Details

Frontiers of Surface-Enhanced Raman Scattering


Frontiers of Surface-Enhanced Raman Scattering

Single Nanoparticles and Single Cells
1. Aufl.

von: Yukihiro Ozaki, Katrin Kneipp, Ricardo Aroca

125,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.02.2014
ISBN/EAN: 9781118703571
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. <br /><br />Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. <br /><br />SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.</p>
<p><i>List of Contributors xi</i></p> <p><i>Preface xv</i></p> <p><b>1. Calculation of Surface-Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method 1</b><br /> <i>George C. Schatz and Nicholas A. Valley</i></p> <p>1.1 Introduction: Combined Quantum Mechanics/Electrodynamics Methods 1</p> <p>1.2 Computational Details 3</p> <p>1.3 Summary of Model Systems 4</p> <p>1.4 Azimuthal Averaging 5</p> <p>1.5 SERS of Pyridine: Models G, A, B, S, and V 6</p> <p>1.6 Orientation Effects in SERS of Phthalocyanines 11</p> <p>1.7 Two Particle QM/ED Calculations 13</p> <p>1.8 Summary 15</p> <p>Acknowledgment 16</p> <p>References 16</p> <p><b>2. Non-resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates 19</b><br /> <i>Katrin Kneipp and Harald Kneipp</i></p> <p>2.1 Introduction 19</p> <p>2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots 21</p> <p>2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non-resonant SERS Process 21</p> <p>2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy 24</p> <p>2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS 25</p> <p>2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation 26</p> <p>2.3.1 SERS Signal vs. Concentration of the Target Molecule 26</p> <p>2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot Spots 30</p> <p>2.4 Summary and Conclusions 31</p> <p>References 32</p> <p><b>3. Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for Single-Molecule Raman Scattering 37</b><br /> <i>Lev Chuntonov and Gilad Haran</i></p> <p>3.1 Introduction 37</p> <p>3.2 Methodology 38</p> <p>3.3 Plasmon Mode Structure of Nanoparticle Clusters 39</p> <p>3.3.1 Dimers 39</p> <p>3.3.2 Trimers 40</p> <p>3.4 Effect of Plasmon Modes on SMSERS 47</p> <p>3.4.1 Effect of the Spectral Lineshape 47</p> <p>3.4.2 Effect of Multiple Normal Modes 49</p> <p>3.5 Conclusions 54</p> <p>Acknowledgment 54</p> <p>References 54</p> <p><b>4. Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS Fluctuation Based on the Mechanism 59</b><br /> <i>Tamitake Itoh</i></p> <p>4.1 Experimental Demonstration of the EM Mechanism of SERS 59</p> <p>4.1.1 Introduction 59</p> <p>4.1.2 Observations of the EM Mechanism in SERS Spectral Variations 60</p> <p>4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra 62</p> <p>4.1.4 Quantitative Evaluation of the EM Mechanism of SERS 64</p> <p>4.1.5 Summary 72</p> <p>4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism 72</p> <p>4.2.1 Introduction 72</p> <p>4.2.2 Intensity and Spectral Fluctuation in SERS and SEF 73</p> <p>4.2.3 Framework for Analysis of Fluctuation in SERS and SEF 73</p> <p>4.2.4 Analysis of Intensity Fluctuation in SERS and SEF 76</p> <p>4.2.5 Analysis of Spectral Fluctuation in SERS and SEF 78</p> <p>4.2.6 Summary 82</p> <p>4.3 Conclusion 82</p> <p>Acknowledgments 83</p> <p>References 83</p> <p><b>5. Single-Molecule Surface-Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces 89</b><br /> <i>Mai Takase, Fumika Nagasawa, Hideki Nabika and Kei Murakoshi</i></p> <p>5.1 Introduction 89</p> <p>5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule Junction 90</p> <p>5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule Level 96</p> <p>5.4 Conclusion 101</p> <p>Acknowledgments 101</p> <p>References 101</p> <p><b>6. Analysis of Blinking SERS by a Power Law with an Exponential Function 107</b><br /> <i>Yasutaka Kitahama and Yukihiro Ozaki</i></p> <p>6.1 Introduction 107</p> <p>6.2 Materials and Methods 110</p> <p>6.3 Power Law Analysis 110</p> <p>6.4 Plasmon Resonance Wavelength Dependence 117</p> <p>6.4.1 Power Law Exponents for the Bright and Dark Events 117</p> <p>6.4.2 Truncation Time for the Dark Events 123</p> <p>6.5 Energy Density Dependence 123</p> <p>6.5.1 Power Law Exponents for the Bright and Dark Events 123</p> <p>6.5.2 Truncation Time for the Dark Events 125</p> <p>6.5.3 Comparison with Other Analysis 126</p> <p>6.6 Temperature Dependence 129</p> <p>6.6.1 Power Law Exponents for the Bright and Dark Events 129</p> <p>6.6.2 Truncation Time for the Dark Events 129</p> <p>6.6.3 Comparison with Other Analysis 130</p> <p>6.7 Summary 132</p> <p>Acknowledgments 132</p> <p>References 133</p> <p><b>7. Tip-Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and Analysis 139</b><br /> <i>Taka-aki Yano and Satoshi Kawata</i></p> <p>7.1 Crucial Difference between TERS and SERS 139</p> <p>7.2 TERS-Specific Spectral Change as a Function of Tip–Sample Distance 141</p> <p>7.3 Mechanical Effect in TERS 143</p> <p>7.4 Application to Analytical Nano-Imaging 144</p> <p>7.5 Metallic Probe Tip: Design and Fabrication 149</p> <p>7.6 Spatial Resolution 154</p> <p>7.7 Real-Time and 3D Imaging: Perspectives 155</p> <p>References 156</p> <p><b>8. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) 163</b><br /> <i>Jian-Feng Li and Zhong-Qun Tian</i></p> <p>8.1 Introduction 163</p> <p>8.2 Synthesis of Various Shell-Isolated Nanoparticles (SHINs) 167</p> <p>8.3 Characterizations of SHINs 169</p> <p>8.3.1 Correlation of the SHINERS Intensity and Shell Thickness 169</p> <p>8.3.2 Characterization of the Ultra-Thin Uniform Silica Shell 171</p> <p>8.3.3 Influence of the SHINs on the Surface 172</p> <p>8.4 Applications of SHINERS 173</p> <p>8.4.1 Single-Crystal Electrode Surface 173</p> <p>8.4.2 Non-Metallic Material Surfaces 175</p> <p>8.4.3 Single Particle SHINERS 178</p> <p>8.5 Different Strategies of SHINERS Compared to Previous SERS Works Using Core–Shell or Overlayer Structures 178</p> <p>8.6 Advantages of Isolated Mode over Contact Mode 180</p> <p>8.7 Concluding Discussion 184</p> <p>8.8 Outlook 185</p> <p>Acknowledgments 186</p> <p>References 186</p> <p><b>9. Applying Super-Resolution Imaging Techniques to Problems in Single-Molecule SERS 193</b><br /> <i>Eric J. Titus and Katherine A. Willets</i></p> <p>9.1 Introduction 193</p> <p>9.1.1 Single-Molecule Surface-Enhanced Raman Scattering (SM-SERS) 193</p> <p>9.1.2 Super-Resolution Imaging 194</p> <p>9.2 Experimental Considerations for Super-Resolution SM-SERS 195</p> <p>9.2.1 Sample Preparation 195</p> <p>9.2.2 Instrument Set-up 196</p> <p>9.2.3 Camera Pixels and Theoretical Uncertainties 197</p> <p>9.2.4 Correlated Imaging and Spectroscopy in Super-Resolution SM-SERS 198</p> <p>9.2.5 Correlated Optical and Structural Data 199</p> <p>9.3 Super-Resolution SM-SERS Analysis 200</p> <p>9.3.1 Mechanical Drift Correction 201</p> <p>9.3.2 Analysis of Background Nanoparticle Luminescence 202</p> <p>9.3.3 Calculating the SM-SERS Centroid Position 202</p> <p>9.4 Super-Resolution SM-SERS Examples 204</p> <p>9.4.1 Mapping SM-SERS Hot Spots 204</p> <p>9.4.2 The Role of Plasmon-Enhanced Electromagnetic Fields: Structure Correlation Studies 206</p> <p>9.4.3 The Role of the Molecule: Isotope-Edited Studies 210</p> <p>9.5 Conclusions 214</p> <p>References 214</p> <p><b>10. Lithographically-Fabricated SERS Substrates: Double Resonances, Nanogaps, and Beamed Emission 219</b><br /> <i>Kenneth B. Crozier, Wenqi Zhu, Yizhuo Chu, Dongxing Wang and Mohamad Banaee</i></p> <p>10.1 Introduction 219</p> <p>10.2 Double Resonance SERS Substrates 220</p> <p>10.3 Lithographically-Fabricated Nanogap Dimers 226</p> <p>10.4 Beamed Raman Scattering 229</p> <p>10.5 Conclusions 238</p> <p>References 239</p> <p><b>11. Plasmon-Enhanced Scattering and Fluorescence Used for Ultrasensitive Detection in Langmuir–Blodgett Monolayers 243</b><br /> <i>Diogo Volpati, Aisha Alsaleh, Carlos J. L. Constantino and Ricardo F. Aroca</i></p> <p>11.1 Introduction 243</p> <p>11.2 Surface-Enhanced Resonance Raman Scattering of Tagged Phospholipids 245</p> <p>11.2.1 Experimental Details 245</p> <p>11.2.2 Langmuir and LB films 246</p> <p>11.2.3 Electronic Absorption 247</p> <p>11.2.4 Characteristic Vibrational Modes of the Tagged Phospholipid 248</p> <p>11.2.5 Single Molecule Detection 250</p> <p>11.3 Shell-Isolated Nanoparticle Enhanced Fluorescence (SHINEF) 251</p> <p>11.3.1 Tuning the Enhancement Factor in SHINEF 251</p> <p>11.3.2 SHINEF of Fluorescein-DHPE 253</p> <p>11.4 Conclusions 254</p> <p>Acknowledgments 255</p> <p>References 255</p> <p><b>12. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic and Diagnostic Tool 257</b><br /> <i>W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher and Lawrence D. Ziegler</i></p> <p>12.1 Introduction 257</p> <p>12.2 SERS of Bacterial Cells: Methodology and Diagnostics 258</p> <p>12.3 Characteristics of SERS Spectra of Bacteria 261</p> <p>12.4 PCA Barcode Analysis 263</p> <p>12.5 Biological Origins of Bacterial SERS Signatures 265</p> <p>12.6 SERS Bacterial Identification in Human Body Fluids: Bacteremia and UTI Diagnostics 266</p> <p>12.7 Red Blood Cells and Hemoglobin: Blood Aging and Disease Detection 267</p> <p>12.8 SERS of Whole Blood 269</p> <p>12.9 SERS of RBCs 271</p> <p>12.10 Malaria Detection 273</p> <p>12.11 Cancer Cell Detection: Metabolic Profiling by SERS 273</p> <p>12.12 Conclusions 276</p> <p>Acknowledgment 277</p> <p>References 277</p> <p><b>13. SERS in Cells: from Concepts to Practical Applications 285</b><br /> <i>Janina Kneipp and Daniela Drescher</i></p> <p>13.1 Introduction 285</p> <p>13.2 SERS Labels and SERS Nanoprobes: Different Approaches to Obtain Different Information 286</p> <p>13.2.1 Highlighting Cellular Substructures with SERS Labels 286</p> <p>13.2.2 Probing Intrinsic Cellular Biochemistry with SERS Nanoprobes 288</p> <p>13.3 Consequences of Endocytotic Uptake and Processing for Intrinsic SERS Probing in Cells 289</p> <p>13.4 Quantification of Metal Nanoparticles in Cells 292</p> <p>13.5 Toxicity Considerations 295</p> <p>13.6 Applications 298</p> <p>13.6.1 pH Nanosensors for Studies in Live Cells 298</p> <p>13.6.2 Following Cell Division with SERS 299</p> <p><i>Acknowledgment 301</i></p> <p><i>References 301</i></p> <p><i>Index 309</i></p>
<p>“I believe this book is worth reading by anyone in the field, and I found myself noting a few references throughout each chapter. The book would also be particularly useful for students trying to understand issues in the broader field of current SERS research.”  (<i>Anal Bioanal Chem</i>, 22 August 2014)</p>
<b>EDITORS</b><br /><br /><i>YUKIHIRO OZAKI</i>, School of Science & Technology, Kwansei Gakuin University, Japan<br /><br /><i>KATRIN KNEIPP</i>, Department of Physics, Technical University of Denmark, Denmark<br /><br /><i>RICARDO AROCA</i>, Department of Chemistry & Biochemistry, University of Windsor, Canada
<p>Surface-enhanced Raman scattering (SERS) has flourished for nearly four decades and today it is a vibrant, quintessential embodiment of nanoscience and nanotechnology with a broad range of applications.</p> <p>The current level of understanding of SERS is now well advanced and as a consequence researchers are beginning to formulate strategies for exploiting SERS as a general platform for chemical and biological analysis, with unprecedented routine levels of sensitivity, specificity and reproducibility.</p> <p>Written by internationally-recognised experts, this text:<br /> <br /> • Provides comprehensive coverage of the theory, instrumentation and applications of SERS.<br /> <br /> • Presents new research fields of this key analytical technique including:<br /> <br /> • single molecule detection;<br /> <br /> • nanoparticle analysis;<br /> <br /> • single cell and bacterial diagnostics;<br /> <br /> • the detection of biomolecules and biomolecular complexes.<br /> <br /> • Aims to convey to the reader the enthusiasm of researchers in this field.</p> <p>This text is relevant to those involved in diagnostic tools for nanomedicine and synthesis as well as materials scientists working in the area of the characterization of nanoparticles.</p> <p>It is the authors hope that this book will not only be useful but enjoyable to read. Their wish is that it inspires its readers to try novel and exciting SERS research.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €