Details

Geothermal Heat Pump and Heat Engine Systems


Geothermal Heat Pump and Heat Engine Systems

Theory And Practice
Wiley-ASME Press Series 1. Aufl.

von: Andrew D. Chiasson

105,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.07.2016
ISBN/EAN: 9781118961964
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A unique approach to the study of geothermal energy systems</b></p> <p>This book takes a unique, holistic approach to the interdisciplinary study of geothermal energy systems, combining low, medium, and high temperature applications into a logical order. The emphasis is on the concept that all geothermal projects contain common elements of a "thermal energy reservoir" that must be properly designed and managed.</p> <p>The book is organized into four sections that examine geothermal systems: energy utilization from resource and site characterization; energy harnessing; energy conversion (heat pumps, direct uses, and heat engines); and energy distribution and uses.</p> <p>Examples are provided to highlight fundamental concepts, in addition to more complex system design and simulation.</p> <p>Key features:</p> <ul> <li>Companion website containing software tools for application of fundamental principles and solutions to real-world problems.</li> <li>Balance of theory, fundamental principles, and practical application.</li> <li>Interdisciplinary treatment of the subject matter.</li> </ul> <p><i>Geothermal Heat Pump & Heat Engine Systems: Theory and Practice </i>is a unique textbook for Energy Engineering and Mechanical Engineering students as well as practicing engineers who are involved with low-enthalpy geothermal energy systems.</p>
<p>Series Preface xiv</p> <p>Preface xv</p> <p>About the Companion Website xviii</p> <p><b>1 Geothermal Energy Project Considerations 1</b></p> <p>1.1 Overview 1</p> <p>1.2 Renewable/Clean Energy System Analysis 1</p> <p>1.3 Elements of Renewable/Clean Energy Systems 4</p> <p>1.4 Geothermal Energy Utilization and Resource Temperature 5</p> <p>1.5 Geothermal Energy Project History and Development 5</p> <p>1.6 Chapter Summary 18</p> <p>Discussion Questions and Exercise Problems 19</p> <p><b>Part I Geothermal Energy – Utilization and Resource Characterization 21</b></p> <p><b>2 Geothermal Process Loads 23</b></p> <p>2.1 Overview 23</p> <p>2.2 Weather Data 24</p> <p>2.3 Space Heating and Cooling Loads 26</p> <p>2.4 Hot Water Process Loads 38</p> <p>2.5 Swimming Pool and Small Pond Heating Loads 40</p> <p>2.6 Snow-Melting Loads 46</p> <p>2.7 Chapter Summary 53</p> <p>Discussion Questions and Exercise Problems 54</p> <p><b>3 Characterizing the Resource 55</b><br /><br />3.1 Overview 55</p> <p>3.2 Origin and Structure of the Earth 56</p> <p>3.3 Geology and Drilling Basics for Energy Engineers 59</p> <p>3.4 Earth Temperature Regime and Global Heat Flows: Why is the Center of the Earth Hot? 62</p> <p>3.5 Shallow Earth Temperatures 64</p> <p>3.6 The Geothermal Reservoir Concept 66</p> <p>3.7 Geothermal Site Suitability Analysis 68</p> <p>3.8 Chapter Summary 79</p> <p>Discussion Questions and Exercise Problems 80</p> <p><b>Part II Harnessing the Resource 81</b></p> <p><b>4 Groundwater Heat Exchange Systems 83</b></p> <p>4.1 Overview 83</p> <p>4.2 Why Groundwater? 84</p> <p>4.3 Theoretical Considerations 85</p> <p>4.4 Practical Considerations 108</p> <p>4.5 Groundwater Heat Pump Systems 123</p> <p>4.6 Chapter Summary 134</p> <p>Discussion Questions and Exercise Problems 135</p> <p><b>5 Borehole Heat Exchangers 138</b></p> <p>5.1 Overview of Borehole Heat Exchangers (BHEs) 138</p> <p>5.2 What is a Borehole Heat Exchanger? 139</p> <p>5.3 Brief Historical Overview of BHEs 140</p> <p>5.4 Installation of BHEs 141</p> <p>5.5 Thermal and Mathematical Considerations for BHEs 142</p> <p>5.6 Thermal Response Testing 169</p> <p>5.7 Pressure Considerations for Deep Vertical Boreholes 175</p> <p>5.8 Special Cases 176</p> <p>5.9 Chapter Summary 178</p> <p>Discussion Questions and Exercise Problems 179</p> <p><b>6 Multi-Borehole Heat Exchanger Arrays 181</b></p> <p>6.1 Overview 181</p> <p>6.2 Vertical GHX Design Length Equation and Design Parameters 184</p> <p>6.3 Vertical GHX Simulation 198</p> <p>6.4 Hybrid Geothermal Heat Pump Systems 199</p> <p>6.5 Modeling Vertical GHXs with Software Tools 200</p> <p>6.6 Chapter Summary 216</p> <p>Discussion Questions and Exercise Problems 217</p> <p><b>7 Horizontal Ground Heat Exchangers 219</b></p> <p>7.1 Overview 219</p> <p>7.2 Horizontal GHX Design Length Equation and Design Parameters 221</p> <p>7.3 Modeling Horizontal GHXs with Software Tools 232</p> <p>7.4 Simulation of Horizontal GHXs 237</p> <p>7.5 Earth Tubes 238<br /><br />7.6 Chapter Summary 244</p> <p>Discussion Questions and Exercise Problems 244</p> <p><b>8 Surface Water Heat Exchange Systems 246</b></p> <p>8.1 Overview 246</p> <p>8.2 Thermal Processes in Surface Water Bodies 247</p> <p>8.3 Open-Loop Systems 250</p> <p>8.4 Closed-Loop Systems 251</p> <p>8.5 Chapter Summary 266</p> <p>Discussion Questions and Exercise Problems 266</p> <p><b>9 Opportunistic Heat Sources and Sinks 267</b></p> <p>9.1 Overview 267</p> <p>9.2 Use of Existing Water Wells 267</p> <p>9.3 Heat Exchange With Building Foundations 268</p> <p>9.4 Utilization of Infrastructure from Other Energy Sectors 268</p> <p>9.5 Cascaded Loads and Combined Heat and Power (CHP) 271</p> <p>9.6 Integrated Loads and Load Sharing with Heat Pumps 273</p> <p>9.7 Chapter Summary 278</p> <p>Discussion Questions and Exercise Problems 279</p> <p><b>10 Piping and Pumping Systems 280</b></p> <p>10.1 Overview 280</p> <p>10.2 The Fluid Mechanics of Internal Flows 281</p> <p>10.3 Pipe System Design 286</p> <p>10.4 Configuring a Closed-Loop Ground Heat Exchanger 289</p> <p>10.5 Circulating Pumps 298</p> <p>10.6 Chapter Summary 305</p> <p>Exercise Problems 305</p> <p><b>Part III Geothermal Energy Conversion 307</b></p> <p><b>11 Heat Pumps and Heat Engines: A Thermodynamic Overview 309</b></p> <p>11.1 Overview 309</p> <p>11.2 Fundamental Theory of Operation of Heat Pumps and Heat Engines 309</p> <p>11.3 The Carnot Cycle 311</p> <p>11.4 Real-World Considerations: Entropy and Exergy 312</p> <p>11.5 Practical Heat Engine and Heat Pump Cycles 317</p> <p>11.6 The Working Fluids: Refrigerants 320</p> <p>11.7 Chapter Summary 322</p> <p>Discussion Questions and Exercise Problems 323</p> <p><b>12 Mechanical Vapor Compression Heat Pumps 324</b></p> <p>12.1 Overview 324</p> <p>12.2 The Ideal Vapor Compression Cycle 325</p> <p>12.3 The Non-Ideal Vapor Compression Cycle 328</p> <p>12.4 General Source-Sink Configurations 342</p> <p>12.5 Mechanics of Operation 347</p> <p>12.6 Transcritical Cycles 366</p> <p>12.7 Vapor Compression Heat Pump Performance Standards and Manufacturer’s Catalog Data 370</p> <p>12.8 Chapter Summary 373</p> <p>Discussion Questions and Exercise Problems 374</p> <p><b>13 Thermally Driven Heat Pumps 376</b></p> <p>13.1 Overview 376</p> <p>13.2 Cycle Basics 377</p> <p>13.3 Absorption Cycles 378</p> <p>13.4 Adsorption Cycles 396</p> <p>13.5 Thermally Driven Heat Pump Performance Standards and Manufacturer’s Catalog Data 397</p> <p>13.6 Chapter Summary 397</p> <p>Discussion Questions and Exercise Problems 398</p> <p><b>14 Organic Rankine Cycle (Binary) Geothermal Power Plants 399</b></p> <p>14.1 Overview 399</p> <p>14.2 The Ideal Rankine Cycle 400</p> <p>14.3 The Non-Ideal Rankine Cycle 402</p> <p>14.4 Organic Rankine Cycle Performance Modeling 410</p> <p>14.5 Chapter Summary 416</p> <p>Discussion Questions and Exercise Problems 416</p> <p><b>Part IV Energy Distribution 419</b></p> <p><b>15 Inside the Building 421</b></p> <p>15.1 Overview 421</p> <p>15.2 Heat Pump Piping Configurations 421</p> <p>15.3 Hydronic Heating and Cooling Systems 425</p> <p>15.4 Forced-Air Heating and Cooling Systems 425</p> <p>15.5 Ventilation Air and Heat Pumps 426</p> <p>15.6 Chapter Summary 431</p> <p>Discussion Questions and Exercise Problems 431</p> <p><b>16 Energy Economics and Environmental Impact 433</b></p> <p>16.1 Overview 433</p> <p>16.2 Simple Payback Period and Rate of Return 434</p> <p>16.3 Time Value of Money 435</p> <p>16.4 Cost Considerations for Geothermal Energy Systems 437</p> <p>16.5 Uncertainty in Economic Analyses 439</p> <p>16.6 Environmental Impact 441</p> <p>16.7 Chapter Summary 444</p> <p><b>Appendix A: Software Used in this Book 445</b></p> <p>A.1 The GHX Tool Box 445</p> <p>A.2 Engineering Equation Solver (EES) 445</p> <p>A.3 Installing and Using the Excel Solver for Optimization Problems 446</p> <p>What is the Excel Solver? 446</p> <p>Installing the Excel Solver 446</p> <p>Using the Excel Solver 446</p> <p><b>Appendix B: Hydraulic and Thermal Property Data 448</b></p> <p><b>Appendix C: Solar Utilizability Method 450</b></p> <p>Nomenclature 454</p> <p>References 459</p> <p>Index 464</p>
<p><b>Andrew Chiasson</b> is a faculty member in the Department of Mechanical & Aerospace Engineering, University of Dayton, where he teaches courses and conducts research in the areas of thermofluid sciences, and renewable and clean energy. He has academic and professional practice experience in a wide range of geothermal and hydrogeologic applications related to geothermal heat pumps (geoexchange), direct-use geothermal, small-scale electrical power generation, hydrogeological site evaluations, and groundwater flow and mass/heat transport modeling. Dr. Chiasson has been extensively involved in research and development of design and simulation tools for optimal earth heat exchanger coupling, hybrid geoexchange systems, and underground solar energy storage. As a Professional Engineer in the United States and in Canada, he has designed numerous closed and open-loop geoexchange systems and HVAC systems for a wide variety of building types. He is a member of ASHRAE Technical Committees and is an IGSHPA Accredited Ground Source Heat Pump Trainer.</p>
<p><b><i>A unique approach to the study of geothermal energy systems</i></b></p> <p>This book takes a unique, holistic approach to the interdisciplinary study of geothermal energy systems, combining low, medium, and high temperature applications into a logical order. The emphasis is on the concept that all geothermal projects contain common elements of a "thermal energy reservoir" that must be properly designed and managed.</p> <p>The book is organized into four sections that examine geothermal systems: energy utilization from resource and site characterization; energy harnessing; energy conversion (heat pumps, direct uses, and heat engines); and energy distribution and uses.</p> <p>Examples are provided to highlight fundamental concepts, in addition to more complex system design and simulation.</p> <p>Key features:</p> <ul> <li>Companion website containing software tools for application of fundamental principles and solutions to real-world problems.</li> <li>Balance of theory, fundamental principles, and practical application.</li> <li>Interdisciplinary treatment of the subject matter.</li> </ul> <p><i>Geothermal Heat Pump & Heat Engine Systems: Theory and Practice </i>is a unique textbook for Energy Engineering and Mechanical Engineering students as well as practicing engineers who are involved with low-enthalpy geothermal energy systems.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €