Details

Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods


Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods


Hui: Food Science and Technology 2. Aufl.

von: Debasis Bagchi, Anand Swaroop, Manashi Bagchi

191,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 18.08.2015
ISBN/EAN: 9781118930434
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Functional foods and nutraceuticals have received considerable interest in the past decade largely due to increasing consumer awareness of the health benefits associated with food. Diet in human health is no longer a matter of simple nutrition: consumers are more proactive and increasingly interested in the health benefits of functional foods and their role in the prevention of illness and chronic conditions. This, combined with an aging population that focuses not only on longevity but also quality of life, has created a market for functional foods and nutraceuticals.</p> <p>A fully updated and revised second edition, <i>Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods</i> reflects the recent upsurge in "omics" technologies and features 48 chapters that cover topics including genomics, proteomics, metabolomics, epigenetics, peptidomics, nutrigenomics and human health, transcriptomics, nutriethics and nanotechnology. This cutting-edge volume, written by a panel of experts from around the globe reviews the latest developments in the field with an emphasis on the application of these novel technologies to functional foods and nutraceuticals.
<p>Contributors xxiv</p> <p>Preface xxxi</p> <p><b>Part I Introduction 1</b></p> <p><b>1 Novel Omics Technologies in Food Nutrition 3</b><br /><i>Xuewu Zhang, Lijun You, Wei Wang, and Kaijun Xiao</i></p> <p>1.1 Introduction 3</p> <p>1.2 Transcriptomics in Nutritional Research 4</p> <p>1.3 Proteomics in Nutritional Research 5</p> <p>1.4 Metabolomics in Nutritional Research 7</p> <p>1.5 Systems Biology in Nutritional Research 9</p> <p>1.6 Conclusions 9</p> <p><b>2 Seafood Authentication using Foodomics: Proteomics, Metabolomics, and Genomics 14</b><br /><i>Karola Böhme, Jorge Barros-Velázquez, Pilar Calo-Mata, José M. Gallardo, and Ignacio Ortea</i></p> <p>2.1 Introduction 14</p> <p>2.2 Proteomic Approaches 15</p> <p>2.3 Metabolomic Approaches 19</p> <p>2.4 Genomic Approaches 20</p> <p>2.5 Conclusions 25</p> <p><b>3 A Foodomics Approach Reveals Hypocholesterolemic Activity of Red Microalgae 31</b><br /><i>Irit Dvir, Aliza H. Stark, and Shoshana (Malis) Arad</i></p> <p>3.1 Introduction 31</p> <p>3.2 Marine Functional Foods and Supplements 32</p> <p>3.3 Microalgae 33</p> <p>3.4 Summary 37</p> <p><b>Part II Genomics 41</b></p> <p><b>4 Gene?]Diet Interaction and Weight Management 43</b><br /><i>Lu Qi</i></p> <p>4.1 Introduction 43</p> <p>4.2 Diet and Lifestyle Modifications in Weight Management 44</p> <p>4.3 The Role of Genetic Factors in Determining Body Weight and Weight Loss 44</p> <p>4.4 Gene-Diet Interactions on Body Weight and Risk of Obesity 46</p> <p>4.5 Gene-Diet Interactions on Weight Loss in Randomized Clinical Trials 47</p> <p>4.6 Gene?]Diet Interactions on Weight Maintenance 48</p> <p>4.7 Personalized Weight Management through Diet and Lifestyle Modifications 49</p> <p>4.8 Summary and Concluding Remarks 50</p> <p><b>5 NutrimiRomics: The Promise of a New Discipline in Nutrigenomics 53</b><br /><i>Amitava Das and Chandan K. Sen</i></p> <p>5.1 Introduction 53</p> <p>5.2 miRomics: A New Cornerstone 56</p> <p>5.3 Nutrigenomics and miR 57</p> <p><b>6 Genomics as a Tool to Characterize Anti?]inflammatory Nutraceuticals 61</b><br /><i>Amitava Das, Scott Chaffee, and Sashwati Roy</i></p> <p>6.1 Chronic Inflammation in Disease 61</p> <p>6.2 Nutraceuticals in the Management of Chronic Inflammation 64</p> <p>6.3 GeneChipTM as a Tool to Characterize the Anti?]Inflammatory Properties of Nutraceuticals 65</p> <p><b>7 Nutrigenomics, Inflammaging, and Osteoarthritis: A Review 71</b><br /><i>Ali Mobasheri, Richard Barrett-Jolley, Caroline A. Staunton, Chris Ford, and Yves Henrotin</i></p> <p>7.1 Introduction 71</p> <p>7.2 Osteoarthritis (OA) 72</p> <p>7.3 Antioxidants and the Inflammatory Microenvironment 73</p> <p>7.4 Inflammaging 75</p> <p>7.5 Nutrigenomics 76</p> <p>7.6 Muscle Inflammation in OA 77</p> <p>7.7 Conclusions 80</p> <p><b>8 Genetic Basis of Anti-Inflammatory Properties of Boswellia Extracts 85</b><br /><i>Golakoti Trimurtulu, Chandan K. Sen, Alluri V. Krishnaraju, Kiran Bhupathiraju, and Krishanu Sengupta</i></p> <p>8.1 Introduction 85</p> <p>8.2 Boswellia serrata 86</p> <p>8.3 Mechanism of Action 87</p> <p>8.4 Development of 5-LOXIN (BE-30) 87</p> <p>8.5 Gene Chip Probe Array Analysis 88</p> <p>8.6 Proteomics 89</p> <p>8.7 Molecular Basis of Anti-Inflammatory Properties of 5-LOXIN 95</p> <p>8.8 In vivo Studies 96</p> <p>8.9 Safety of 5-LOXIN 96</p> <p>8.10 Clinical Efficacy of 5-LOXIN in the Management of Osteoarthritis 97</p> <p>8.11 An Advanced 5-LOXIN: Aflapin 99</p> <p>8.12 Conclusion 100</p> <p><b>9 Cancer Chemopreventive Phytochemicals Targeting NF-κB and Nrf2 Signaling Pathways 102</b><br /><i>Hye-Kyung Na and Young-Joon Surh</i></p> <p>9.1 Introduction 102</p> <p>9.2 Molecular-Based Cancer Chemoprevention 104</p> <p>9.3 Nuclear Factor-Kappa B (NF-κB) 105</p> <p>9.4 Nrf2 108</p> <p>9.5 Interplay/Crosstalk between Nrf2 and NF?]κB Signaling Pathways 114</p> <p>9.6 Conclusion 115</p> <p><b>10 The Beneficial Health Effects of Fucoxanthin 122</b><br /><i>Kazuo Miyashita and Masashi Hosokawa</i></p> <p>10.1 Introduction 122</p> <p>10.2 The Beneficial Health Effects of Carotenoids as Antioxidants 124</p> <p>10.3 Anticancer Activity of Fucoxanthin 124</p> <p>10.4 Anti-Obesity Effects of Fucoxanthin 126</p> <p>10.5 Anti-Diabetic Effects of Fucoxanthin 127</p> <p>10.6 Conclusion 130</p> <p><b>11 Nutrition, Genomics, and Human Health: A Complex Mechanism for Wellness 135</b><br /><i>Okezie I. Aruoma</i></p> <p>11.1 Introduction 135</p> <p>11.2 Nutrition Sciences and Clinical Applications in Nutritional Genomics 136</p> <p><b>12 Application of Genomics and Bioinformatics Analysis in Exploratory Study of Functional Foods 140</b><br /><i>Kohsuke Hayamizu and Aiko Manji</i></p> <p>12.1 Introduction 140</p> <p>12.2 Analysis Tools 141</p> <p>12.3 Interpretation Tools 142</p> <p>12.4 Application Example of Kale (Brassica oleracea L. Var Acephala DC) 143</p> <p>12.5 Conclusion 148</p> <p><b>13 Omics Analysis and Databases for Plant Science 150</b><br /><i>Masaaki Kobayashi, Hajime Ohyanagi, and Kentaro Yano</i></p> <p>13.1 Introduction 150</p> <p>13.2 NGS Technologies and Data Processing 151</p> <p>13.3 De novo Plant Genome Assembly by NGS 151</p> <p>13.4 Plant Genome Resequencing by NGS 153</p> <p>13.5 Plant Transcriptome Analysis by NGS 154</p> <p>13.6 Plant Genome and Annotation Databases 154</p> <p>13.7 Plant Omics Databases 155</p> <p>13.8 Conclusion 156</p> <p><b>14 Synergistic Plant Genomics and Molecular Breeding Approaches for Ensuring Food Security 160</b><br /><i>Shouvik Das and Swarup K. Parida</i></p> <p>14.1 Introduction 160</p> <p>14.2 Plant Genomics, Transcriptomics, Proteomics, and Metabolomics Resources 161</p> <p>14.3 Molecular Markers in Plant Genome Analysis 163</p> <p>14.4 Identification of Functionally Relevant Molecular Tags Governing Agronomic Traits 167</p> <p>14.5 Genomics?]Assisted Crop Improvement 170</p> <p><b>15 Combinatorial Approaches Utilizing Nutraceuticals in Cancer Chemoprevention and Therapy: A Complementary Shift with Promising Acuity 185</b><br /><i>Madhulika Singh and Yogeshwer Shukla</i></p> <p>15.1 Introduction 185</p> <p>15.2 Nutraceuticals 187</p> <p>15.3 Nutraceuticals and Key Events in Cancer Development 189</p> <p>15.4 Nutraceuticals in Combinatorial Therapy of Human Cancer: A Pledge of the Future 191</p> <p>15.5 Curcumin: Potential for Combination Therapy 195</p> <p>15.6 Resveratrol: Potential for Combination Therapy 199</p> <p>15.7 Lycopene (a Carotenoid): Potential for Combinations Therapy 202</p> <p>15.8 Soy Nutraceuticals: Potential for Combination Therapy 203</p> <p>15.9 Tea Polyphenols Potential for Combinatorial Therapy 204</p> <p>15.10 D-Limonene: Potential for Combination Therapy 207</p> <p>15.12 Conclusion 208</p> <p><b>16 Nutrigenomic Approaches to Understanding the Transcriptional and Metabolic Responses of Phytochemicals to Diet-Induced Obesity and its Complications 218</b><br /><i>Myung-Sook Choi and Eun-Young Kwon</i></p> <p>16.1 Introduction 218</p> <p>16.2 Nutrigenomics 219</p> <p>16.3 Obesity and Cardiometabolic Syndrome 222</p> <p>16.4 Anti-Obesity Action of Luteolin 225</p> <p>16.5 Conclusion 226</p> <p><b>17 Going Beyond the Current Native Nutritional Food Through the Integration of the Omic Data in the Post?]Genomic Era: A Study in (Resistant) Starch Systems Biology 230</b><br /><i>Treenut Saithong and Saowalak Kalapanulak</i></p> <p>17.1 Introduction 230</p> <p>17.2 Starch and its Yield Improvement in Plants 231</p> <p>17.3 An Extension of the (Resistant) Starch Yield Improvement Research on the Systems Biology Regime: Integration of the Omic Data from the Post-Genomic Technology 233</p> <p><b>Part III Proteomics 243</b></p> <p><b>18 Proteomics and Nutrition Research: An Overview 245</b><br /><i>Arun K. Tewari, Sudhasri Mohanty, and Sashwati Roy</i></p> <p>18.1 Introduction 245</p> <p>18.2 Proteomics 245</p> <p>18.3 Nutrition and Proteins 246</p> <p>18.4 Nutritional Biomarkers 248</p> <p>18.5 Nutritional Bioactives 248</p> <p>18.6 Diet-Based Proteomics Application to Animal Products (Livestock Applications) 249</p> <p>18.7 Proteomics and Food Safety 249</p> <p>18.8 Conclusion 249</p> <p>18.9 Significance 250</p> <p><b>19 Proteomics Analysis for the Functionality of Toona sinensis 253</b><br /><i>Sue-Joan Chang and Chun-Yung Huang</i></p> <p>19.1 Introduction 253</p> <p>19.2 Toona sinensis 253</p> <p>19.3 TSLs Regulate Functions of Testes/Spermatozoa 254</p> <p>19.4 TSLs Regulate Liver Metabolism 257</p> <p>19.5 TSL as a Novel Antioxidant 261</p> <p>19.6 Possible Active Compounds in TSL Extracts 261</p> <p>19.7 Conclusion 261</p> <p><b>20 Proteomic Approaches to Identify Novel Therapeutics and Nutraceuticals from Filamentous Fungi: Prospects and Challenges 265</b><br /><i>Samudra Prosad Banik, Suman Khowala, Chiranjib Pal, and Soumya Mukherjee</i></p> <p>20.1 Introduction 265</p> <p>20.2 Mushroom Derived Immunomodulators and their Target Cells in the Immune System 266</p> <p>20.3 Mushroom Derived Metabolites in Treating Cancer 271</p> <p>20.4 Mushroom Derived Metabolites in Infectious Diseases 271</p> <p>20.5 Fungal Enzymes as Therapeutics and Dietary Supplements 274</p> <p>20.6 Identification and Characterization of Mushroom Derived Bioactive Therapeutics 275</p> <p>20.7 Challenges in Intracellular Proteome Preparation 279</p> <p>20.8 Challenges in Extracellular Proteome Preparation 279</p> <p>20.9 New Generation MS Technologies to Track the Dynamic Proteome 280</p> <p>20.10 Glycoproteomics: A New Arsenal in the Proteomic Toolbox 280</p> <p>20.11 Glycoproteomics of Filamentous Fungi 281</p> <p>20.12 High?]Throughput Approaches to Decipher Fungal Glycan Structures 282</p> <p>20.13 Challenges in MS Studies of Glycans/Glycopeptides 284</p> <p>20.14 Optimized MS Instrumentation for Glycan Analysis 284</p> <p>20.15 Tandem Mass Spectrometry 285</p> <p>20.16 Bioinformatics for Glycoproteomics: Hitting Databases with MS Peaks 285</p> <p>20.17 Predicting Glycan Structures with Computational Tools 286</p> <p>20.18 Concluding Remarks: The Road Ahead 287</p> <p><b>21 Proteomics and Metaproteomics for Studying Probiotic Activity 296</b><br /><i>Rosa Anna Siciliano and Maria Fiorella Mazzeo</i></p> <p>21.1 Introduction 296</p> <p>21.2 Molecular Mechanisms of Probiotic Action as Studied by Proteomics 297</p> <p>21.3 Probiotics and Prebiotics 299</p> <p>21.4 Investigation on Human Microbiota Dynamics by Proteomics 300</p> <p>21.5 Concluding Remarks and Future Directions 301</p> <p><b>22 Proteomics Approach to Assess the Potency of Dietary Grape Seed Proanthocyanidins and Dimeric Procyanidin B2 304</b><br /><i>Hai-qing Gao, Bao-ying Li, Mei Cheng, Xiao-li Li, Fei Yu, and Zhen Zhang</i></p> <p>22.1 Chemoprotective Properties of GSPs 305</p> <p>22.2 Proteomic Platform 309</p> <p>22.3 Proteomics Analysis of the Actions of GSPs 311</p> <p>22.4 Functional Confirmation of Proteins 317</p> <p>22.5 Future Perspectives 317</p> <p><b>23 Genomic and Proteomic Approaches to Lung Transplantation: Identifying Relevant Biomarkers to Improve Surgical Outcome 321</b><br /><i>John Noel, Ronald Carnemola, and Shampa Chatterjee</i></p> <p>23.1 Introduction 321</p> <p>23.2 Lung Transplantation 322</p> <p>23.3 Challenges of Lung Transplantation 323</p> <p>23.4 Inflammatory Biomarkers with Lung Rejection: Markers of Inflammation Signaling such as CAMs, Chemokines, and Cytokines and their Status with Transplants 324</p> <p>23.5 Microarray Technology to Identify Transplant Rejection Biomarkers 324</p> <p>23.6 Challenges and Future Directions 325</p> <p><b>24 Proteomics in Understanding the Molecular Basis of Phytochemicals for Health 328</b><br /><i>Jung Yeon Kwon, Sanguine Byun, and Ki Won Lee</i></p> <p>24.1 Introduction 328</p> <p>24.2 Proteomics in Phytochemical Research in Cancer Prevention 329</p> <p>24.3 Perspectives 331</p> <p>24.4 Proteomics in Phytochemical Research for Metabolic Diseases 333</p> <p>24.5 Proteomics for Neuroprotective Phytochemicals 333</p> <p>24.6 Proteomics for Phytochemicals with Other Functions for Health Benefits 334</p> <p>24.7 Conclusions 334</p> <p><b>25 Genomics/Proteomics of NEXT-II, a Novel Water?]Soluble, Undenatured Type II Collagen in Joint Health Care 338</b><br /><i>Orie Yoshinari, Hiroyoshi Moriyama, Manashi Bagchi, and Debasis Bagchi</i></p> <p>25.1 Introduction 338</p> <p>25.2 Mechanism of RA 339</p> <p>25.3 About NEXT-II 340</p> <p>25.4 Hypothesized Mechanism of NEXT-II 342</p> <p>25.5 Future Perspectives 343</p> <p>25.6 Conclusion 343</p> <p><b>Part IV Metabolomics 347</b></p> <p><b>26 Harnessing Metabolic Diversity for Nutraceutical Plant Breeding 349</b><br /><i>Ashish Saxena and Vicki L. Schlegel</i></p> <p>26.1 What is Metabolomics? 349</p> <p>26.2 Nutraceuticals 350</p> <p>26.3 Importance of Secondary Metabolites 350</p> <p>26.4 Complementing Plant Breeding with "Omics" 351</p> <p>26.5 Nutraceutical Breeding 352</p> <p>26.6 Crop Quality 353</p> <p>26.7 Metabolomics and Plant Stresses 353</p> <p>26.8 Food Safety 354</p> <p>26.9 Future 354</p> <p><b>27 Metabolomics and Fetal-Neonatal Nutrition: An Overview 357</b><br /><i>Angelica Dessì, Flaminia Cesare Marincola, and Vassilios Fanos</i></p> <p>27.1 Introduction 357</p> <p>27.2 IUGR and LGA: Fetal Programming 358</p> <p>27.3 Metabolomics in Nutritional Research 358</p> <p>27.4 Nutrimetabolomics in Animal Models 360</p> <p>27.5 Nutrimetabolomics in Human Models 361</p> <p>27.6 Conclusions 362</p> <p><b>28 Metabolomics, Bioactives, and Cancer 365</b><br /><i>Shannon R. Sweeney, John DiGiovanni, and Stefano Tiziani</i></p> <p>28.1 Introduction 365</p> <p>28.2 Nuclear Magnetic Resonance Spectroscopy 366</p> <p>28.3 Mass Spectrometry 367</p> <p>28.4 Application of Scientific Computing and Data Analysis 368</p> <p>28.5 Metabolomics, Bioactive Food Components, and Cancer 369</p> <p>28.6 Future Perspectives 373</p> <p><b>29 NMR?]Based Metabolomics of Foods 379</b><br /><i>Takuya Miyakawa, Tingfu Liang, and Masaru Tanokura</i></p> <p>29.1 Introduction 379</p> <p>29.2 Principal Aspects of NMR in Food Analyses 380</p> <p>29.3 NMR Techniques Applied to Food Metabolomics 380</p> <p>29.4 Monitoring of Metabolic Changes in Food Processing Using Quantitative NMR 381</p> <p>29.5 NMR Profiling Based on Multivariate Analyses 382</p> <p>29.6 Conclusion 386</p> <p><b>30 Cancer Chemopreventive Effect of Curcumin through Suppressing Metabolic Crosstalk between Components in the Tumor Microenvironment 388</b><br /><i>Dong Hoon Suh and Yong-Sang Song</i></p> <p>30.1 Introduction 388</p> <p>30.2 Cancer Metabolism 389</p> <p>30.3 Metabolic Onco-Targets of Curcumin in the Tumor Microenvironment 391</p> <p>30.4 Clinical Trials of Curcumin as Metabolic Modulators in Cancer 393</p> <p>30.5 Conclusions and Future Perspectives 393</p> <p><b>31 Metabolomics of Green Tea 397</b><br /><i>Yoshinori Fujimura and Hirofumi Tachibana</i></p> <p>31.1 Introduction 397</p> <p>31.2 Metabolic Profiling 398</p> <p>31.3 Tea Chemical Composition 401</p> <p>31.4 Metabolic Responses to Tea Consumption 402</p> <p>31.5 Biotransformation of Dietary Tea Components 403</p> <p>31.6 Conclusion 404</p> <p><b>Part V Epigenetics 407</b></p> <p><b>32 The Potential Epigenetic Modulation of Diabetes Influenced by Nutritional Exposures In Utero 409</b><br /><i>Jie Yan and Huixia Yang</i></p> <p>32.1 Introduction 409</p> <p>32.2 Insulin Resistance 409</p> <p>32.3 Skeletal Muscle 410</p> <p>32.4 Type 2 Diabetes 410</p> <p>32.5 Influence of High?]Fat Diet 410</p> <p>32.6 Obesity 410</p> <p>32.7 Intrauterine Growth Restriction (IUGR) 411</p> <p>32.8 Environmental Factors and Epigenetic Modifications 411</p> <p>32.9 Mitochondria and Energy Homeostasis 413</p> <p>32.10 Diabetes Progression 413</p> <p>32.11 Conclusion 414</p> <p><b>33 The Time has Come (and the Tools are Available) for Nutriepigenomics Studies 418</b><br /><i>Pearlly S. Yan</i></p> <p>33.1 Introduction: Great Strides in Deciphering Methylomes 418</p> <p>33.2 Recent Findings in Methylome Research and their Implications for Future Nutriepigenomic Research 419</p> <p>33.3 Strategies for Identifying and Optimizing a Small Number of Promising Methylation Markers 419</p> <p>33.4 Validation of Methylation Markers Performance in Large Cohorts using Highly Targeted Assays 421</p> <p>33.5 Summaries 422</p> <p><b>34 Natural Phytochemicals as Epigenetic Modulators 424</b><br /><i>Gauri Deb and Sanjay Gupta</i></p> <p>34.1 Introduction 424</p> <p>34.2 Epigenetic Mechanisms in Mammals 425</p> <p>34.3 Natural Phytochemicals and Epigenetic Mechanisms 427</p> <p>34.4 Conclusion and Future Perspectives 433</p> <p><b>Part VI Peptidomics 441</b></p> <p><b>35 Detection and Identification of Food-Derived Peptides in Human Blood: Food-Derived Short Chain Peptidomes in Human Blood 443</b><br /><i>Kenji Sato and Daisuke Urado</i></p> <p>35.1 Introduction 443</p> <p>35.2 Detection of Apparent Bioactive Peptides in Human Blood 444</p> <p>35.3 Identification of Food?]Derived Peptides in Human Blood 444</p> <p>35.4 Future Prospects 448</p> <p><b>Part VII Nutrigenomics and Human Health 453</b></p> <p><b>36 Use of Omics Approaches for Developing Immune-Modulatory and Anti-Inflammatory Phytomedicines 455</b><br /><i>Shu-Yi Yin, Pradeep M. S., and Ning-Sun Yang</i></p> <p>36.1 Introduction 455</p> <p>36.2 Transcriptomics Study in Medicinal Plant Research 458</p> <p>36.3 Proteomics Studies on Research into Medicinal Plants 462</p> <p>36.4 Metabolomics Study on the Research of Medicinal Plants 463</p> <p>36.5 Lipidomics Study on the Research of Medicinal Plants 466</p> <p>36.6 Comparative and Bioinformatics Tools for Omics Studies 466</p> <p>36.7 Challenges and Perspectives 469</p> <p><b>37 The Application of Algae for Cosmeceuticals in the Omics Age 476</b><br /><i>Nyuk Ling Ma, Su Shiung Lam, and Rahman Zaidah</i></p> <p>37.1 Introduction 476</p> <p>37.2 Metabolomics 477</p> <p>37.3 Genomics 477</p> <p>37.4 Proteomics 481</p> <p>37.5 Conclusion 483</p> <p><b>38 Gut Microbiome and Functional Foods: Health Benefits and Safety Challenges 489</b><br /><i>Abhai Kumar, Smita Singh, and Anil Kumar Chauhan</i></p> <p>38.1 Introduction 489</p> <p>38.2 Microbiome Symbiosis 490</p> <p>38.3 Functional Food Intervention of Gut Microbiota 492</p> <p>38.4 Types of Functional Foods and Their Effects 493</p> <p>38.5 Regulations and Safety of Functional Food 497</p> <p>38.6 Safety Challenges of Functional Food 499</p> <p>38.7 Functional Foods and Nutrigenomics 499</p> <p>38.8 Conclusions 500</p> <p><b>39 An Overview on Germinated Brown Rice and its Nutrigenomic Implications 504</b><br /><i>Mustapha Umar Imam and Maznah Ismail</i></p> <p>39.1 Diet and Health: The Role of Staple Foods and Nutrigenomic Implications 504</p> <p>39.2 Health Implications of White Rice and Brown Rice Consumption 506</p> <p>39.3 Germinated Brown Rice: Bioactives, Functional Effects, and Mechanistic Insights 506</p> <p>39.4 Conclusions 513</p> <p>39.5 Future Considerations 513</p> <p><b>40 Novel Chromium (III) Supplements and Nutrigenomics Exploration: A Review 518</b><br /><i>Sreejayan Nair, Anand Swaroop, and Debasis Bagchi</i></p> <p>40.1 Introduction 518</p> <p>40.2 Trivalent Chromium, Insulin Regulation, and Signaling 519</p> <p>40.3 Regulatory Pathways 519</p> <p>40.4 MicroRNAs 522</p> <p>40.5 Summary and Conclusions 522</p> <p><b>Part VIII Transcriptomics 525</b></p> <p><b>41 Transcriptomics of Plants Interacting with Pathogens and Beneficial Microbes 527</b><br /><i>Hooman Mirzaee, Louise Shuey, and Peer M. Schenk</i></p> <p>41.1 Introduction 527</p> <p>41.2 Plant Defense Responses against Pathogens 528</p> <p>41.3 Transcriptomics during Plant?]Pathogen Interactions 529</p> <p>41.4 Plant Responses during Interactions with Beneficial Microbes 530</p> <p>41.5 Transcriptomics during Beneficial Plant?]Microbe Interactions 531</p> <p>41.6 Knowledge on Modulation of Host Immunity by Pathogens and Beneficial Microbes May Lead to New Resistance Strategies 532</p> <p><b>42 Transcriptomic and Metabolomic Profiling of Chicken Adipose Tissue: An Overview 537</b><br /><i>Brynn H. Voy, Stephen Dearth, and Shawn R. Campagna</i></p> <p>42.1 Introduction 537</p> <p>42.2 Chicken as a Model Organism 537</p> <p>42.3 Chicken Genome and Genetic Diversity 538</p> <p>42.4 Chicken as a Model for Studies of Adipose Biology and Obesity 538</p> <p>42.5 Natural and Selected Models of Differential Fatness 538</p> <p>42.6 Transcriptomics and Metabolomics as Tools for the Studies of Adipose Biology in Chicken 539</p> <p>42.7 Insight into Control of Adipose Tissue Growth and Metabolism in Chickens from Transcriptomics and Metabolomics 541</p> <p>42.8 Conclusions and Future Directions 543</p> <p><b>43 Nutritional Transcriptomics: An Overview 545</b><br /><i>M. R. Noori?]Daloii and A. Nejatizadeh</i></p> <p>43.1 Introduction 545</p> <p>43.2 Molecular Nutrition 546</p> <p>43.3 From Nutrients to Genes Expression Profiling 547</p> <p>43.4 Biological Actions of Nutrients 548</p> <p>43.5 Nutritional Transcriptomics 548</p> <p>43.6 Transcriptomic Technologies 549</p> <p>43.7 Transcriptomics and Development of New Nutritional Biomarkers 552</p> <p>43.8 The Micronutrient Genomics Project 553</p> <p>43.9 Transcriptomics in Nutrition Research 553</p> <p>43.10 Perspectives 554</p> <p><b>44 Dissecting Transcriptomes of Cyanobacteria for Novel Metabolite Production 557</b><br /><i>Sucheta Tripathy, Deeksha Singh, Mathumalar C., and Abhishek Das</i></p> <p>44.1 Introduction 557</p> <p>44.2 Phylogenetic Relationships in Cyanobacteria 558</p> <p>44.3 Genomic Studies of Cyanobacteria 560</p> <p>44.4 Plasmids in Cyanobacteria 562</p> <p>44.5 Dissecting Transcriptomes of Cyanobacteria 563</p> <p>44.6 Conclusion 571</p> <p><b>45 Inflammation, Nutrition, and Transcriptomics 573</b><br /><i>Gareth Marlow and Lynnette R. Ferguson</i></p> <p>45.1 Introduction 573</p> <p>45.2 Inflammation 573</p> <p>45.3 Nutrition 575</p> <p>45.4 Nutrigenomics 575</p> <p>45.5 Dietary Factors and Inflammation 576</p> <p>45.6 Transcriptomics 577</p> <p>45.7 Conclusions 578</p> <p><b>46 Transcriptomics and Nutrition in Mammalians 581</b><br /><i>Carmen Arnal, Jose M. Lou-Bonafonte, María V. Martínez?]Gracia, María J. Rodríguez-Yoldi, and Jesús Osada</i></p> <p>46.1 Introduction 581</p> <p>46.2 Adipocyte Transcriptome 584</p> <p>46.3 Intestinal Transcriptome 587</p> <p>46.4 Hepatic Transcriptome 590</p> <p>46.5 Muscular Transcriptome 599</p> <p>46.6 Conclusion 601</p> <p><b>Part IX Nutriethics 609</b></p> <p><b>47 Nutritional Sciences at the Intersection of Omics Disciplines and Ethics: A Focus on Nutritional Doping 611</b><br /><i>Nicola Luigi Bragazzi</i></p> <p>47.1 Introduction 611</p> <p>47.2 Nutrigenomics and Nutriproteomics 612</p> <p>47.3 Sports Nutriproteogenomics 614</p> <p>47.4 Nutritional and Sports Ethics 615</p> <p>47.5 Conclusions 617</p> <p><b>Part X Nanotechnology 623</b></p> <p><b>48 Current Relevant Nanotechnologies for the Food Industry 625</b><br /><i>Kelvii Wei Guo</i></p> <p>48.1 Introduction 625</p> <p>48.2 Nanotechnology in Food Industry 626</p> <p>48.3 Natural Biopolymers 630</p> <p>48.4 Nanotechnology for Food Packaging 630</p> <p>48.5 Outstanding State-of-the-Art Issues 633</p> <p>48.6 Conclusion 633</p> <p>References 634</p> <p>Index 637</p>
<p><b>Debasis Bagchi</b>, Ph.D., MACN, CNS, MAIChE<br />University of Houston College of Pharmacy, Houston, TX, USA</p> <p><b>Anand Swaroop</b>, Ph.D.<br />Cepham Inc., Piscataway, NJ, USA</p> <p><b>Manashi Bagchi</b>, Ph.D., FACN<br />Cepham Inc., Piscataway, NJ, USA</p>
<p>Functional foods and nutraceuticals have received considerable interest in the past decade, largely due to increasing consumer awareness of the health benefits associated with food. Diet in human health is no longer a matter of simple nutrition: consumers are more proactive and increasingly interested in the health benefits of functional foods and their role in the prevention of illness and chronic conditions. This, combined with an aging population that focuses not only on longevity but also quality of life, has created a market for functional foods and nutraceuticals.</p> <p>A fully updated and revised second edition, <i>Genomics, Proteomics and Metabolomics in Nutraceuticals and Functional Foods</i> reflects the recent upsurge in “omics” technologies and features 48 chapters that cover topics including genomics, proteomics, metabolomics, epigenetics, peptidomics, nutrigenomics and human health, transcriptomics, nutri-ethics, and nanotechnology. This cutting-edge volume, written by a panel of experts from around the globe, reviews the latest developments in the field with an emphasis on the application of these novel technologies to functional foods and nutraceuticals.</p> <p><b>Also available from Wiley</b></p> <p><i>Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences</i><br />Edited by Debasis Bagchi, Manashi Bagchi, Hiroyoshi Moriyama, Fereidoon Shahidi<br />ISBN: 978-0-470-67037-8</p> <p><i>Antioxidants and Functional Components in Aquatic Foods</i><br />Edited by Hordur G. Kristinsson<br />ISBN: 978-0-8138-1367-7</p> <p><i>Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients</i><br />Edited by Cristina Sabliov, Hongda Chen, Rickey Yada<br />ISBN: 978-1-118-46220-1</p>

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €