Details

Fusion Plasma Physics


Fusion Plasma Physics


1. Aufl.

von: Weston M. Stacey

135,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 26.09.2008
ISBN/EAN: 9783527618743
Sprache: englisch
Anzahl Seiten: 571

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Nuclear fusion has the potential to become the most important energy source of the new century. But still many problems, as e.g. the confinement of the plasma, are not yet solved. Thus they are subject to intense research which drives a rapid evolvement of this field of nuclear physics, and generates the need for an up-to-date textbook for graduate students.<br> This state-of-the-art textbook assembles the material for a modern course, and is aimed at graduate and advanced undergraduate students. It both introduces the fundamental principles and theories of fusion plasma physics, and presents the most recent topics from various sources in a systematic and concise way. Each chapter is rounded off with a set of exercises.<br>
<p><b>1 Basic Physics 1</b></p> <p>1.1 Fusion 1</p> <p>1.2 Plasma 6</p> <p>1.3 Coulomb Collisions 9</p> <p>1.4 Electromagnetic Theory 15</p> <p><b>2 Motion of Charged Particles 21</b></p> <p>2.1 GyromotionandDrifts 21</p> <p>2.1.1 Gyromotion 21</p> <p>2.1.2 E B Drift 24</p> <p>2.1.3 Grad-B Drift 25</p> <p>2.1.4 PolarizationDrift 27</p> <p>2.1.5 CurvatureDrift 28</p> <p>2.2 ConstantsoftheMotion 31</p> <p>2.2.1 Magnetic Moment 31</p> <p>2.2.2 Second Adiabatic Invariant 32</p> <p>2.2.3 Canonical Angular Momentum 34</p> <p>2.3 Diamagnetism* 36</p> <p><b>3 Magnetic Confinement 41</b></p> <p>3.1 Confinement in Mirror Fields 41</p> <p>3.1.1 SimpleMirror 41</p> <p>3.1.2 Tandem Mirrors* 46</p> <p>3.2 Closed Toroidal Confinement Systems 49</p> <p>3.2.1 Confinement 49</p> <p>3.2.2 Flux Surfaces 53</p> <p>3.2.3 Trapped Particles 55</p> <p>3.2.4 TransportLosses 59</p> <p><b>4 Kinetic Theory 65</b></p> <p>4.1 BoltzmannandVlasovEquations 66</p> <p>4.2 DriftKineticApproximation 66</p> <p>4.3 Fokker–Planck Theory of Collisions 69</p> <p>4.4 PlasmaResistivity 76</p> <p>4.5 Coulomb Collisional Energy Transfer 78</p> <p>4.6 Krook Collision Operators 82</p> <p><b>5 Fluid Theory 85</b></p> <p>5.1 MomentsEquations 85</p> <p>5.2 One-Fluid Model 89</p> <p>5.3 Magnetohydrodynamic Model 93</p> <p>5.4 Anisotropic Pressure Tensor Model* 96</p> <p>5.5 Strong Field, Transport Time Scale Ordering 98</p> <p><b>6 Plasma Equilibria 103</b></p> <p>6.1 General Properties 103</p> <p>6.2 Axisymmetric Toroidal Equilibria 105</p> <p>6.3 Large Aspect Ratio Tokamak Equilibria 111</p> <p>6.4 SafetyFactor 116</p> <p>6.5 Shafranov Shift* 120</p> <p>6.6 Beta 123</p> <p>6.7 Magnetic Field DiffusionandFluxSurfaceEvolution* 125</p> <p>6.8 Anisotropic Pressure Equilibria* 128</p> <p><b>7 Waves 131</b></p> <p>7.1 Waves in an Unmagnetized Plasma 131</p> <p>7.1.1 Electromagnetic Waves 131</p> <p>7.1.2 Ion Sound Waves 133</p> <p>7.2 Waves in a Uniformly Magnetized Plasma 134</p> <p>7.2.1 Electromagnetic Waves 134</p> <p>7.2.2 Shear Alfven Wave 137</p> <p>7.3 Langmuir Waves and Landau Damping 139</p> <p>7.4 Vlasov Theory of Plasma Waves* 142</p> <p>7.5 ElectrostaticWaves* 148</p> <p><b>8 Instabilities 155</b></p> <p>8.1 Hydromagnetic Instabilities 158</p> <p>8.1.1 MHD Theory 159</p> <p>8.1.2 Chew–Goldberger–Low Theory 160</p> <p>8.1.3 Guiding Center Theory 162</p> <p>8.2 EnergyPrinciple 165</p> <p>8.3 Pinch and Kink Instabilities 169</p> <p>8.4 Interchange (Flute) Instabilities 173</p> <p>8.5 Ballooning Instabilities 179</p> <p>8.6 Drift Wave Instabilities 183</p> <p>8.7 Resistive Tearing Instabilities* 186</p> <p>8.7.1 Slab Model 186</p> <p>8.7.2 MHDRegions 187</p> <p>8.7.3 Resistive Layer 189</p> <p>8.7.4 Magnetic Islands 190</p> <p>8.8 Kinetic Instabilities* 192</p> <p>8.8.1 Electrostatic Instabilities 192</p> <p>8.8.2 Collisionless Drift Waves 193</p> <p>8.8.3 Electron Temperature Gradient Instabilities 195</p> <p>8.8.4 Ion Temperature Gradient Instabilities 196</p> <p>8.8.5 Loss–Cone and Drift–Cone Instabilities 197</p> <p>8.9 Sawtooth Oscillations* 201</p> <p><b>9 Neoclassical Transport 205</b></p> <p>9.1 Collisional Transport Mechanisms 205</p> <p>9.1.1 ParticleFluxes 205</p> <p>9.1.2 HeatFluxes 207</p> <p>9.1.3 MomentumFluxes 208</p> <p>9.1.4 FrictionForce 210</p> <p>9.1.5 ThermalForce 210</p> <p>9.2 ClassicalTransport 212</p> <p>9.3 Neoclassical Transport – Toroidal Effects in Fluid Theory 215</p> <p>9.4 MultifluidTransportFormalism* 221</p> <p>9.5 ClosureofFluidTransportEquations* 224</p> <p>9.5.1 Kinetic Equations for Ion–Electron Plasma 224</p> <p>9.5.2 TransportParameters 228</p> <p>9.6 Neoclassical Transport – Trapped Particles 231</p> <p>9.7 Chang–Hinton Ion Thermal Conductivity* 237</p> <p>9.8 Extended Neoclassical Transport – Fluid Theory* 238</p> <p>9.8.1 RadialElectricField 239</p> <p>9.8.2 ToroidalRotation 240</p> <p>9.8.3 TransportFluxes 240</p> <p>9.9 ElectricalCurrents* 242</p> <p>9.9.1 BootstrapCurrent 242</p> <p>9.9.2 TotalCurrent 243</p> <p>9.10OrbitDistortion 244</p> <p>9.10.1 ToroidalElectricField–WarePinch 244</p> <p>9.10.2 PotatoOrbits 245</p> <p>9.10.3 Orbit Squeezing 246</p> <p>9.11TransportinaPartiallyIonizedGas* 247</p> <p><b>10 Plasma Rotation* 251</b></p> <p>10.1 Neoclassical Viscosity 251</p> <p>10.1.1 Rate-of-StrainTensorinToroidalGeometry 251</p> <p>10.1.2 Viscous Stress Tensor 252</p> <p>10.1.3 Toroidal Viscous Force 253</p> <p>10.1.4 Parallel Viscous Force 257</p> <p>10.1.5 Neoclassical Viscosity Coefficients 258</p> <p>10.2RotationCalculations 260</p> <p>10.2.1 PoloidalRotationandDensityAsymmetries 260</p> <p>10.2.2 Radial Electric Field and Toroidal Rotation Velocities 262</p> <p>10.3 Momentum Confinement Times 264</p> <p>10.3.1 Theoretical 264</p> <p>10.3.2 Experimental 265</p> <p><b>11 Turbulent Transport 267</b></p> <p>11.1ElectrostaticDriftWaves 267</p> <p>11.1.1 General 267</p> <p>11.1.2 IonTemperatureGradientDriftWaves 270</p> <p>11.1.3 Quasilinear Transport Analysis 270</p> <p>11.1.4 SaturatedFluctuationLevels 272</p> <p>11.2 Magnetic Fluctuations 273</p> <p>11.3 Candidate Microinstabilities 275</p> <p>11.3.1 Drift Waves and ITG Modes 276</p> <p>11.3.2 Trapped Ion Modes 276</p> <p>11.3.3 Electron Temperature Gradient Modes 277</p> <p>11.3.4 Resistive Ballooning Modes 277</p> <p>11.3.5 Chaotic Magnetic Island Overlap 277</p> <p>11.4Wave–WaveInteractions* 278</p> <p>11.4.1 ModeCoupling 278</p> <p>11.4.2 DirectInteractionApproximation 279</p> <p>11.5 Drift Wave Eigenmodes* 280</p> <p>11.6 Gyrokinetic and Gyrofluid Simulations 282</p> <p><b>12 Heating and Current Drive 285</b></p> <p>12.1 Inductive 285</p> <p>12.2AdiabaticCompression* 288</p> <p>12.3FastIons 291</p> <p>12.3.1 NeutralBeamInjection 291</p> <p>12.3.2 FastIonEnergyLoss 293</p> <p>12.3.3 FastIonDistribution 296</p> <p>12.3.4 NeutralBeamCurrentDrive 298</p> <p>12.3.5 Toroidal Alfven Instabilities 299</p> <p>12.4 Electromagnetic Waves 301</p> <p>12.4.1 Wave Propagation 301</p> <p>12.4.2 WaveHeatingPhysics 304</p> <p>12.4.3 Ion Cyclotron Resonance Heating 308</p> <p>12.4.4 Lower Hybrid Resonance Heating 309</p> <p>12.4.5 Electron Cyclotron Resonance Heating 310</p> <p>12.4.6 CurrentDrive 311</p> <p><b>13 Plasma–Material Interaction 315</b></p> <p>13.1 Sheath 315</p> <p>13.2Recycling 318</p> <p>13.3 Atomic and Molecular Processes 319</p> <p>13.4Sputtering 324</p> <p>13.5ImpurityRadiation 326</p> <p><b>14 Divertors 331</b></p> <p>14.1 Configuration, Nomenclature and Physical Processes 331</p> <p>14.2 Simple Divertor Model 334</p> <p>14.2.1 StripGeometry 334</p> <p>14.2.2 RadialTransportandWidths 334</p> <p>14.2.3 ParallelTransport 336</p> <p>14.2.4 SolutionofPlasmaEquations 337</p> <p>14.2.5 Two-Point Model 338</p> <p>14.3DivertorOperatingRegimes 340</p> <p>14.3.1 Sheath-Limited Regime 340</p> <p>14.3.2 Detached Regime 341</p> <p>14.3.3 HighRecyclingRegime 341</p> <p>14.3.4 ParameterScaling 342</p> <p>14.3.5 Experimental Results 343</p> <p>14.4ImpurityRetention 343</p> <p>14.5 Thermal Instability* 346</p> <p>14.62DFluidPlasmaCalculation* 349</p> <p>14.7Drifts* 351</p> <p>14.7.1 BasicDriftsintheSOLandDivertor 351</p> <p>14.7.2 Poloidal and Radial E B Drifts 352</p> <p>14.8ThermoelectricCurrents* 354</p> <p>14.8.1 Simple Current Model 354</p> <p>14.8.2 RelaxationofSimplifyingAssumptions 356</p> <p>14.9 Detachment 358</p> <p><b>15 Plasma Edge 361</b></p> <p>15.1H-ModeEdgeTransportBarrier 361</p> <p>15.1.1 RelationofEdgeTransportandGradients 362</p> <p>15.1.2 MHD Stability Constraints on Pedestal Gradients 364</p> <p>15.1.3 RepresentationofMHDPressureGradientConstraint 368</p> <p>15.1.4 Pedestal Widths 369</p> <p>15.2 E B Shear Stabilization of Turbulence 371</p> <p>15.2.1 E B Shear Stabilization Physics 372</p> <p>15.2.2 Comparison with Experiment 374</p> <p>15.2.3 Possible “Trigger” Mechanism for the L–H Transition 374</p> <p>15.3 Thermal Instabilities 376</p> <p>15.3.1 TemperaturePerturbationsinthePlasmaEdge 376</p> <p>15.3.2 Coupled Two-Dimensional Density–Velocity–Temperature Perturbations 379</p> <p>15.3.3 Spontaneous Edge Transport Barrier Formation 384</p> <p>15.3.4 Consistency with Observed L–H Phenomena 389</p> <p>15.4MARFEs 392</p> <p>15.5RadiativeMantle 397</p> <p>15.6 Edge Operation Boundaries 398</p> <p>15.7 Ion Particle Transport in the Edge* 398</p> <p>15.7.1 Generalized “Pinch-Diffusion” Particle Flux Relations 399</p> <p>15.7.2 Density Gradient Scale Length 402</p> <p>15.7.3 Edge Density, Temperature, Electric Field and Rotation Profiles 403</p> <p><b>16 Neutral Particle Transport* 413</b></p> <p>16.1 Fundamentals 413</p> <p>16.1.1 1DBoltzmannTransportEquation 413</p> <p>16.1.2 Legendre Polynomials 414</p> <p>16.1.3 Charge Exchange Model 415</p> <p>16.1.4 Elastic Scattering Model 416</p> <p>16.1.5 Recombination Model 419</p> <p>16.1.6 First Collision Source 419</p> <p>16.2 P N Transport and Diffusion Theory 421</p> <p>16.2.1 P N Equations 421</p> <p>16.2.2 Extended Diffusion Theories 424</p> <p>16.3 Multidimensional Neutral Transport 428</p> <p>16.3.1 FormulationofTransportEquation 428</p> <p>16.3.2 Boundary Conditions 430</p> <p>16.3.3 Scalar Flux and Current 430</p> <p>16.3.4 PartialCurrents 432</p> <p>16.4 Integral Transport Theory 432</p> <p>16.4.1 Isotropic Point Source 433</p> <p>16.4.2 Isotropic Plane Source 434</p> <p>16.4.3 Anisotropic Plane Source 435</p> <p>16.4.4 Transmission and Probabilities 437</p> <p>16.4.5 Escape Probability 437</p> <p>16.4.6 Inclusion of Isotropic Scattering and Charge Exchange 438</p> <p>16.4.7 Distributed Volumetric Sources in Arbitrary Geometry 439</p> <p>16.4.8 Flux from a Line Isotropic Source 439</p> <p>16.4.9 Bickley Functions 440</p> <p>16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision 441</p> <p>16.5 Collision Probability Methods 442</p> <p>16.5.1 Reciprocity among Transmission and Collision Probabilities 442</p> <p>16.5.2 Collision Probabilities for Slab Geometry 443</p> <p>16.5.3 Collision Probabilities in Two-Dimensional Geometry 443</p> <p>16.6 Interface Current Balance Methods 445</p> <p>16.6.1 Formulation 445</p> <p>16.6.2 Transmission and Escape Probabilities 445</p> <p>16.6.3 2D Transmission/Escape Probabilities (TEP) Method 447</p> <p>16.6.4 1DSlabMethod 452</p> <p>16.7 Discrete Ordinates Methods 453</p> <p>16.7.1 P L and D–P L Ordinates 454</p> <p>16.8 Monte Carlo Methods 456</p> <p>16.8.1 Probability Distribution Functions 456</p> <p>16.8.2 AnalogSimulationofNeutralParticleTransport 457</p> <p>16.8.3 StatisticalEstimation 459</p> <p>16.9 Navier–Stokes Fluid Model 460</p> <p><b>17 Power Balance 463</b></p> <p>17.1 Energy Confinement Time 463</p> <p>17.1.1 Definition 463</p> <p>17.1.2 Experimental Energy Confinement Times 464</p> <p>17.1.3 EmpiricalCorrelations 465</p> <p>17.2Radiation 468</p> <p>17.2.1 RadiationFields 468</p> <p>17.2.2 Bremsstrahlung 470</p> <p>17.2.3 CyclotronRadiation 471</p> <p>17.3 Impurities 473</p> <p>17.4 Burning Plasma Dynamics 475</p> <p><b>18 Operational Limits 479</b></p> <p>18.1Disruptions 479</p> <p>18.1.1 PhysicsofDisruptions 479</p> <p>18.1.2 CausesofDisruptions 481</p> <p>18.2DisruptionDensityLimit 481</p> <p>18.2.1 Radial Temperature Instabilities 483</p> <p>18.2.2 SpatialAveraging 485</p> <p>18.2.3 Coupled Radial Temperature–Density Instabilities 487</p> <p>18.3 Nondisruptive Density Limits 490</p> <p>18.3.1 MARFEs 490</p> <p>18.3.2 Confinement Degradation 491</p> <p>18.3.3 ThermalCollapseofDivertorPlasma 494</p> <p>18.4EmpiricalDensityLimit 495</p> <p>18.5 MHD Instability Limits 495</p> <p>18.5.1 ˇ-Limits 495</p> <p>18.5.2 Kink Mode Limits on q.a/=q.0/ 498</p> <p><b>19 Fusion Reactors and Neutron Sources 501</b></p> <p>19.1 Plasma Physics and Engineering Constraints 501</p> <p>19.1.1 Confinement 501</p> <p>19.1.2 DensityLimit 502</p> <p>19.1.3 Beta Limit 503</p> <p>19.1.4 Kink Stability Limit 504</p> <p>19.1.5 Start-Up Inductive Volt-Seconds 504</p> <p>19.1.6 Noninductive Current Drive 505</p> <p>19.1.7 BootstrapCurrent 506</p> <p>19.1.8 Toroidal Field Magnets 506</p> <p>19.1.9 BlanketandShield 507</p> <p>19.1.10 Plasma Facing Component Heat Fluxes 507</p> <p>19.1.11 Radiation Damage to Plasma Facing Components 510</p> <p>19.2 International Tokamak Program 511</p> <p>19.2.1 Advanced Tokamak 514</p> <p>19.3 Neutron Sources 515</p> <p><b>Appendices</b></p> <p>A Frequently Used Physical Constants 521</p> <p>B DimensionsandUnits 523</p> <p>c VectorCalculus 527</p> <p>d Curvilinear Coordinates 529</p> <p>E PlasmaFormulas 537</p> <p>F Further Reading 539</p> <p>G Attributions 543</p> <p>Subject Index 549</p>
<b>Professor Stacey</b> received his PhD in Nuclear Engineering from the Massachusetts Institute of Technology in 1966. He then worked in naval reactor design at Knolls Atomic Power Laboratory and led the fast reactor theory and computations and the fusion research programs at Argonne National Laboratory. In 1977, he became Callaway Professor of Nuclear Engineering at the Georgia Institute of Technology, where he has been teaching and performing research in reactor physics and plasma physics. He is the author of six books and about 250 research papers. He led the international INTOR Workshop which defined the design features and R&D needs for the first fusion experimental reactor, for which he received the US Dept. of Energy Distinguished Associate Award. Professor Stacey is a Fellow of the American Nuclear Society and of the American Physical Society and is the recipient of, among other awards, the Seaborg Award for Nuclear Research and the Wigner Reactor Physics Award from the American Nuclear Society.
<b>N</b>uclear fusion, mankind’s ultimate energy source, may become the most important energy source of the new century. But still many important phenomena, e.g. the transport mechanisms that determine the confinement of the plasma, are not yet fully understood. Thus, they are the subject of intense research, which drives a rapid environment of this field of plasma physics and generates the need for an up-to-date textbook for students and reference for researchers in the field.<br /> This state-of-the-art textbook assembles material from various sources in a systematic and concise way for a modern course on the physics of magnetically confined plasmas aimed at graduate and advanced undergraduate students. It both presents the fundamental theories and methodologies of fusion plasma physics and introduces the topics of current research. Each chapter is rounded off with a set of exercises.

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €