and its components, offering a detailed analysis of the resulting stress conditions, the environmental factors which ameliorate or exacerbate them, and possible solutions. The result is a thorough, rigorous introduction to this critical subject for the future of our biome. <p>Readers will also find: <ul><li>Analysis of global climate change impact on various agricultural practices</li> <li>Socio-economic consequences of climate change and plant stress conditions, and possible solutions</li> <li>Strategies for sustainable agriculture</li></ul> <p><i>Global Climate Change and Plant Stress Management</i> is essential for researchers, scientists, and industry professionals working in the life sciences, as well as for advanced graduate students.
<p>List of Contributors xvii</p> <p>Foreword xxiii</p> <p>Preface xxv</p> <p>Author Biographies xxvii</p> <p><b>Part 1 Views and Visions 1</b></p> <p><b>1 Boosting Resilience of Global Crop Production Through Sustainable Stress Management 3<br /> </b><i>Rajeev K. Varshney and Abhishek Bohra</i></p> <p>References 5</p> <p><b>2 Sustaining Food Security Under Changing Stress Environment 7<br /> </b><i>Sudhir K. Sopory</i></p> <p>References 8</p> <p><b>3 Crop Improvement Under Climate Change 9<br /> </b><i>Shivendra Bajaj and Ratna Kumria</i></p> <p>3.1 Crop Diversity to Mitigate Climate Change 10</p> <p>3.2 Technology to Mitigate Climate Change 10</p> <p>3.3 Farm Practices to Mitigate Climate Change 11</p> <p>3.4 Conclusion 11</p> <p>References 11</p> <p><b>4 Reactive Nitrogen in Climate Change, Crop Stress, and Sustainable Agriculture: A Personal Journey 13<br /> </b><i>Nandula Raghuram</i></p> <p>4.1 Introduction 13</p> <p>4.2 Reactive Nitrogen in Climate Change, Agriculture, and Beyond 13</p> <p>4.3 Nitrogen, Climate, and Planetary Boundaries of Sustainability 14</p> <p>4.4 Emerging Global Response and India’s Leadership in It 14</p> <p>4.5 Regional and Global Partnerships for Effective Interventions 15</p> <p>4.6 Building Crop NUE Paradigm Amidst Growing Focus on Stress 16</p> <p>4.7 From NUE Phenotype to Genotype in Rice 17</p> <p>4.8 Furthering the Research and Policy Agenda 18</p> <p>References 18</p> <p><b>Part 2 Climate Change: Global Impact 23</b></p> <p><b>5 Climate-Resilient Crops for CO 2 Rich-Warmer Environment: Opportunities and Challenges 25<br /> </b><i>Sayanta Kundu, Sudeshna Das, Satish K. Singh, Ratnesh K. Jha, and Rajeev Nayan Bahuguna</i></p> <p>5.1 Introduction 25</p> <p>5.2 Climate Change Trend and Abiotic Stress: Yield Losses Due to Major Climate Change Associated Stresses Heat, Drought and Their Combination 26</p> <p>5.3 Update on Crop Improvement Strategies Under Changing Climate 27</p> <p>5.3.1 Advances in Breeding and Genomics 27</p> <p>5.3.2 Advances in Phenomics and High Throughput Platforms 28</p> <p>5.3.3 Non-destructive Phenotyping to Exploit Untapped Potential of Natural Genetic Diversity 28</p> <p>5.4 Exploiting Climate-Smart Cultivation Practices 29</p> <p>5.5 CO 2 -Responsive C 3 Crops for Future Environment 30</p> <p>5.6 Conclusion 31</p> <p>References 31</p> <p><b>6 Potential Push of Climate Change on Crop Production, Crop Adaptation, and Possible Strategies to Mitigate This 35<br /> </b><i>Narendra Kumar and SM Paul Khurana</i></p> <p>6.1 Introduction 35</p> <p>6.2 Influence of Climate Change on the Yield of Plants 36</p> <p>6.3 Crop Adaptation in Mitigating Extreme Climatic Stresses 38</p> <p>6.4 Factors That Limit Crop Development 39</p> <p>6.5 Influence of Climate Change on Plants’ Morphobiochemical and Physiological Processes 39</p> <p>6.6 Responses of Plant Hormones in Abiotic Stresses 40</p> <p>6.7 Approaches to Combat Climate Changes 41</p> <p>6.7.1 Cultural Methodologies 41</p> <p>6.7.2 Conventional Techniques 41</p> <p>6.7.3 Strategies Concerned with Genetics and Genomics 41</p> <p>6.7.3.1 Omics-Led Breeding and Marker-Assisted Selection (MAS) 41</p> <p>6.7.3.2 Genome-Wide Association Studies (GWAS) for Evaluating Stress Tolerance 42</p> <p>6.7.3.3 Genome Selection (GS) Investigations for Crop Improvement 42</p> <p>6.7.3.4 Genetic Engineering of Plants in Developing Stress Tolerance 43</p> <p>6.7.4 Strategies of Genome Editing 43</p> <p>6.7.5 Involvement of CRISPR/Cas 9 43</p> <p>6.8 Conclusions 44</p> <p>Conflict of Interest Statement 44</p> <p>Acknowledgment 44</p> <p>References 45</p> <p><b>7 Agrifood and Climate Change: Impact, Mitigation, and Adaptation Strategies 53<br /> </b><i>Sudarshna Kumari and Gurdeep Bains</i></p> <p>7.1 Introduction 53</p> <p>7.2 Causes of Climate Change 54</p> <p>7.2.1 Greenhouse Gases 54</p> <p>7.2.2 Fossil Fuel Combustion 54</p> <p>7.2.3 Deforestation 55</p> <p>7.2.4 Agricultural Expansion 55</p> <p>7.3 Impact of Climate Change on Agriculture 55</p> <p>7.3.1 Crop Productivity 56</p> <p>7.3.2 Disease Development 58</p> <p>7.3.3 Plant Responses to Climate Change 58</p> <p>7.3.4 Livestock 59</p> <p>7.3.5 Agriculture Economy 59</p> <p>7.4 Mitigation and Adaptation to Climate Change 60</p> <p>7.4.1 Climate-Smart Cultural Practices 60</p> <p>7.4.2 Climate-Smart Agriculture Technologies 60</p> <p>7.4.3 Stress-Tolerant Varieties 61</p> <p>7.4.4 Precision Management of Nutrients 61</p> <p>7.4.5 Forestry and Agroforestry 61</p> <p>7.5 Conclusions and Future Prospects 61</p> <p>References 62</p> <p><b>8 Dynamic Photosynthetic Apparatus in Plants Combats Climate Change 65<br /> </b><i>Ramwant Gupta and Ravinesh Rohit Prasad</i></p> <p>8.1 Introduction 65</p> <p>8.2 Climate Change and Photosynthetic Apparatus 66</p> <p>8.3 Engineered Dynamic Photosynthetic Apparatus 66</p> <p>8.4 Conclusion and Prospects 68</p> <p>References 68</p> <p><b>9 CRISPR/Cas Enables the Remodeling of Crops for Sustainable Climate-Smart Agriculture and Nutritional Security 71<br /> </b><i>Tanushri Kaul, Rachana Verma, Sonia Khan Sony, Jyotsna Bharti, Khaled Fathy Abdel Motelb, Arul Prakash Thangaraj, Rashmi Kaul, Mamta Nehra, and Murugesh Eswaran</i></p> <p>9.1 Introduction: CRISPR/Cas Facilitated Remodeling of Crops 71</p> <p>9.2 Impact of Climate Changes on Agriculture and Food Supply 72</p> <p>9.3 Nutritionally Secure Climate-Smart Crops 73</p> <p>9.4 Novel Game Changing Genome-Editing Approaches 74</p> <p>9.4.1 Knockout-Based Approach 87</p> <p>9.4.2 Knock-in-Based Approach 87</p> <p>9.4.3 Activation or Repression-Based Approach 87</p> <p>9.5 Genome Editing for Crop Enhancement: Ushering Towards Green Revolution 2.0 88</p> <p>9.5.1 Mitigation of Abiotic Stress 88</p> <p>9.5.2 Alleviation of Biotic Stress 89</p> <p>9.5.3 Biofortification 89</p> <p>9.6 Harnessing the Potential of NGS and ML for Crop Design Target 90</p> <p>9.7 Does CRISPR/Cas Address the Snag of Genome Editing? 94</p> <p>9.8 Edited Plant Code: Security Risk Assessment 95</p> <p>9.9 Conclusion: Food Security on the Verge of Climate change 96</p> <p>References 96</p> <p><b>Part 3 Socioeconomic Aspects of Climate Change 113</b></p> <p><b>10 Perspective of Evolution of the C 4 Plants to Develop Climate Designer C 4 Rice as a Strategy for Abiotic Stress Management 115<br /> </b><i>Shuvobrata Majumder, Karabi Datta, and Swapan K. Datta</i></p> <p>10.1 Introduction 115</p> <p>10.2 How Did Plants Evolve to the C 4 System? 117</p> <p>10.2.1 Gene Amplification and Modification 117</p> <p>10.2.2 Anatomical Preconditioning 117</p> <p>10.2.3 Increase in Bundle Sheath Organelles 118</p> <p>10.2.4 Glycine Shuttles and Photorespiratory CO 2 Pumps 118</p> <p>10.2.5 Enhancement of PEPC and PPDK Activity in the Mesophyll Tissue 118</p> <p>10.2.6 Integration of C 3 and C 4 Cycles 118</p> <p>10.3 What Are the Advantages of C 4 Plants over C 3 Plants? 118</p> <p>10.4 Molecular Engineering of C 4 Enzymes in Rice 119</p> <p>10.4.1 Green Tissue-Specific Promoters 120</p> <p>10.4.2 Expressing C 4 Enzyme, PEPC in Rice 120</p> <p>10.4.3 Expressing C 4 Enzyme, PPDK in Rice 120</p> <p>10.4.4 Expressing C 4 Enzyme, ME and NADP-ME in Rice 121</p> <p>10.4.5 Expressing Multiple C 4 Enzymes in Rice 121</p> <p>10.5 Application of CRISPR for Enhanced Photosynthesis 121</p> <p>10.6 Single-Cell C 4 Species 121</p> <p>10.7 Conclusion 122</p> <p>Acknowledgments 122</p> <p>References 122</p> <p><b>11 Role of Legume Genetic Resources in Climate Resilience 125<br /> </b><i>Ruchi Bansal, Swati Priya, and H. K. Dikshit</i></p> <p>11.1 Introduction 125</p> <p>11.2 Legumes Under Abiotic Stress 126</p> <p>11.2.1 Legumes Under Drought Stress 126</p> <p>11.2.2 Legumes Under Waterlogging 126</p> <p>11.2.3 Legumes Under Salinity Stress 127</p> <p>11.2.4 Legumes Under Extreme Temperature 127</p> <p>11.3 Genetic Resources for Legume Improvement 128</p> <p>11.3.1 Lentil 129</p> <p>11.3.2 Mungbean 130</p> <p>11.3.3 Pigeon Pea 131</p> <p>11.3.4 Chickpea 131</p> <p>11.4 Conclusion 133</p> <p>References 134</p> <p><b>12 Oxygenic Photosynthesis – a Major Driver of Climate Change and Stress Tolerance 141<br /> </b><i>Baishnab C. Tripathy</i></p> <p>12.1 Introduction 141</p> <p>12.2 Evolution of Chlorophyll 141</p> <p>12.3 The Great Oxygenation Event 142</p> <p>12.4</p> <p>Role of Forest in the Regulation of O 2 and CO 2 Concentrations in the Atmosphere 142</p> <p>12.5 Evolution of C 4 Plants 142</p> <p>12.6 The Impact of High Temperature 143</p> <p>12.7 c 4 Plants Are Tolerant to Salt Stress 144</p> <p>12.8 Converting C 3 Plants into C 4 – A Himalayan Challenge 145</p> <p>12.9 Carbonic Anhydrase 145</p> <p>12.10 Phosphoenolpyruvate Carboxylase 146</p> <p>12.11 Malate Dehydrogenase 147</p> <p>12.12 Decarboxylating Enzymes 147</p> <p>12.12.1 NAD/NADP-Malic Enzyme 148</p> <p>12.12.2 Phosphoenolpyruvate Carboxykinase 149</p> <p>12.13 Pyruvate Orthophosphate Dikinase 149</p> <p>12.14 Regulation of C 4 Photosynthetic Gene Expression 150</p> <p>12.15 Use of C 3 Orthologs of C 4 Enzymes 151</p> <p>12.16 Conclusions and Future Directions 151</p> <p>Acknowledgment 152</p> <p>References 152</p> <p><b>13 Expand the Survival Limits of Crop Plants Under Cold Climate Region 161<br /> </b><i>Bhuvnesh Sareen and Rohit Joshi</i></p> <p>13.1 Introduction 161</p> <p>13.2 Physiology of Cold Stress Tolerant Plants 162</p> <p>13.3 Stress Perception and Signaling 163</p> <p>13.4 Plant Survival Mechanism 164</p> <p>13.5 Engineering Cold Stress Tolerance 165</p> <p>13.6 Future Directions 168</p> <p>Acknowledgment 168</p> <p>References 168</p> <p><b>14 Arbuscular Mycorrhizal Fungi (AMF) and Climate-Smart Agriculture: Prospects and Challenges 175<br /> </b><i>Sharma Deepika, Vikrant Goswami, and David Kothamasi</i></p> <p>14.1 Introduction 175</p> <p>14.2 What Is Climate-Smart Agriculture? 176</p> <p>14.3 AMF as a Tool to Practice Climate-Smart Agriculture 177</p> <p>14.3.1 AMF in Increasing Productivity of Agricultural Systems 177</p> <p>14.3.1.1 Plant Nutrition and Growth 177</p> <p>14.3.1.2 Improved Soil Structure and Fertility 181</p> <p>14.3.2 AMF-Induced Resilience in Crops to Climate Change 182</p> <p>14.3.2.1 AMF and Salinity Stress 182</p> <p>14.3.2.2 AMF and Drought Stress 183</p> <p>14.3.2.3 AMF and Heat Stress 184</p> <p>14.3.2.4 AMF and Cold Stress 184</p> <p>14.3.3 AMF-Mediated Mitigation of Climate Change 186</p> <p>14.3.4 Agricultural Practices and AMF Symbiosis – Crop Rotations, Tillage, and Agrochemicals 187</p> <p>14.3.5 AMF Symbiosis and Climate Change 187</p> <p>14.3.6 Conclusions and Future Perspectives 188</p> <p>Acknowledgment 189</p> <p>References 189</p> <p><b>Part 4 Plant Stress Under Climate Change: Molecular Insights 201</b></p> <p><b>15 Plant Stress and Climate Change: Molecular Insight 203<br /> </b><i>Anamika Roy , Mamun Mandal, Ganesh Kumar Agrawal, Randeep Rakwal, and Abhijit Sarkar</i></p> <p>15.1 Introduction 203</p> <p>15.2 Different Stress Factors and Climate Changes Effects in Plants 206</p> <p>15.2.1 Water Stress 206</p> <p>15.2.1.1 Drought 206</p> <p>15.2.1.2 Flooding or Waterlogging 206</p> <p>15.2.2 Temperature Stress 207</p> <p>15.2.2.1 High Temperature Stress 207</p> <p>15.2.2.2 Low Temperature Stress 207</p> <p>15.2.3 Salinity Stress 207</p> <p>15.2.4 Ultraviolet (UV) Radiation Stress 207</p> <p>15.2.5 Heavy Metal Stress 207</p> <p>15.2.6 Air Pollution Stress 208</p> <p>15.2.7 Climate Change 208</p> <p>15.3 Plant Responses Against Stress 208</p> <p>15.3.1 Water Stress Responses 208</p> <p>15.3.1.1 Drought Responses 208</p> <p>15.3.1.2 Waterlogging Responses 210</p> <p>15.3.2 Temperature Stress Responses 210</p> <p>15.3.2.1 High Temperature Stress Responses 210</p> <p>15.3.2.2 Low Temperature Stress Responses 211</p> <p>15.3.3 Salinity Stress Responses 212</p> <p>15.3.3.1 Genomic Responses 212</p> <p>15.3.3.2 Proteomic Responses 212</p> <p>15.3.3.3 Transcriptomic Responses 212</p> <p>15.3.3.4 Metabolomic Responses 213</p> <p>15.3.4 Ultraviolet (UV) Radiation Stress 213</p> <p>15.3.4.1 Genomic Responses 213</p> <p>15.3.4.2 Proteomic Responses 213</p> <p>15.3.4.3 Transcriptomic Responses 213</p> <p>15.3.4.4 Metabolomic Responses 213</p> <p>15.3.5 Heavy Metal Stress Responses 214</p> <p>15.3.5.1 Genomic Responses 214</p> <p>15.3.5.2 Proteomic Responses 214</p> <p>15.3.5.3 Transcriptomic Responses 214</p> <p>15.3.5.4 Metabolomic Responses 214</p> <p>15.3.6 Air Pollution Stress Responses 214</p> <p>15.3.6.1 Genomic Responses 215</p> <p>15.3.6.2 Proteomic Responses 215</p> <p>15.3.6.3 Transcriptomic Responses 215</p> <p>15.3.6.4 Metabolomic Responses 215</p> <p>15.3.7 Climate Change Responses 215</p> <p>15.3.7.1 Genomic Responses 215</p> <p>15.3.7.2 Proteomic Responses 216</p> <p>15.3.7.3 Transcriptomic Responses 216</p> <p>15.3.7.4 Metabolomic Responses 216</p> <p>15.4 Conclusion 216</p> <p>References 216</p> <p><b>16 Developing Stress-Tolerant Plants: Role of Small GTP Binding Proteins (RAB and RAN) 229<br /> </b><i>Manas K. Tripathy and Sudhir K. Sopory</i></p> <p>16.1 Introduction 229</p> <p>16.2 A Brief Overview of GTP-Binding Proteins 230</p> <p>16.3 Small GTP-Binding Proteins 230</p> <p>16.3.1 Rab 231</p> <p>16.3.1.1 Role of RAB’s in Plant 231</p> <p>16.3.2 Ran 234</p> <p>16.3.2.1 Role of RAN in Plants 234</p> <p>16.4 Conclusions 236</p> <p>Acknowledgments 237</p> <p>References 237</p> <p><b>17 Biotechnological Strategies to Generate Climate-Smart Crops: Recent Advances and Way Forward 241<br /> </b><i>Jyoti Maurya, Roshan Kumar Singh, and Manoj Prasad</i></p> <p>17.1 Introduction 241</p> <p>17.2 Climate Change and Crop Yield 242</p> <p>17.3 Effect of Climate Change on Crop Morpho-physiology, and Molecular Level 243</p> <p>17.4 Plant Responses to Stress Conditions 244</p> <p>17.5 Strategies to Combat Climate Change 245</p> <p>17.5.1 Cultural and Conventional Methods 245</p> <p>17.5.2 Multi-omics Approach 245</p> <p>17.5.3 Biotechnological Approaches 248</p> <p>17.5.3.1 Combating Climate Change Through Overexpression of Candidate Gene(s) 248</p> <p>17.5.3.2 Small RNA-Mediated Gene Silencing Approach 249</p> <p>17.5.3.3 Gene Editing Through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Approach 250</p> <p>17.6 Conclusion and Way Forward 251</p> <p>Acknowledgments 252</p> <p>Declaration of Interest Statement 252</p> <p>References 252</p> <p><b>18 Receptor-Like Kinases and ROS Signaling: Critical Arms of Plant Response to Stress 263<br /> </b><i>Samir Sharma</i></p> <p>18.1 Preamble 263</p> <p>18.2 Climate Change: The Agent of Stress 264</p> <p>18.3 Abiotic Stress: A Severe Threat by Itself and a Window of Opportunity for Biotic Stress Agents 264</p> <p>18.4 Plant Receptor-Like Kinases (RLKs) 265</p> <p>18.5 Receptor-Like Cytosolic Kinases 267</p> <p>18.6 Why Are Receptor-Like Cytosolic Kinases Needed? 268</p> <p>18.7 Receptor-Like Cytosolic Kinases in Plant Defense 269</p> <p>18.8 Receptor-Like Cytosolic Kinases in Plant Development 270</p> <p>18.9 Reactive Oxygen Species: Dual Role in Plants and Links to Receptor-Like Protein Kinases 272</p> <p>18.10 Conclusion 273</p> <p>References 273</p> <p><b>19 Phytohormones as a Novel Weapon in Management of Plant Stress Against Biotic Agents 277<br /> </b><i>Rewaj Subba, Swarnendu Roy, and Piyush Mathur</i></p> <p>19.1 Introduction 277</p> <p>19.2 Phytohormones and Biotic Stress Management 278</p> <p>19.2.1 Salicylic Acid 278</p> <p>19.2.2 Jasmonic Acid (JA) 278</p> <p>19.2.3 Ethylene (ET) 279</p> <p>19.2.4 Abscisic Acid (ABA) 279</p> <p>19.3 Phytohormone Mediated Cross-Talk in Plant Defense Under Biotic Stress 281</p> <p>References 282</p> <p><b>20 Recent Perspectives of Drought Tolerance Traits: Physiology and Biochemistry 287<br /> </b><i>Priya Yadav, Mohammad Wahid Ansari, Narendra Tuteja, and Moaed Al Meselmani</i></p> <p>20.1 Introduction 287</p> <p>20.2 Effects and Response During Drought Stress on Physiological and Biochemical Traits of Plants 288</p> <p>20.3 Recent Advances in Drought Stress Tolerance 289</p> <p>20.4 Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPRs) in Drought Stress Tolerance 291</p> <p>20.5 Genomic Level Approach in Drought Stress Tolerance 291</p> <p>20.6 Conclusion 293</p> <p>References 293</p> <p><b>21 Understanding the Role of Key Transcription Factors in Regulating Salinity Tolerance in Plants 299<br /> </b><i>Sahana Basu and Gautam Kumar</i></p> <p>21.1 Introduction 299</p> <p>21.2 Transcription Factors Conferring Salinity Tolerance 299</p> <p>21.2.1 APETALA2/Ethylene Responsive Factor 299</p> <p>21.2.1.1 Structure of AP2/ERF Transcription Factors 301</p> <p>21.2.1.2 Classification of AP2/ERF Transcription Factors 301</p> <p>21.2.1.3 Role of AP2/ERF Transcription Factors in Salinity Tolerance 302</p> <p>21.2.2 Wrky 302</p> <p>21.2.2.1 Structure of WRKY Transcription Factors 302</p> <p>21.2.2.2 Classification of WRKY Transcription Factors 302</p> <p>21.2.2.3 Role of WRKY Transcription Factors in Salinity Tolerance 306</p> <p>21.2.3 Basic Helix-Loop-Helix 307</p> <p>21.2.3.1 Structure of bHLH Transcription Factors 307</p> <p>21.2.3.2 Classification of bHLH Transcription Factors 307</p> <p>21.2.3.3 Role of bHLH Transcription Factors in Salinity Tolerance 307</p> <p>21.2.4 v-Myb Myeloblastosis Viral Oncogene Homolog 308</p> <p>21.2.4.1 Structure of MYB Transcription Factors 308</p> <p>21.2.4.2 Classification of MYB Transcription Factors 308</p> <p>21.2.4.3 Role of MYB Transcription Factors in Salinity Tolerance 309</p> <p>21.2.5 NAM (for no apical meristem), ATAF1 and −2, and CUC2 (for cup-shaped cotyledon) 309</p> <p>21.2.5.1 Structure of NAC Transcription Factors 309</p> <p>21.2.5.2 Classification of NAC Transcription Factors 309</p> <p>21.2.5.3 Role of NAC Transcription Factors in Salinity Tolerance 310</p> <p>21.2.6 Nuclear Factor-Y 310</p> <p>21.2.6.1 Structure of NF-Y Transcription Factors 310</p> <p>21.2.6.2 Classification of NF-Y Transcription Factors 310</p> <p>21.2.6.3 Role of NF-Y Transcription Factors in Salinity Tolerance 311</p> <p>21.2.7 Basic Leucine Zipper 311</p> <p>21.2.7.1 Structure of bZIP Transcription Factors 311</p> <p>21.2.7.2 Classification of bZIP Transcription Factors 312</p> <p>21.2.7.3 Role of bZIP Transcription Factors in Salinity Tolerance 312</p> <p>21.3 Conclusion 312</p> <p>References 312</p> <p><b>Part 5 Stress Management Strategies for Sustainable Agriculture 317</b></p> <p><b>22 Seed Quality Assessment and Improvement Between Advancing Agriculture and Changing Environments 319<br /> </b><i>Andrea Pagano, Paola Pagano, Conrado Dueñas, Adriano Griffo, Shraddha Shridhar Gaonkar, Francesca Messina, Alma Balestrazzi, and Anca Macovei</i></p> <p>22.1 Introduction: A Seed’s Viewpoint on Climate Change 319</p> <p>22.2 Assessing Seed Quality: Invasive and Non-invasive Techniques for Grain Testing 321</p> <p>22.3 Improving Seed Quality: Optimizing Priming Techniques to Face the Challenges of Climate Changes 324</p> <p>22.4 Understanding Seed Quality: Molecular Hallmarks and Experimental Models for Future Perspectives in Seed Technology 327</p> <p>22.5 Conclusive Remarks 329</p> <p>References 329</p> <p><b>23 CRISPR/Cas9 Genome Editing and Plant Stress Management 335<br /> </b><i>Isorchand Chongtham and Priya Yadav</i></p> <p>23.1 Introduction 335</p> <p>23.2 CRISPR/Cas 9 336</p> <p>23.2.1 CRISPR Cas System 336</p> <p>23.2.2 CRISPR Cas 9 337</p> <p>23.2.3 CRISPR/Cas9 Mechanism 338</p> <p>23.2.4 CRISPR/Cas9 Types of Gene Editing 339</p> <p>23.3 Construct of the CRISPR/Cas 9 341</p> <p>23.3.1 The gRNA 341</p> <p>23.3.2 The Choice of Gene Regulatory Elements (GREs) 341</p> <p>23.3.3 Multiplex CRISPR 341</p> <p>23.4 Plant Genome Editing 343</p> <p>23.4.1 Procedure 343</p> <p>23.4.2 Plant Improvement Strategies Based on Genome Editing 344</p> <p>23.5 Plant Stress 344</p> <p>23.5.1 Plant Stress and Their Types 344</p> <p>23.5.2 Plant Remedial Measures Toward Stress 345</p> <p>23.6 Genome Editing for Plant Stress 346</p> <p>23.6.1 Biotic Stress 348</p> <p>23.6.1.1 Bacterium 348</p> <p>23.6.1.2 Virus 348</p> <p>23.6.1.3 Fungus 348</p> <p>23.6.1.4 Insect 349</p> <p>23.6.2 Abiotic Stress 349</p> <p>23.6.2.1 Chemicals 349</p> <p>23.6.2.2 Environmental 349</p> <p>23.7 Elimination of CRISPR/Cas from the System After Genetic Editing 350</p> <p>23.8 Prospects and Limitations 350</p> <p>References 351</p> <p><b>24 Ethylene Mediates Plant-Beneficial Fungi Interaction That Leads to Increased Nutrient Uptake, Improved Physiological Attributes, and Enhanced Plant Tolerance Under Salinity Stress 361<br /> </b><i>Priya Yadav, Mohammad Wahid Ansari, Narendra Tuteja, and Ratnum K. Wattal</i></p> <p>24.1 Introduction 361</p> <p>24.2 Plant Response Towards Salinity Stress 361</p> <p>24.3 Plant–Fungal Interaction and the Mechanism of Plant Growth Promotion by Fungi 362</p> <p>24.3.1 Nutrient Acquisition and Phytohormones Production 362</p> <p>24.3.2 Activation of Systemic Resistance 364</p> <p>24.3.3 Production of Siderophores 364</p> <p>24.3.4 Production of Antibiotics and Secondary Metabolites 365</p> <p>24.3.5 Protection to Biotic and Abiotic Stress 365</p> <p>24.4 Fungi and Ethylene Production and Its Effects 365</p> <p>24.5 Role and Mechanism of Ethylene in Salinity Stress Tolerance 366</p> <p>24.6 Conclusion 367</p> <p>References 367</p> <p><b>25 Role of Chemical Additives in Plant Salinity Stress Mitigation 371<br /> </b><i>Priya Yadav, Mohammad Wahid Ansari, and Narendra Tuteja</i></p> <p>25.1 Introduction 371</p> <p>25.2 Types of Chemical Additives and Their Source 372</p> <p>25.3 Application and Mechanism of Action 373</p> <p>25.4 NO (Nitric Oxide) in Salt Stress Tolerance 374</p> <p>25.5 Melatonin in Salt Stress Tolerance 374</p> <p>25.6 Polyamines in Salt Stress Tolerance 374</p> <p>25.7 Salicylic Acid (SA) in Salt Stress Tolerance 375</p> <p>25.8 Ethylene in Salinity Stress Tolerance 376</p> <p>25.9 Trehalose in Salinity Stress Tolerance 377</p> <p>25.10 Kresoxim-Methyl (KM) in Salinity Stress Tolerance 377</p> <p>25.11 Conclusion 377</p> <p>References 377</p> <p><b>26 Role of Secondary Metabolites in Stress Management Under Changing Climate Conditions 383<br /> </b><i>Priya Yadav and Zahid Hameed Siddiqui</i></p> <p>26.1 Introduction 383</p> <p>26.1.1 Types of Plant Secondary Metabolites 383</p> <p>26.1.1.1 Phenolics 384</p> <p>26.1.1.2 Terpenoids 384</p> <p>26.1.1.3 Nitrogen-Containing Secondary Metabolites 384</p> <p>26.2 Biosynthesis of Plant Secondary Metabolites 385</p> <p>26.2.1 Role of Secondary Metabolites in Mitigating Abiotic Stress 388</p> <p>26.2.2 Secondary Metabolites in Drought Stress Mitigation 389</p> <p>26.2.2.1 Phenolic compounds and drought stress 389</p> <p>26.2.2.2 Terpenoids in drought stress tolerance 389</p> <p>26.2.3 Secondary Metabolites in Mitigating Salinity Stress 390</p> <p>26.2.4 Secondary Metabolites as UV Scavengers 390</p> <p>26.3 Heavy Metal Stress and Secondary Metabolites 390</p> <p>26.3.1.1 Phenolic compounds and metal stress 391</p> <p>26.3.2 Role of Secondary Metabolites in Biotic Stress Mitigation 392</p> <p>26.3.2.1 Terpenoids and Biotic Stress 392</p> <p>26.3.2.2 Phenolic Compounds and Biotic Stress 392</p> <p>26.3.2.3 Nitrogen-Containing Compound and Biotic Stress 393</p> <p>26.4 Counteradaptation of Insects Against Secondary Metabolites 393</p> <p>26.5 Sustainable Crop Protection and Secondary Metabolites 393</p> <p>26.6 Conclusion 393</p> <p>References 394</p> <p><b>27 Osmolytes: Efficient Oxidative Stress-Busters in Plants 399<br /> </b><i>Naser A. Anjum, Palaniswamy Thangavel, Faisal Rasheed, Asim Masood, Hadi Pirasteh-Anosheh, and Nafees A. Khan</i></p> <p>27.1 Introduction 399</p> <p>27.1.1 Plant Health, Stress Factors, and Oxidative Stress and Its Markers 399</p> <p>27.1.2 Modulators of Oxidative Stress Markers and Antioxidant Metabolism 399</p> <p>27.2 Osmolytes – An Overview 400</p> <p>27.2.1 Role of Major Osmolytes in Protection of Plants Against Oxidative Stress 401</p> <p>27.2.1.1 Betaines and Related Compounds 401</p> <p>27.2.1.2 Proline 401</p> <p>27.2.1.3 γ-Aminobutyric Acid (Gamma Amino Butyric Acid) 402</p> <p>27.2.1.4 Polyols 402</p> <p>27.2.1.5 Sugars 403</p> <p>27.3 Conclusion and Perspectives 404</p> <p>References 404</p> <p>Index 411</p>
<p><b>Mohammad Wahid Ansari</b> is Assistant Professor in the Department of Botany, Zakir Hussain Delhi College, University of Delhi, India. He has researched and published widely on plant biology and stress tolerance. <p><b>Anil Kumar Singh</b> is Principal Scientist at the Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India. He has researched extensively into plant adaptations and environmental responses, as well as plant stress tolerance and related subjects. <p><b>Narendra Tuteja</b> is Visiting Scientist at the International Centre for Genetic Engineering and Biotechnology, New Delhi, India. He has published extensively on plant stress tolerance, mango malformation and related subjects.
<p><b>Understand the impact of climate change on plant growth with this timely introduction</b> <p>Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. <p><i>Global Climate Change and Plant Stress Management</i> presents a comprehensive guide to the effects of global climate change on plants and plant metabolism. It introduces and describes each climate change-related condition and its components, offering a detailed analysis of the resulting stress conditions, the environmental factors which ameliorate or exacerbate them, and possible solutions. The result is a thorough, rigorous introduction to this critical subject for the future of our biome. <p>Readers will also find: <ul><li>Analysis of global climate change impact on various agricultural practices</li> <li>Socio-economic consequences of climate change and plant stress conditions, and possible solutions</li> <li>Strategies for sustainable agriculture</li></ul> <p><i>Global Climate Change and Plant Stress Management</i> is essential for researchers, scientists, and industry professionals working in the life sciences, as well as for advanced graduate students.

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €