Details

Geomechanics in CO2 Storage Facilities


Geomechanics in CO2 Storage Facilities


1. Aufl.

von: Gilles Pijaudier-Cabot, Jean-Michel Pereira

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.01.2013
ISBN/EAN: 9781118577455
Sprache: englisch
Anzahl Seiten: 248

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>CO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage facilities, with particular attention given to coupled geomechanical problems.<br />The book is divided into three parts. The first part is dedicated to transport processes and focuses on the efficiency of the storage complex and the evaluation of possible leakage paths. The second part deals with issues related to reservoir injectivity and the presence of fractures and occurrence of damage. The final part of the book concerns the serviceability and ageing of the geomaterials whose poromechanical properties may be altered by contact with the injected reactive fluid.</p>
<p>Preface xi</p> <p><b>PART 1. TRANSPORT PROCESSES  1</b></p> <p><b>Chapter 1. Assessing Seal Rock Integrity for CO2 Geological Storage Purposes  3</b><br /> <i>Daniel BROSETA</i></p> <p>1.1. Introduction 3</p> <p>1.2. Gas breakthrough experiments in water-saturated rocks 6</p> <p>1.3. Interfacial properties involved in seal rock integrity 9</p> <p>1.3.1. Brine-gas IFT 9</p> <p>1.3.2. Wetting behavior 10</p> <p>1.4. Maximum bottomhole pressure for storage in a depleted hydrocarbon reservoir 12</p> <p>1.5. Evidences for capillary fracturing in seal rocks 13</p> <p>1.6. Summary and prospects 14</p> <p>1.7. Bibliography 15</p> <p><b>Chapter 2. Gas Migration through Clay Barriers in the Context of Radioactive Waste Disposal: Numerical Modeling of an In Situ Gas Injection Test  21</b><br /> <i>Pierre GÉRARD, Jean-Pol RADU, Jean TALANDIER, Rémi de La VAISSIÈRE, Robert CHARLIER and Frédéric COLLIN</i></p> <p>2.1. Introduction 21</p> <p>2.2. Field experiment description 23</p> <p>2.3. Boundary value problem 26</p> <p>2.3.1. 1D and 3D geometry and boundary conditions 26</p> <p>2.3.2. Hydraulic model 27</p> <p>2.3.3. Hydraulic parameters 28</p> <p>2.4. Numerical results 29</p> <p>2.4.1. 1D modeling 30</p> <p>2.4.2. 3D modeling 34</p> <p>2.5. Discussion and conclusions 37</p> <p>2.6. Bibliography 39</p> <p><b>Chapter 3. Upscaling Permeation Properties in Porous Materials from Pore Size Distributions  43</b><br /> <i>Fadi KHADDOUR, David GRÉGOIRE and Gilles PIJAUDIER-CABOT</i></p> <p>3.1. Introduction 43</p> <p>3.2. Assembly of parallel pores 44</p> <p>3.2.1. Presentation 44</p> <p>3.2.2. Permeability 45</p> <p>3.2.3. Case of a sinusoidal multi-modal pore size distribution 47</p> <p>3.3. Mixed assembly of parallel and series pores 48</p> <p>3.3.1. Presentation 48</p> <p>3.3.2. Permeability 49</p> <p>3.4. Comparisons with experimental results 51</p> <p>3.4.1. Electrical fracturing tests 51</p> <p>3.4.2. Measurement of the pore size distribution 53</p> <p>3.4.3. Model capabilities to predict permeability and comparisons with experiments 54</p> <p>3.5. Conclusions 55</p> <p>3.6. Acknowledgments 55</p> <p>3.7. Bibliography 56</p> <p><b>PART 2. FRACTURE, DEFORMATION AND COUPLED EFFECTS  57</b></p> <p><b>Chapter 4. A Non-Local Damage Model for Heterogeneous Rocks – Application to Rock Fracturing Evaluation Under Gas Injection Conditions 59</b><br /> <i>Darius M. SEYEDI, Nicolas GUY, Serigne SY, Sylvie GRANET and François HILD</i></p> <p>4.1. Introduction 60</p> <p>4.2. A probabilistic non-local model for rock fracturing 61</p> <p>4.3. Hydromechanical coupling scheme 63</p> <p>4.4. Application example and results 66</p> <p>4.4.1. Effect of Weibull modulus 70</p> <p>4.5. Conclusions and perspectives 70</p> <p>4.6. Acknowledgments 71</p> <p>4.7. Bibliography 71</p> <p><b>Chapter 5. Caprock Breach: A Potential Threat to Secure Geologic Sequestration of CO2 75</b><br /> <i>A.P.S. SELVADURAI</i></p> <p>5.1. Introduction 75</p> <p>5.2. Caprock flexure during injection 77</p> <p>5.2.1. Numerical results for the caprock–geologic media interaction 81</p> <p>5.3. Fluid leakage from a fracture in the caprock 85</p> <p>5.3.1. Numerical results for fluid leakage from a fracture in the caprock 89</p> <p>5.4. Concluding remarks 90</p> <p>5.5. Acknowledgment 91</p> <p>5.6. Bibliography 91</p> <p><b>Chapter 6. Shear Behavior Evolution of a Fault due to Chemical Degradation of Roughness: Application</b> <b>to the Geological Storage of CO2 95</b><br /> <i>Olivier NOUAILLETAS, Céline PERLOT, Christian LA BORDERIE, Baptiste ROUSSEAU and Gérard BALLIVY</i></p> <p>6.1. Introduction 96</p> <p>6.2. Experimental setup 97</p> <p>6.3. Roughness and chemical attack 99</p> <p>6.4. Shear tests 103</p> <p>6.5. Peak shear strength and peak shear displacement: Barton’s model 107</p> <p>6.6. Conclusion and perspectives 112</p> <p>6.7. Acknowledgment 113</p> <p>6.8. Bibliography 113</p> <p><b>Chapter 7. CO2 Storage in Coal Seams: Coupling Surface Adsorption and Strain 115</b><br /> <i>Saeid NIKOOSOKHAN, Laurent BROCHARD, Matthieu VANDAMME, Patrick DANGLA, Roland J.-M. PELLENQ, Brice LECAMPION and Teddy FEN-CHONG</i></p> <p>7.1. Introduction 115</p> <p>7.2. Poromechanical model for coal bed reservoir 116</p> <p>7.2.1. Physics of adsorption-induced swelling of coal 116</p> <p>7.2.2. Assumptions of model for coal bed reservoir 118</p> <p>7.2.3. Case of coal bed reservoir with no adsorption 118</p> <p>7.2.4. Derivation of constitutive equations for coal bed reservoir with adsorption 120</p> <p>7.3. Simulations 122</p> <p>7.3.1. Simulations at the molecular scale: adsorption of carbon dioxide on coal 122</p> <p>7.3.2. Simulations at the scale of the reservoir 124</p> <p>7.3.3. Discussion 127</p> <p>7.4. Conclusions 128</p> <p>7.5. Bibliography 129</p> <p><b>PART 3. AGING AND INTEGRITY 133</b></p> <p><b>Chapter 8. Modeling by Homogenization of the Long-Term Rock Dissolution and Geomechanical Effects 135</b><br /> <i>Jolanta LEWANDOWSKA</i></p> <p>8.1. Introduction 135</p> <p>8.2. Microstructure and modeling by homogenization 136</p> <p>8.3. Homogenization of the H-M-T problem 138</p> <p>8.3.1. Formulation of the problem at the microscopic scale 138</p> <p>8.3.2. Asymptotic developments method 142</p> <p>8.3.3. Solutions 143</p> <p>8.3.4. Summary of the macroscopic “H-M-T model” 148</p> <p>8.4. Homogenization of the C-M problem 148</p> <p>8.4.1. Formulation of the problem at the microscopic scale 148</p> <p>8.4.2. Homogenization 150</p> <p>8.4.3. Summary of the macroscopic “C-M model” 151</p> <p>8.5. Numerical computations of the time degradation of the macroscopic rigidity tensor 152</p> <p>8.5.1. Definition of the problem 152</p> <p>8.5.2. Results and discussion 154</p> <p>8.6. Conclusions 158</p> <p>8.7. Acknowledgment 160</p> <p>8.8. Bibliography 160</p> <p><b>Chapter 9. Chemoplastic Modeling of Petroleum Cement Paste under Coupled Conditions 163</b><br /> <i>Jian Fu SHAO, Y. JIA, Nicholas BURLION, Jeremy SAINT-MARC and Adeline GARNIER</i></p> <p>9.1. Introduction 163</p> <p>9.2. General framework for chemo-mechanical modeling 164</p> <p>9.2.1. Phenomenological chemistry model 166</p> <p>9.3. Specific plastic model for petroleum cement paste 169</p> <p>9.3.1. Elastic behavior 169</p> <p>9.3.2. Plastic pore collapse model 170</p> <p>9.3.3. Plastic shearing model 172</p> <p>9.4. Validation of model 174</p> <p>9.5. Conclusions and perspectives 178</p> <p>9.6. Bibliography 179</p> <p><b>Chapter 10. Reactive Transport Modeling of CO2 Through Cementitious Materials Under Supercritical Boundary Conditions  181</b><br /> <i>Jitun SHEN, Patrick DANGLA and Mickaël THIERY</i></p> <p>10.1. Introduction 181</p> <p>10.2. Carbonation of cement-based materials 183</p> <p>10.2.1. Solubility of the supercritical CO2 in the pore solution 183</p> <p>10.2.2. Chemical reactions 184</p> <p>10.2.3. Carbonation of CH 185</p> <p>10.2.4. Carbonation of C-S-H 187</p> <p>10.2.5. Porosity change 190</p> <p>10.3. Reactive transport modeling 191</p> <p>10.3.1. Field equations 191</p> <p>10.3.2. Transport of the liquid phase 194</p> <p>10.3.3. Transport of the gas phase 194</p> <p>10.3.4. Transport of aqueous species 196</p> <p>10.4. Simulation results and discussion 196</p> <p>10.4.1. Sandstone-like conditions 197</p> <p>10.4.2. Limestone-like conditions 198</p> <p>10.4.3. Study of CO2 concentration and initial porosity 199</p> <p>10.4.4. Supercritical boundary conditions 201</p> <p>10.5. Conclusion 204</p> <p>10.6. Acknowledgment 205</p> <p>10.7. Bibliography 205</p> <p><b>Chapter 11. Chemo-Poromechanical Study of Wellbore Cement Integrity 209</b><br /> <i>Jean-Michel PEREIRA and Valérie VALLIN</i></p> <p>11.1. Introduction 209</p> <p>11.2. Poromechanics of cement carbonation in the context of CO2 storage 210</p> <p>11.2.1. Context and definitions 210</p> <p>11.2.2. Chemical reactions 214</p> <p>11.2.3. Chemo-poromechanical behaviour 217</p> <p>11.2.4. Balance equations 221</p> <p>11.3. Application to wellbore cement 222</p> <p>11.3.1. Description of the problem 222</p> <p>11.3.2. Initial state and boundary conditions 223</p> <p>11.3.3. Illustrative results 223</p> <p>11.4. Conclusion 227</p> <p>11.5. Acknowledgments 227</p> <p>11.6. Bibliography 227</p> <p>List of Authors 229</p> <p>Index  000</p>
<p><strong>Gilles Pijaudier-Cabot</strong> is Professor at University of Pau and Pays de l'Adour, Pau, France. <p><strong>Jean-Michel Pereira</strong> is Reasearcher at Laboratory Navier - Ecole des Ponts ParisTech, Marne-la-Vallée, France.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €