Details

Fusion Plasma Physics


Fusion Plasma Physics


2. Aufl.

von: Weston M. Stacey

117,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.11.2012
ISBN/EAN: 9783527669547
Sprache: englisch
Anzahl Seiten: 666

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. <br> The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.<br>
<p><b>1 Basic Physics 1</b></p> <p>1.1 Fusion 1</p> <p>1.2 Plasma 7</p> <p>1.3 Coulomb Collisions 10</p> <p>1.4 Electromagnetic Theory 17</p> <p><b>2 Motion of Charged Particles 23</b></p> <p>2.1 Gyromotion and Drifts 23</p> <p>2.1.1 Gyromotion 23</p> <p>2.1.2 E B Drift 26</p> <p>2.1.3 Grad-B Drift 27</p> <p>2.1.4 Polarization Drift 29</p> <p>2.1.5 Curvature Drift 30</p> <p>2.2 Constants of the Motion 33</p> <p>2.2.1 Magnetic Moment 33</p> <p>2.2.2 Second Adiabatic Invariant* 34</p> <p>2.2.3 Canonical Angular Momentum 36</p> <p>2.3 Diamagnetism* 38</p> <p><b>3 Magnetic Confinement 43</b></p> <p>3.1 Confinement in Mirror Fields 43</p> <p>3.1.1 Simple Mirror 43</p> <p>3.1.2 Tandem Mirrors* 48</p> <p>3.2 Closed Toroidal Confinement Systems 51</p> <p>3.2.1 Confinement 51</p> <p>3.2.2 Flux Surfaces 55</p> <p>3.2.3 Trapped Particles 57</p> <p>3.2.4 Transport Losses 61</p> <p><b>4 Kinetic Theory 67</b></p> <p>4.1 Boltzmann and Vlasov Equations 68</p> <p>4.2 Drift Kinetic Approximation 68</p> <p>4.3 Fokker–Planck Theory of Collisions 71</p> <p>4.4 Plasma Resistivity 78</p> <p>4.5 Coulomb Collisional Energy Transfer 80</p> <p>4.6 Krook Collision Operators* 84</p> <p><b>5 Fluid Theory 87</b></p> <p>5.1 Moments Equations 87</p> <p>5.2 One-Fluid Model 91</p> <p>5.3 Magneto hydrodynamic Model 95</p> <p>5.4 Anisotropic Pressure Tensor Model* 98</p> <p>5.5 Strong Field, Transport Time Scale Ordering 100</p> <p><b>6 Plasma Equilibria 105</b></p> <p>6.1 General Properties 105</p> <p>6.2 Axisymmetric Toroidal Equilibria 107</p> <p>6.3 Large Aspect Ratio Tokamak Equilibria 113</p> <p>6.4 Safety Factor 119</p> <p>6.5 Shafranov Shift* 122</p> <p>6.6 Beta* 125</p> <p>6.7 Magnetic Field Diffusion and Flux Surface Evolution* 127</p> <p>6.8 Anisotropic Pressure Equilibria* 130</p> <p>6.9 Elongated Equilibria* 132</p> <p>6.9.1 Geometry 132</p> <p>6.9.2 Flux surface average 134</p> <p>6.9.3 Equivalent toroidal models 134</p> <p>6.9.4 Interpretation of thermal diffusivities from measured temperature gradients 136</p> <p>6.9.5 Prediction of poloidal distribution of conductive heat flux 137</p> <p>6.9.6 Mapping radial gradients to different poloidal locations 138</p> <p><b>7 Waves 141</b></p> <p>7.1 Waves in an Unmagnetized Plasma 141</p> <p>7.1.1 Electromagnetic Waves 141</p> <p>7.1.2 Ion Sound Waves 143</p> <p>7.2 Waves in a Uniformly Magnetized Plasma 144</p> <p>7.2.1 Electromagnetic Waves 144</p> <p>7.2.2 Shear Alfven Wave 147</p> <p>7.3 Langmuir Waves and Landau Damping 149</p> <p>7.4 Vlasov Theory of Plasma Waves* 152</p> <p>7.5 Electrostatic Waves* 158</p> <p><b>8 Instabilities 165</b></p> <p>8.1 Hydromagnetic Instabilities 168</p> <p>8.1.1 MHD Theory 169</p> <p>8.1.2 Chew–Goldberger–Low Theory 170</p> <p>8.1.3 Guiding Center Theory 172</p> <p>8.2 Energy Principle 175</p> <p>8.3 Pinch and Kink Instabilities 179</p> <p>8.4 Interchange (Flute) Instabilities 183</p> <p>8.5 Ballooning Instabilities 189</p> <p>8.6 Drift Wave Instabilities 193</p> <p>8.7 Resistive Tearing Instabilities* 196</p> <p>8.7.1 Slab Model 196</p> <p>8.7.2 MHD Regions 197</p> <p>8.7.3 Resistive Layer 199</p> <p>8.7.4 Magnetic Islands 200</p> <p>8.8 Kinetic Instabilities* 202</p> <p>8.8.1 Electrostatic Instabilities 202</p> <p>8.8.2 Collisionless Drift Waves 203</p> <p>8.8.3 Electron Temperature Gradient Instabilities 205</p> <p>8.8.4 Ion Temperature Gradient Instabilities 206</p> <p>8.8.5 Loss–Cone and Drift–Cone Instabilities 207</p> <p>8.9 Sawtooth Oscillations* 211</p> <p><b>9 Neoclassical Transport 215</b></p> <p>9.1 Collisional Transport Mechanisms 215</p> <p>9.1.1 Particle Fluxes 215</p> <p>9.1.2 Heat Fluxes 217</p> <p>9.1.3 Momentum Fluxes 218</p> <p>9.1.4 Friction Force 220</p> <p>9.1.5 Thermal Force 220</p> <p>9.2 Classical Transport 222</p> <p>9.3 Neoclassical Transport – Toroidal Effects in Fluid Theory 225</p> <p>9.4 Multifluid Transport Formalism* 231</p> <p>9.5 Closure of Fluid Transport Equations* 234</p> <p>9.5.1 Kinetic Equations for Ion–Electron Plasma 234</p> <p>9.5.2 Transport Parameters 238</p> <p>9.6 Neoclassical Transport–Trapped Particles 241</p> <p>9.7 Extended Neoclassical Transport–Fluid Theory* 247</p> <p>9.7.1 Radial Electric Field 248</p> <p>9.7.2 Toroidal Rotation 249</p> <p>9.7.3 Transport Fluxes 249</p> <p>9.8 Electrical Currents 251</p> <p>9.8.1 Bootstrap Current 251</p> <p>9.8.2 Total Current 252</p> <p>9.9 Orbit Distortion* 253</p> <p>9.9.1 Toroidal Electric Field–Ware Pinch 253</p> <p>9.9.2 Potato Orbits 254</p> <p>9.9.3 Orbit Squeezing 255</p> <p>9.10 Neoclassical Ion Thermal Diffusivity 256</p> <p>9.11 Paleo classical Electron Thermal Diffusivity 258</p> <p>9.12 Transport in a Partially Ionized Gas* 259</p> <p><b>10 Plasma Rotation* 263</b></p> <p>10.1 Neoclassical Viscosity 263</p> <p>10.1.1 Rate-of-Strain Tensor in Toroidal Geometry 263</p> <p>10.1.2 Viscous Stress Tensor 264</p> <p>10.1.3 Toroidal Viscous Force 265</p> <p>10.1.4 Parallel Viscous Force 269</p> <p>10.1.5 Neoclassical Viscosity Coefficients 270</p> <p>10.2 Rotation Calculations 272</p> <p>10.2.1 Poloidal Rotation and Density Asymmetries 272</p> <p>10.2.2 Shaing-Sigmar-Stacey Parallel Viscosity Model 275</p> <p>10.2.3 Stacey-Sigmar Poloidal Rotation Model 276</p> <p>10.2.4 Radial Electric Field and Toroidal Rotation Velocities 280</p> <p>10.3 Momentum Confinement Times 281</p> <p>10.3.1 Theoretical 281</p> <p>10.3.2 Experimental 282</p> <p>10.4 Rotation and Transport in Elongated Geometry 283</p> <p>10.4.1 Flux surface coordinate system 283</p> <p>10.4.2 Flux surface average 285</p> <p>10.4.3 Differential Operators in Generalized Geometry 285</p> <p>10.4.4 Fluid Equations in Miller Elongated Flux Surface Coordinates 286</p> <p><b>11 Turbulent Transport 293</b></p> <p>11.1 Electrostatic Drift Waves 293</p> <p>11.1.1 General 293</p> <p>11.1.2 Ion Temperature Gradient Drift Waves 296</p> <p>11.1.3 Quasilinear Transport Analysis 296</p> <p>11.1.4 Saturated Fluctuation Levels 298</p> <p>11.2 Magnetic Fluctuations 299</p> <p>11.3 Wave–Wave Interactions* 301</p> <p>11.3.1 Mode Coupling 301</p> <p>11.3.2 Direct Interaction Approximation 302</p> <p>11.4 Drift Wave Eigen modes* 304</p> <p>11.5 Micro instability thermal diffusivity models* 306</p> <p>11.5.1 Ion transport 307</p> <p>11.5.2 Electron transport 312</p> <p>11.6 Gyrokinetic and Gyrofluid Theory* 315</p> <p>11.6.1 Gyrokinetic Theory of Turbulent Transport 316</p> <p>11.6.2 Gyrofluid Theory of Turbulent Transport 318</p> <p>11.7 Zonal Flows* 321</p> <p><b>12 Heating and Current Drive 323</b></p> <p>12.1 Inductive 323</p> <p>12.2 Adiabatic Compression* 326</p> <p>12.3 Fast Ions 329</p> <p>12.3.1 Neutral Beam Injection 329</p> <p>12.3.2 Fast Ion Energy Loss 331</p> <p>12.3.3 Fast Ion Distribution* 334</p> <p>12.3.4 Neutral Beam Current Drive 336</p> <p>12.3.5 Toroidal Alfven Instabilities 337</p> <p>12.4 Electromagnetic Waves 339</p> <p>12.4.1 Wave Propagation 339</p> <p>12.4.2 Wave Heating Physics 342</p> <p>12.4.3 Ion Cyclotron Resonance Heating 346</p> <p>12.4.4 Lower Hybrid Resonance Heating 347</p> <p>12.4.5 Electron Cyclotron Resonance Heating 348</p> <p>12.4.6 Current Drive 349</p> <p><b>13 Plasma–Material Interaction 355</b></p> <p>13.1 Sheath 355</p> <p>13.2 Recycling 358</p> <p>13.3 Atomic and Molecular Processes 359</p> <p>13.4 Penetration of Recycling Neutrals 364</p> <p>13.5 Sputtering 365</p> <p>13.6 Impurity Radiation 367</p> <p><b>14 Divertors 373</b></p> <p>14.1 Configuration, Nomenclature and Physical Processes 373</p> <p>14.2 Simple Divertor Model 376</p> <p>14.2.1 Strip Geometry 376</p> <p>14.2.2 Radial Transport and Widths 376</p> <p>14.2.3 Parallel Transport 378</p> <p>14.2.4 Solution of Plasma Equations 379</p> <p>14.2.5 Two-Point Model 380</p> <p>14.3 Divertor Operating Regimes* 382</p> <p>14.3.1 Sheath-Limited Regime 382</p> <p>14.3.2 Detached Regime 383</p> <p>14.3.3 High Recycling Regime 383</p> <p>14.3.4 Parameter Scaling 384</p> <p>14.3.5 Experimental Results 385</p> <p>14.4 Impurity Retention 385</p> <p>14.5 Thermal Instability* 388</p> <p>14.6 2DFluidPlasmaCalculation* 391</p> <p>14.7 Drifts 393</p> <p>14.7.1 Basic Drifts in the SOL and Divertor 393</p> <p>14.7.2 Poloidal and Radial E B Drifts 394</p> <p>14.8 Thermoelectric Currents 396</p> <p>14.8.1 Simple Current Model 396</p> <p>14.8.2 Relaxation of Simplifying Assumptions 398</p> <p>14.9 Detachment 400</p> <p>14.10 Effect of Drifts on Divertor and SOL Plasma Properties* 402</p> <p>14.10.1 Geometric Model 402</p> <p>14.10.2 Radial Transport 403</p> <p>14.10.3 Temperature, Density and Velocity Distributions 404</p> <p>14.10.4 Electrostatic Potential 406</p> <p>14.10.5 Parallel Current 407</p> <p>14.10.6 Grad-B and Curvature Drifts 408</p> <p>14.10.7 Solution for Currents and Potentials at Divertor Plates 410</p> <p>14.10.8 E B Drifts 411</p> <p>14.10.9 Total Parallel Ion Flux 413</p> <p>14.10.10 Impurities 413</p> <p>14.10.11GeometricInvariance 415</p> <p>14.10.12 Model Problem Calculation: Effect of B Direction on SOL-Divertor Parameters 416</p> <p>14.11 Blob Transport* 422</p> <p><b>15 Plasma Edge 425</b></p> <p>15.1 H-Mode Edge Plasma 425</p> <p>15.2 Transport in the Plasma Edge 426</p> <p>15.2.1 Fluid Theory 426</p> <p>15.2.2 Multi-Fluid Theory* 430</p> <p>15.2.3 Torque Representation* 431</p> <p>15.2.4 Kinetic Corrections for Non-Diffusive Ion Transport 433</p> <p>15.3 Differences Between L-Mode and H-Mode Plasma Edges 439</p> <p>15.4 Effect of Recycling Neutrals 443</p> <p>15.5 E B Shear Stabilization of Turbulence 444</p> <p>15.5.1 E B Shear Stabilization Physics 445</p> <p>15.5.2 Comparison with Experiment 447</p> <p>15.5.3 Possible “Trigger” Mechanism for the L–H Transition 448</p> <p>15.6 Thermal Instabilities 449</p> <p>15.6.1 Temperature Perturbations in the Plasma Edge 449</p> <p>15.6.2 Coupled Two-Dimensional Density–Velocity–Temperature Perturbations* 453</p> <p>15.6.3 Spontaneous Edge Pressure Pedestal Formation 458</p> <p>15.7 Poloidal Velocity Spin-Up* 461</p> <p>15.7.1 Neoclassical Spin-Up 463</p> <p>15.7.2 Fluid Momentum Balance Calculation of Poloidal Velocity Spin-Up 463</p> <p>15.7.3 Poloidal Velocity Spin-Up Due to Poloidal Asymmetries 464</p> <p>15.7.4 Bifurcation of the Poloidal Velocity Spin-Up 466</p> <p>15.8 ELM Stability Limits on Edge Pressure Gradients 467</p> <p>15.8.1 MHD Instability Theory of Peeling Modes* 468</p> <p>15.8.2 MHD Instability Theory of Coupled Ballooning-Peeling Modes* 470</p> <p>15.8.3 MHD Instability Analysis of ELMs 472</p> <p>15.9 MARFEs 476</p> <p>15.10 Radiative Mantle 480</p> <p>15.11 Edge Operation Boundaries 482</p> <p><b>16 Neutral Particle Transport 485</b></p> <p>16.1 Fundamentals* 485</p> <p>16.1.1 1DBoltzmannTransportEquation 485</p> <p>16.1.2 Legendre Polynomials 486</p> <p>16.1.3 Charge Exchange Model 487</p> <p>16.1.4 Elastic Scattering Model 488</p> <p>16.1.5 Recombination Model 491</p> <p>16.1.6 First Collision Source 491</p> <p>16.2 P N Transport and Diffusion Theory* 493</p> <p>16.2.1 P N Equations 493</p> <p>16.2.2 Extended Diffusion Theories 496</p> <p>16.3 Multidimensional Neutral Transport* 500</p> <p>16.3.1 Formulation of Transport Equation 500</p> <p>16.3.2 Boundary Conditions 502</p> <p>16.3.3 Scalar Flux and Current 502</p> <p>16.3.4 Partial Currents 504</p> <p>16.4 Integral Transport Theory* 504</p> <p>16.4.1 Isotropic Point Source 505</p> <p>16.4.2 Isotropic Plane Source 506</p> <p>16.4.3 Anisotropic Plane Source 507</p> <p>16.4.4 Transmission Probabilities 509</p> <p>16.4.5 Escape Probabilities 509</p> <p>16.4.6 Inclusion of Isotropic Scattering and Charge Exchange 510</p> <p>16.4.7 Distributed Volumetric Sources in Arbitrary Geometry 511</p> <p>16.4.8 Flux from a Line Isotropic Source 511</p> <p>16.4.9 Bickley Functions 512</p> <p>16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision 513</p> <p>16.5 Collision Probability Methods* 514</p> <p>16.5.1 Reciprocity among Transmission and Collision Probabilities 514</p> <p>16.5.2 Collision Probabilities for Slab Geometry 515</p> <p>16.5.3 Collision Probabilities in Two-Dimensional Geometry 515</p> <p>16.6 Interface Current Balance Methods 517</p> <p>16.6.1 Formulation 517</p> <p>16.6.2 Transmission and Escape Probabilities 517</p> <p>16.6.3 2D Transmission/Escape Probabilities (TEP) Method 519</p> <p>16.6.4 1DSlabMethod 524</p> <p>16.7 Extended Transmission-Escape Probabilities Method* 525</p> <p>16.7.1 Basic TEP Method 525</p> <p>16.7.2 Anisotropic Angular Fluxes 526</p> <p>16.7.3 Extended Directional Escape Probabilities 528</p> <p>16.7.4 Average Neutral Energy Approximation 531</p> <p>16.8 Discrete Ordinates Methods* 533</p> <p>16.8.1 P L and D–P L Ordinates 534</p> <p>16.9 Monte Carlo Methods* 536</p> <p>16.9.1 Probability Distribution Functions 537</p> <p>16.9.2 Analog Simulation of Neutral Particle Transport 537</p> <p>16.9.3 Statistical Estimation 539</p> <p>16.10 Navier–Stokes Fluid Model* 541</p> <p>16.11 Tokamak Plasma Refueling by Neutral Atom Recycling 542</p> <p><b>17 Power Balance 549</b></p> <p>17.1 Energy Confinement Time 549</p> <p>17.1.1 Definition 549</p> <p>17.1.2 Experimental Energy Confinement Times 550</p> <p>17.1.3 Empirical Correlations 551</p> <p>17.2 Radiation 554</p> <p>17.2.1 Radiation Fields 554</p> <p>17.2.2 Bremsstrahlung 556</p> <p>17.2.3 Cyclotron Radiation 557</p> <p>17.3 Impurities 559</p> <p>17.4 Burning Plasma Dynamics 561</p> <p><b>18 Operational Limits 565</b></p> <p>18.1 Disruptions 565</p> <p>18.1.1 Physics of Disruptions 565</p> <p>18.1.2 Causes of Disruptions 567</p> <p>18.2 Disruption Density Limit 567</p> <p>18.2.1 Radial Temperature Instabilities 569</p> <p>18.2.2 Spatial Averaging* 571</p> <p>18.2.3 Coupled Radial Temperature–Density Instabilities* 573</p> <p>18.3 Nondisruptive Density Limits 576</p> <p>18.3.1 MARFEs 576</p> <p>18.3.2 Confinement Degradation 577</p> <p>18.3.3 Thermal Collapse of Divertor Plasma 580</p> <p>18.4 Empirical Density Limit 581</p> <p>18.5 MHD Instability Limits 581</p> <p>18.5.1 ˇ-Limits 581</p> <p>18.5.2 Kink Mode Limits on q(a)/q(0) 584</p> <p><b>19 Fusion Reactors and Neutron Sources 587</b></p> <p>19.1 Plasma Physics and Engineering Constraints 587</p> <p>19.1.1 Confinement 587</p> <p>19.1.2 Density Limit 588</p> <p>19.1.3 Beta Limit 589</p> <p>19.1.4 Kink Stability Limit 590</p> <p>19.1.5 Start-Up Inductive Volt-Seconds 590</p> <p>19.1.6 Noninductive Current Drive 591</p> <p>19.1.7 Bootstrap Current 592</p> <p>19.1.8 Toroidal Field Magnets 592</p> <p>19.1.9 Blanket and Shield 593</p> <p>19.1.10 Plasma Facing Component Heat Fluxes 593</p> <p>19.1.11 Radiation Damage to Plasma Facing Components 596</p> <p>19.2 International Tokamak Program 597</p> <p>19.3 Fusion Beyond ITER 600</p> <p>19.4 Fusion-Fission Hybrids? 603</p> <p><b>Appendices</b></p> <p>A Frequently Used Physical Constants 611</p> <p>B Dimensions and Units 613</p> <p>C Vector Calculus 617</p> <p>D Curvilinear Coordinates 619</p> <p>E Plasma Formulas 627</p> <p>F Further Reading 629</p> <p>G Attributions 633</p> <p>Subject Index 641</p>
<p>“This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research.”  (<i>ETDE Energy Database</i>, 1 November 2012)</p> <p> </p>
Professor Stacey received his PhD in Nuclear Engineering from the Massachusetts Institute of Technology in 1966. He then worked in naval reactor design at Knolls Atomic Power Laboratory and led the fast reactor theory and computations and the fusion research programs at Argonne National Laboratory. In 1977, he became Callaway Professor of Nuclear Engineering at the Georgia Institute of Technology, where he has been teaching and performing research in reactor physics and plasma physics. He is the author of six books and about 250 research papers. He led the international INTOR Workshop which defined the design features and R&D needs for the first fusion experimental reactor, for which he received the US Dept. of Energy Distinguished Associate Award. Professor Stacey is a Fellow of the American Nuclear Society and of the American Physical Society and is the recipient of, among other awards, the Seaborg Award for Nuclear Research and the Wigner Reactor Physics Award from the American Nuclear Society.
<p>This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics are fully developed from first principles through to the computational models employed in modern plasma physics.</p> <p>The new and emerging topics of fusion plasma physics research – fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. – are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.</p>

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €