Details

Gas Turbine Propulsion Systems


Gas Turbine Propulsion Systems


Aerospace Series, Band 49 1. Aufl.

von: Bernie MacIsaac, Roy Langton, Peter Belobaba, Jonathan Cooper, Allan Seabridge

106,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.07.2011
ISBN/EAN: 9781119976141
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Major changes in gas turbine design, especially in the design and complexity of engine control systems, have led to the need for an up to date, systems-oriented treatment of gas turbine propulsion. Pulling together all of the systems and subsystems associated with gas turbine engines in aircraft and marine applications, <i>Gas Turbine Propulsion Systems</i> discusses the latest developments in the field. <p>Chapters include aircraft engine systems functional overview, marine propulsion systems, fuel control and power management systems, engine lubrication and scavenging systems, nacelle and ancillary systems, engine certification, unique engine systems and future developments in gas turbine propulsion systems. The authors also present examples of specific engines and applications.</p> <p>Written from a wholly practical perspective by two authors with long careers in the gas turbine & fuel systems industries, <i>Gas Turbine Propulsion Systems</i> provides an excellent resource for project and program managers in the gas turbine engine community, the aircraft OEM community, and tier 1 equipment suppliers in Europe and the United States. It also offers a useful reference for students and researchers in aerospace engineering.</p>
<b>About the Authors x</b> <p><b>Preface xii</b></p> <p><b>Series Preface xiv</b></p> <p><b>Acknowledgements xvi</b></p> <p><b>List of Acronyms xviii</b></p> <p><b>1 Introduction 1</b></p> <p>1.1 Gas Turbine Concepts 1</p> <p>1.2 Gas Turbine Systems Overview 6</p> <p>References 9</p> <p><b>2 Basic Gas Turbine Operation 11</b></p> <p>2.1 Turbojet Engine Performance 11</p> <p><i>2.1.1 Engine Performance Characteristics</i> 18</p> <p><i>2.1.2 Compressor Surge Control</i> 22</p> <p><i>2.1.3 Variable Nozzles</i> 28</p> <p>2.2 Concluding Commentary 35</p> <p>References 35</p> <p><b>3 Gas Generator Fuel Control Systems 37</b></p> <p>3.1 Basic Concepts of the Gas Generator Fuel Control System 37</p> <p>3.2 Gas Generator Control Modes 40</p> <p><i>3.2.1 Fuel Schedule Definition</i> 42</p> <p><i>3.2.2 Overall Gas Generator Control Logic</i> 45</p> <p><i>3.2.3 Speed Governing with Acceleration and Deceleration Limiting</i> 46</p> <p><i>3.2.4 Compressor Geometry Control</i> 62</p> <p><i>3.2.5 Turbine Gas Temperature Limiting</i> 63</p> <p><i>3.2.6 Overspeed Limiting</i> 65</p> <p>3.3 Fuel System Design and Implementation 65</p> <p><i>3.3.1 A Historical Review of Fuel Control Technologies</i> 67</p> <p><i>3.3.2 Fuel Pumping and Metering Systems</i> 72</p> <p>3.4 The Concept of Error Budgets in Control Design 77</p> <p><i>3.4.1 Measurement Uncertainty</i> 79</p> <p><i>3.4.2 Sources of Error</i> 80</p> <p>3.5 Installation, Qualification, and Certification Considerations 84</p> <p><i>3.5.1 Fuel Handling Equipment</i> 84</p> <p><i>3.5.2 Full-authority Digital Engine Controls (FADEC)</i> 86</p> <p>3.6 Concluding Commentary 88</p> <p>References 88</p> <p><b>4 Thrust Engine Control and Augmentation Systems 89</b></p> <p>4.1 Thrust Engine Concepts 89</p> <p>4.2 Thrust Management and Control 92</p> <p>4.3 Thrust Augmentation 95</p> <p><i>4.3.1 Water Injection</i> 96</p> <p><i>4.3.2 Afterburning</i> 97</p> <p>Reference 103</p> <p><b>5 Shaft Power Propulsion Control Systems 105</b></p> <p>5.1 Turboprop Applications 110</p> <p><i>5.1.1 The Single-shaft Engine</i> 110</p> <p><i>5.1.2 The Free Turbine Turboprop</i> 112</p> <p>5.2 Turboshaft Engine Applications 119</p> <p>Reference 130</p> <p><b>6 Engine Inlet, Exhaust, and Nacelle Systems 131</b></p> <p>6.1 Subsonic Engine Air Inlets 131</p> <p><i>6.1.1 Basic Principles</i> 132</p> <p><i>6.1.2 Turboprop Inlet Configurations</i> 133</p> <p><i>6.1.3 Inlet Filtration Systems</i> 135</p> <p>6.2 Supersonic Engine Air Inlets 136</p> <p><i>6.2.1 Oblique Shockwaves</i> 137</p> <p><i>6.2.2 Combined Oblique/Normal Shock Pressure Recovery Systems</i> 139</p> <p><i>6.2.3 Supersonic Inlet Control</i> 141</p> <p><i>6.2.4 Overall System Development and Operation</i> 143</p> <p><i>6.2.5 Concorde Air Inlet Control System (AICS) Example</i> 144</p> <p>6.3 Inlet Anti-icing 150</p> <p><i>6.3.1 Bleed-air Anti-icing Systems</i> 151</p> <p><i>6.3.2 Electrical Anti-icing Systems</i> 151</p> <p>6.4 Exhaust Systems 151</p> <p><i>6.4.1 Thrust Reversing Systems</i> 152</p> <p><i>6.4.2 Thrust Vectoring Concepts</i> 155</p> <p>References 160</p> <p><b>7 Lubrication Systems 161</b></p> <p>7.1 Basic Principles 161</p> <p>7.2 Lubrication System Operation 169</p> <p><i>7.2.1 System Design Concept</i> 170</p> <p><i>7.2.2 System Design Considerations</i> 174</p> <p><i>7.2.3 System Monitoring</i> 174</p> <p><i>7.2.4 Ceramic Bearings</i> 179</p> <p>References 179</p> <p><b>8 Power Extraction and Starting Systems 181</b></p> <p>8.1 Mechanical Power Extraction 181</p> <p><i>8.1.1 Fuel Control Systems Equipment</i> 181</p> <p><i>8.1.2 Hydraulic Power Extraction</i> 183</p> <p><i>8.1.3 Lubrication and Scavenge Pumps</i> 184</p> <p><i>8.1.4 Electrical Power Generation</i> 184</p> <p>8.2 Engine Starting 187</p> <p>8.3 Bleed-air-powered Systems and Equipment 189</p> <p><i>8.3.1 Bleed-air-driven Pumps</i> 191</p> <p><i>8.3.2 Bleed Air for Environmental Control, Pressurization and Anti-icing Systems</i> 192</p> <p><i>8.3.3 Fuel Tank Inerting</i> 193</p> <p>References 194</p> <p><b>9 Marine Propulsion Systems 195</b></p> <p>9.1 Propulsion System Designation 197</p> <p>9.2 The Aero-derivative Gas Turbine Engine 198</p> <p>9.3 The Marine Environment 199</p> <p><i>9.3.1 Marine Propulsion Inlets</i> 200</p> <p><i>9.3.2 Marine Exhaust Systems</i> 203</p> <p><i>9.3.3 Marine Propellers</i> 204</p> <p>9.4 The Engine Enclosure 206</p> <p><i>9.4.1 The Engine Support System</i> 207</p> <p><i>9.4.2 Enclosure Air Handling</i> 208</p> <p><i>9.4.3 Enclosure Protection</i> 208</p> <p>9.5 Engine Ancillary Equipment 209</p> <p><i>9.5.1 Engine Starting System</i> 209</p> <p><i>9.5.2 Engine Lubrication System</i> 211</p> <p><i>9.5.3 Fuel Supply System</i> 212</p> <p>9.6 Marine Propulsion Control 214</p> <p><i>9.6.1 Ship Operations</i> 214</p> <p><i>9.6.2 Overall Propulsion Control</i> 217</p> <p><i>9.6.3 Propulsion System Monitoring</i> 219</p> <p><i>9.6.4 Propulsion System Controller</i> 222</p> <p><i>9.6.5 Propulsion System Sequencer</i> 224</p> <p>9.7 Concluding Commentary 224</p> <p>References 225</p> <p><b>10 Prognostics and Health Monitoring Systems 227</b></p> <p>10.1 Basic Concepts in Engine Operational Support Systems 229</p> <p><i>10.1.1 Material Life Limits</i> 229</p> <p><i>10.1.2 Performance-related Issues</i> 232</p> <p><i>10.1.3 Unscheduled Events</i> 234</p> <p>10.2 The Role of Design in Engine Maintenance 234</p> <p><i>10.2.1 Reliability</i> 235</p> <p><i>10.2.2 Maintainability</i> 237</p> <p><i>10.2.3 Availability</i> 239</p> <p><i>10.2.4 Failure Mode, Effects, and Criticality Analysis</i> 241</p> <p>10.3 Prognostics and Health Monitoring (PHM) 243</p> <p><i>10.3.1 The Concept of a Diagnostic Algorithm</i> 244</p> <p><i>10.3.2 Qualification of a Fault Indicator</i> 245</p> <p><i>10.3.3 The Element of Time in Diagnostics</i> 250</p> <p><i>10.3.4 Data Management Issues</i> 251</p> <p>References 255</p> <p><b>11 New and Future Gas Turbine Propulsion System Technologies 257</b></p> <p>11.1 Thermal Efficiency 257</p> <p>11.2 Improvements in Propulsive Efficiency 260</p> <p><i>11.2.1 The Pratt & Whitney PW1000G Geared Turbofan Engine</i> 261</p> <p><i>11.2.2 The CFM International Leap Engine</i> 264</p> <p><i>11.2.3 The Propfan Concept</i> 265</p> <p>11.3 Other Engine Technology Initiatives 268</p> <p><i>11.3.1 The Boeing 787 Bleedless Engine Concept</i> 268</p> <p><i>11.3.2 New Engine Systems Technologies</i> 271</p> <p><i>11.3.3 Emergency Power Generation</i> 276</p> <p><i>11.3.4 On-board Diagnostics</i> 277</p> <p>References 277</p> <p><b>Appendix A Compressor Stage Performance 279</b></p> <p>A.1 The Origin of Compressor Stage Characteristics 279</p> <p>A.2 Energy Transfer from Rotor to Air 281</p> <p>References 284</p> <p><b>Appendix B Estimation of Compressor Maps 285</b></p> <p>B.1 Design Point Analysis 288</p> <p>B.2 Stage Stacking Analysis 291</p> <p>References 293</p> <p><b>Appendix C Thermodynamic Modeling of Gas Turbines 295</b></p> <p>C.1 Linear Small-perturbation Modeling 295</p> <p><i>C.1.1 Rotor Dynamics</i> 296</p> <p><i>C.1.2 Rotor Dynamics with Pressure Term</i> 297</p> <p><i>C.1.3 Pressure Dynamics</i> 298</p> <p>C.2 Full-range Model: Extended Linear Approach 298</p> <p>C.3 Component-based Thermodynamic Models 299</p> <p><i>C.3.1 Inlet</i> 301</p> <p><i>C.3.2 Compressor</i> 302</p> <p><i>C.3.3 Combustor</i> 302</p> <p><i>C.3.4 Turbine</i> 304</p> <p><i>C.3.5 Jet Pipe</i> 305</p> <p><i>C.3.6 Nozzle</i> 306</p> <p><i>C.3.7 Rotor</i> 306</p> <p>References 306</p> <p><b>Appendix D Introduction to Classical Feedback Control 307</b></p> <p>D.1 Closing the Loop 307</p> <p>D.2 Block Diagrams and Transfer Functions 308</p> <p>D.3 The Concept of Stability 310</p> <p><i>D.3.1 The Rule for Stability</i> 310</p> <p>D.4 Frequency Response 311</p> <p><i>D.4.1 Calculating Frequency Response</i> 311</p> <p>D.5 Laplace Transforms 315</p> <p><i>D.5.1 Root Locus</i> 317</p> <p><i>D.5.2 Root Locus Construction Rules</i> 318</p> <p>Reference 321</p> <p><b>Index 323</b></p>
<p>“Highly recommended.  Upper-division undergraduates and above.” (<i>Choice</i>, 1 March 2012)</p>
<p><b>Bernie MacIsaac</b> is President and CEO of GasTOPS Ltd. in Ottawa, Canada.</p> <p><b>Roy Langton</b> has recently retired from his position as Vice-President, Engineering & Integrity at Parker Aerospace, where he was responsible for internal seminars & training into feedback control. He is now a technology consultant for Parker, and has also recently been appointed as an editor for the Wiley Aerospace Series.</p>
Major changes in gas turbine design, especially in the design and complexity of engine control systems, have led to the need for an up to date, systems-oriented treatment of gas turbine propulsion. Pulling together all of the systems and subsystems associated with gas turbine engines in aircraft and marine applications, <i>Gas Turbine Propulsion Systems</i> discusses the latest developments in the field. <p>Chapters include aircraft engine systems functional overview, marine propulsion systems, fuel control and power management systems, engine lubrication and scavenging systems, nacelle and ancillary systems, engine certification, unique engine systems and future developments in gas turbine propulsion systems. The authors also present examples of specific engines and applications.</p> <p>Written from a wholly practical perspective by two authors with long careers in the gas turbine & fuel systems industries, <i>Gas Turbine Propulsion Systems</i> provides an excellent resource for project and program managers in the gas turbine engine community, the aircraft OEM community, and tier 1 equipment suppliers in Europe and the United States. It also offers a useful reference for students and researchers in aerospace engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Computational Acoustics
Computational Acoustics
von: David R. Bergman
EPUB ebook
116,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €