Details

Fragment-based Approaches in Drug Discovery


Fragment-based Approaches in Drug Discovery


Methods & Principles in Medicinal Chemistry, Band 34 1. Aufl.

von: Wolfgang Jahnke, Daniel A. Erlanson, Raimund Mannhold, Hugo Kubinyi, Gerd Folkers

223,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 13.12.2006
ISBN/EAN: 9783527608607
Sprache: englisch
Anzahl Seiten: 391

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This first systematic summary of the impact of fragment-based approaches on the drug development process provides essential information that was previously unavailable. Adopting a practice-oriented approach, this represents a book by professionals for professionals, tailor-made for drug developers in the pharma and biotech sector who need to keep up-to-date on the latest technologies and strategies in pharmaceutical ligand design. The book is clearly divided into three sections on ligand design, spectroscopic techniques, and screening and drug discovery, backed by numerous case studies.
<p>Preface xv</p> <p>A Personal Foreword xvii</p> <p>List of Contributors xix</p> <p><b>Part I: Concept and Theory</b></p> <p><b>1 The Concept of Fragment-based Drug Discovery </b><b>3<br /></b><i>Daniel A. Erlanson and Wolfgang Jahnke</i></p> <p>1.1 Introduction 3</p> <p>1.2 Starting Small: Key Features of Fragment-based Ligand Design 4</p> <p>1.2.1 FBS Samples Higher Chemical Diversity 4</p> <p>1.2.2 FBS Leads to Higher Hit Rates 5</p> <p>1.2.3 FBS Leads to Higher Ligand Efficiency 6</p> <p>1.3 Historical Development 6</p> <p>1.4 Scope and Overview of this Book 7</p> <p>References 9</p> <p><b>2 Multivalency in Ligand Design </b><b>11<br /></b><i>Vijay M. Krishnamurthy, Lara A. Estroff, and George M. Whitesides</i></p> <p>2.1 Introduction and Overview 11</p> <p>2.2 Definitions of Terms 12</p> <p>2.3 Selection of Key Experimental Studies 16</p> <p>2.3.1 Trivalency in a Structurally Simple System 17</p> <p>2.3.2 Cooperativity (and the Role of Enthalpy) in the “Chelate Effect“ 18</p> <p>2.3.3 Oligovalency in the Design of Inhibitors to Toxins 18</p> <p>2.3.4 Bivalency at Well Defined Surfaces (Self-assembled Monolayers, SAMs) 18</p> <p>2.3.5 Polyvalency at Surfaces of Viruses, Bacteria, and SAMs 18</p> <p>2.4 Theoretical Considerations in Multivalency 19</p> <p>2.4.1 Survey of Thermodynamics 19</p> <p>2.4.2 Additivity and Multivalency 19</p> <p>2.4.3 Avidity and Effective Concentration (<i>C</i><sub>eff</sub>) 22</p> <p>2.4.4 Cooperativity is Distinct from Multivalency 24</p> <p>2.4.5 Conformational Entropy of the Linker between Ligands 25</p> <p>2.4.6 Enthalpy/Entropy Compensation Reduces the Benefit of Multivalency 26</p> <p>2.5 Representative Experimental Studies 26</p> <p>2.5.1 Experimental Techniques Used to Examine Multivalent Systems 26</p> <p>2.5.1.1 Isothermal Titration Calorimetry 26</p> <p>2.5.1.2 Surface Plasmon Resonance Spectroscopy 27</p> <p>2.5.1.3 Surface Assays Using Purified Components (Cell-free Assays) 27</p> <p>2.5.1.4 Cell-based Surface Assays 27</p> <p>2.5.2 Examination of Experimental Studies in the Context of Theory 28</p> <p>2.5.2.1 Trivalency in Structurally Simple Systems 28</p> <p>2.5.2.2 Cooperativity (and the Role of Enthalpy) in the “Chelate Effect“ 29</p> <p>2.5.2.3 Oligovalency in the Design of Inhibitors of Toxins 29</p> <p>2.5.2.4 Bivalency in Solution and at Well Defined Surfaces (SAMs) 30</p> <p>2.5.2.5 Polyvalency at Surfaces (Viruses, Bacteria, and SAMs) 31</p> <p>2.6 Design Rules for Multivalent Ligands 32</p> <p>2.6.1 When Will Multivalency Be a Successful Strategy to Design Tight-binding Ligands? 32</p> <p>2.6.2 Choice of Scaffold for Multivalent Ligands 33</p> <p>2.6.2.1 Scaffolds for Oligovalent Ligands 33</p> <p>2.6.2.2 Scaffolds for Polyvalent Ligands 35</p> <p>2.6.3 Choice of Linker for Multivalent Ligands 36</p> <p>2.6.3.1 Rigid Linkers Represent a Simple Approach to Optimize Affinity 36</p> <p>2.6.3.2 Flexible Linkers Represent an Alternative Approach to Rigid Linkers to Optimize Affinity 37</p> <p>2.6.4 Strategy for the Synthesis of Multivalent Ligands 37</p> <p>2.6.4.1 Polyvalent Ligands: Polymerization of Ligand Monomers 38</p> <p>2.6.4.2 Polyvalent Ligands: Functionalization with Ligands after Polymerization 38</p> <p>2.7 Extensions of Multivalency to Lead Discovery 39</p> <p>2.7.1 Hetero-oligovalency is a Broadly Applicable Concept in Ligand Design 39</p> <p>2.7.2 Dendrimers Present Opportunities for Multivalent Presentation of Ligands 40</p> <p>2.7.3 Bivalency in the Immune System 40</p> <p>2.7.4 Polymers Could Be the Most Broadly Applicable Multivalent Ligands 42</p> <p>2.8 Challenges and Unsolved Problems in Multivalency 44</p> <p>2.9 Conclusions 44</p> <p>Acknowledgments 45</p> <p>References 45</p> <p><b>3 Entropic Consequences of Linking Ligands </b><b>55<br /></b><i>Christopher W. Murray and Marcel L. Verdonk</i></p> <p>3.1 Introduction 55</p> <p>3.2 Rigid Body Barrier to Binding 55</p> <p>3.2.1 Decomposition of Free Energy of Binding 55</p> <p>3.2.2 Theoretical Treatment of the Rigid Body Barrier to Binding 56</p> <p>3.3 Theoretical Treatment of Fragment Linking 57</p> <p>3.4 Experimental Examples of Fragment Linking Suitable for Analysis 59</p> <p>3.5 Estimate of Rigid Body Barrier to Binding 61</p> <p>3.6 Discussion 62</p> <p>3.7 Conclusions 64</p> <p>References 65</p> <p><b>4 Location of Binding Sites on Proteins by the Multiple Solvent Crystal Structure Method </b><b>67<br /></b><i>Dagmar Ringe and Carla Mattos</i></p> <p>4.1 Introduction 67</p> <p>4.2 Solvent Mapping 68</p> <p>4.3 Characterization of Protein–Ligand Binding Sites 69</p> <p>4.4 Functional Characterization of Proteins 71</p> <p>4.5 Experimental Methods for Locating the Binding Sites of Organic Probe Molecules 71</p> <p>4.6 Structures of Elastase in Nonaqueous Solvents 72</p> <p>4.7 Organic Solvent Binding Sites 73</p> <p>4.8 Other Solvent Mapping Experiments 75</p> <p>4.9 Binding of Water Molecules to the Surface of a Protein 78</p> <p>4.10 Internal Waters 79</p> <p>4.11 Surface Waters 80</p> <p>4.12 Conservation of Water Binding Sites 81</p> <p>4.13 General Properties of Solvent and Water Molecules on the Protein 82</p> <p>4.14 Computational Methods 83</p> <p>4.15 Conclusion 85</p> <p>Acknowledgments 85</p> <p>References 85</p> <p><b>Part 2: Fragment Library Design and Computional Approaches</b></p> <p><b>5 Cheminformatics Approaches to Fragment-based Lead Discovery </b><b>91<br /></b><i>Tudor I. Oprea and Jeffrey M. Blaney</i></p> <p>5.1 Introduction 91</p> <p>5.2 The Chemical Space of Small Molecules (Under 300 a.m.u.) 92</p> <p>5.3 The Concept of Lead-likeness 94</p> <p>5.4 The Fragment-based Approach in Lead Discovery 96</p> <p>5.5 Literature-based Identification of Fragments: A Practical Example 99</p> <p>5.6 Conclusions 107</p> <p>Acknowledgments 109</p> <p>References 109</p> <p><b>6 Structural Fragments in Marketed Oral Drugs </b><b>113</b></p> <p><i>Michal Vieth and Miles Siegel</i></p> <p>6.1 Introduction 113</p> <p>6.2 Historical Look at the Analysis of Structural Fragments of Drugs 113</p> <p>6.3 Methodology Used in this Analysis 115</p> <p>6.4 Analysis of Similarities of Different Drug Data Sets Based on the Fragment Frequencies 118</p> <p>6.5 Conclusions 123</p> <p>Acknowledgments 124</p> <p>References 124</p> <p><b>7 Fragment Docking to Proteins with the Multi-copy Simultaneous Search Methodology </b><b>125<br /></b><i>Collin M. Stultz and Martin Karplus</i></p> <p>7.1 Introduction 125</p> <p>7.2 The MCSS Method 125</p> <p>7.2.1 MCSS Minimizations 126</p> <p>7.2.2 Choice of Functional Groups 126</p> <p>7.2.3 Evaluating MCSS Minima 127</p> <p>7.3 MCSS in Practice: Functionality Maps of Endothiapepsin 132</p> <p>7.4 Comparison with GRID 135</p> <p>7.5 Comparison with Experiment 137</p> <p>7.6 Ligand Design with MCSS 138</p> <p>7.6.1 Designing Peptide-based Ligands to Ras 138</p> <p>7.6.2 Designing Non-peptide Based Ligands to Cytochrome P450 140</p> <p>7.6.3 Designing Targeted Libraries with MCSS 140</p> <p>7.7 Protein Flexibility and MCSS 141</p> <p>7.8 Conclusion 143</p> <p>Acknowledgments 144</p> <p>References 144</p> <p><b>Part 3: Experimental Techniques and Applications</b></p> <p><b>8 NMR-guided Fragment Assembly </b><b>149<br /></b><i>Daniel S. Sem</i></p> <p>8.1 Historical Developments Leading to NMR-based Fragment Assembly 149</p> <p>8.2 Theoretical Foundation for the Linking Effect 150</p> <p>8.3 NMR-based Identification of Fragments that Bind Proteins 152</p> <p>8.3.1 Fragment Library Design Considerations 152</p> <p>8.3.2 The “SHAPES” NMR Fragment Library 154</p> <p>8.3.3 The “SAR by NMR“ Fragment Library 156</p> <p>8.3.4 Fragment-based Classification of protein Targets 160</p> <p>8.4 NMR-based Screening for Fragment Binding 163</p> <p>8.4.1 Ligand-based Methods 163</p> <p>8.4.2 Protein-based Methods 165</p> <p>8.4.3 High-throughput Screening: Traditional and TINS 167</p> <p>8.5 NMR-guided Fragment Assembly 167</p> <p>8.5.1 SAR by NMR 167</p> <p>8.5.2 SHAPES 169</p> <p>8.5.3 Second-site Binding Using Paramagnetic Probes 169</p> <p>8.5.4 NMR-based Docking 170</p> <p>8.6 Combinatorial NMR-based Fragment Assembly 171</p> <p>8.6.1 NMR SOLVE 171</p> <p>8.6.2 NMR ACE 173</p> <p>8.7 Summary and Future Prospects 176</p> <p>References 177</p> <p><b>9 SAR by NMR: An Analysis of Potency Gains Realized Through Fragmentlinking and Fragment-elaboration Strategies for Lead Generation </b><b>181<br /></b><i>Philip J. Hajduk, Jeffrey R. Huth, and Chaohong Sun</i></p> <p>9.1 Introduction 181</p> <p>9.2 SAR by NMR 182</p> <p>9.3 Energetic Analysis of Fragment Linking Strategies 183</p> <p>9.4 Fragment Elaboration 187</p> <p>9.5 Energetic Analysis of Fragment Elaboration Strategies 188</p> <p>9.6 Summary 190</p> <p>References 191</p> <p><b>10 Pyramid: An Integrated Platform for Fragment-based Drug Discovery </b><b>193<br /></b><i>Thomas G. Davies, Rob L. M. van Montfort, Glyn Williams, and Harren Jhoti</i></p> <p>10.1 Introduction 193</p> <p>10.2 The Pyramid Process 194</p> <p>10.2.1 Introduction 194</p> <p>10.2.2 Fragment Libraries 195</p> <p>10.2.2.1 Overview 195</p> <p>10.2.2.2 Physico-chemical Properties of Library Members 196</p> <p>10.2.2.3 Drug Fragment Library 197</p> <p>10.2.2.4 Privileged Fragment Library 197</p> <p>10.2.2.5 Targeted Libraries and Virtual Screening 197</p> <p>10.2.2.6 Quality Control of Libraries 201</p> <p>10.2.3 Fragment Screening 201</p> <p>10.2.4 X-ray Data Collection 202</p> <p>10.2.5 Automation of Data Processing 203</p> <p>10.2.6 Hits and Diversity of Interactions 205</p> <p>10.2.6.1 Example 1: Compound 1 Binding to CDK2 205</p> <p>10.2.6.2 Example 2: Compound 2 Binding to p38<i>_ </i>207</p> <p>10.2.6.3 Example 3: Compound 3 Binding to Thrombin 207</p> <p>10.3 Pyramid Evolution – Integration of Crystallography and NMR 207</p> <p>10.3.1 NMR Screening Using Water-LOGSY 208</p> <p>10.3.2 Complementarity of X-ray and NMR Screening 210</p> <p>10.4 Conclusions 211</p> <p>Acknowledgments 211</p> <p>References 212</p> <p><b>11 Fragment-based Lead Discovery and Optimization Using X-Ray Crystallography, Computational Chemistry, and High-throughput Organic Synthesis </b><b>215<br /></b><i>Jeff Blaney,Vicki Nienaber, and Stephen K. Burley</i></p> <p>11.1 Introduction 215</p> <p>11.2 Overview of the SGX Structure-driven Fragment-based Lead Discovery Process 217</p> <p>11.3 Fragment Library Design for Crystallographic Screening 218</p> <p>11.3.1 Considerations for Selecting Fragments 218</p> <p>11.3.2 SGX Fragment Screening Library Selection Criteria 219</p> <p>11.3.3 SGX Fragment Screening Library Properties 220</p> <p>11.3.4 SGX Fragment Screening Library Diversity: Theoretical and Experimental Analyses 220</p> <p>11.4 Crystallographic Screening of the SGX Fragment Library 221</p> <p>11.4.1 Overview of Crystallographic Screening 222</p> <p>11.4.2 Obtaining the Initial Target Protein Structure 224</p> <p>11.4.3 Enabling Targets for Crystallographic Screening 225</p> <p>11.4.4 Fragment Library Screening at SGX-CAT 225</p> <p>11.4.5 Analysis of Fragment Screening Results 226</p> <p>11.4.6 Factor VIIa Case Study of SGX Fragment Library Screening 228</p> <p>11.5 Complementary Biochemical Screening of the SGX Fragment Library 230</p> <p>11.6 Importance of Combining Crystallographic and Biochemical Fragment Screening 232</p> <p>11.7 Selecting Fragments Hits for Chemical Elaboration 233</p> <p>11.8 Fragment Optimization 234</p> <p>11.8.1 Spleen Tyrosine Kinase Case Study 234</p> <p>11.8.2 Fragment Optimization Overview 240</p> <p>11.8.3 Linear Library Optimization 241</p> <p>11.8.4 Combinatorial Library Optimization 242</p> <p>11.9 Discussion and Conclusions 243</p> <p>11.10 Postscript: SGX Oncology Lead Generation Program 245</p> <p>References 245</p> <p><b>12 Synergistic Use of Protein Crystallography and Solution-phase NMR Spectroscopy in Structure-based Drug Design: Strategies and Tactics </b><b>249<br /></b><i>Cele Abad-Zapatero, Geoffrey F. Stamper, and Vincent S. Stoll</i></p> <p>12.1 Introduction 249</p> <p>12.2 Case 1: Human Protein Tyrosine Phosphatase 252</p> <p>12.2.1 Designing and Synthesizing Dual-site Inhibitors 252</p> <p>12.2.1.1 The Target 252</p> <p>12.2.1.2 Initial Leads 252</p> <p>12.2.1.3 Extension of the Initial Fragment 254</p> <p>12.2.1.4 Discovery and Incorporation of the Second Fragment 256</p> <p>12.2.1.5 The Search for Potency and Selectivity 257</p> <p>12.2.2 Finding More “Drug-like” Molecules 258</p> <p>12.2.2.1 Decreasing Polar Surface Area on Site 2 258</p> <p>12.2.2.2 Monoacid Replacements on Site 1 258</p> <p>12.2.2.3 Core Replacement 259</p> <p>12.3 Case 2: MurF 261</p> <p>12.3.1 Pre-filtering by Solution-phase NMR for Rapid Co-crystal Structure Determinations 261</p> <p>12.3.1.1 The Target 261</p> <p>12.3.1.2 Triage of Initial Leads 261</p> <p>12.3.1.3 Solution-phase NMR as a Pre-filter for Co-crystallization Trials 262</p> <p>12.4 Conclusion 263</p> <p>Acknowledgments 264</p> <p>References 264</p> <p><b>13 Ligand SAR Using Electrospray Ionization Mass Spectrometry </b><b>267<br /></b><i>Richard H. Griffey and Eric E. Swayze</i></p> <p>13.1 Introduction 267</p> <p>13.2 ESI-MS of Protein and RNA Targets 268</p> <p>13.2.1 ESI-MS Data 268</p> <p>13.2.2 Signal Abundances 268</p> <p>13.3 Ligands Selected Using Affinity Chromatography 271</p> <p>13.3.1 Antibiotics Binding Bacterial Cell Wall Peptides 272</p> <p>13.3.2 Kinases and GPCRs 272</p> <p>13.3.3 Src Homology 2 Domain Screening 273</p> <p>13.3.4 Other Systems 274</p> <p>13.4 Direct Observation of Ligand–Target Complexes 275</p> <p>13.4.1 Observation of Enzyme–Ligand Transition State Complexes 276</p> <p>13.4.2 Ligands Bound to Structured RNA 276</p> <p>13.4.3 ESI-MS for Linking Low-affinity Ligands 277</p> <p>13.5 Unique Features of ESI-MS Information for Designing Ligands 282</p> <p>References 282</p> <p><b>14 Tethering </b><b>285<br /></b><i>Daniel A. Erlanson, Marcus D. Ballinger, and James A. Wells</i></p> <p>14.1 Introduction 285</p> <p>14.2 Energetics of Fragment Selection in Tethering 286</p> <p>14.3 Practical Considerations 289</p> <p>14.4 Finding Fragments 289</p> <p>14.4.1 Thymidylate Synthase: Proof of Principle 289</p> <p>14.4.2 Protein Tyrosine Phosphatase 1B: Finding Fragments in a Fragile, Narrow Site 292</p> <p>14.5 Linking Fragments 293</p> <p>14.5.1 Interleukin-2: Use of Tethering to Discover Small Molecules that Bind to a Protein–Protein Interface 293</p> <p>14.5.2 Caspase-3: Finding and Combining Fragments in One Step 296</p> <p>14.5.3 Caspase-1 299</p> <p>14.6 Beyond Traditional Fragment Discovery 300</p> <p>14.6.1 Caspase-3: Use of Tethering to Identify and Probe an Allosteric Site 300</p> <p>14.6.2 GPCRs: Use of Tethering to Localize Hits and Confirm Proposed Binding Models 303</p> <p>14.7 Related Approaches 306</p> <p>14.7.1 Disulfide Formation 306</p> <p>14.7.2 Imine Formation 307</p> <p>14.7.3 Metal-mediated 307</p> <p>14.8 Conclusions 308</p> <p>Acknowledgments 308</p> <p>References 308</p> <p><b>Part 4: Emerging Technologies in Chemistry</b></p> <p><b>15 Click Chemistry for Drug Discovery </b><b>313<br /></b><i>Stefanie Röper and Hartmuth C. Kolb</i></p> <p>15.1 Introduction 313</p> <p>15.2 Click Chemistry Reactions 314</p> <p>15.3 Click Chemistry in Drug Discovery 316</p> <p>15.3.1 Lead Discovery Libraries 316</p> <p>15.3.2 Natural Products Derivatives and the Search for New Antibiotics 317</p> <p>15.3.3 Synthesis of Neoglycoconjugates 320</p> <p>15.3.4 HIV Protease Inhibitors 321</p> <p>15.3.5 Synthesis of Fucosyltranferase Inhibitor 323</p> <p>15.3.6 Glycoarrays 324</p> <p>15.4 <i>In Situ </i>Click Chemistry 325</p> <p>15.4.1 Discovery of Highly Potent AChE by <i>In Situ </i>Click Chemistry 325</p> <p>15.5 Bioconjugation Through Click Chemistry 328</p> <p>15.5.1 Tagging of Live Organisms and Proteins 328</p> <p>15.5.2 Activity-based Protein Profiling 330</p> <p>15.5.3 Labeling of DNA 332</p> <p>15.5.4 Artificial Receptors 333</p> <p>15.6 Conclusion 334</p> <p>References 335</p> <p><b>16 Dynamic Combinatorial Diversity in Drug Discovery </b><b>341<br /></b><i>Matthias Hochgürtel and Jean-Marie Lehn</i></p> <p>16.1 Introduction 341</p> <p>16.2 Dynamic Combinatorial Chemistry –The Principle 342</p> <p>16.3 Generation of Diversity: DCC Reactions and Building Blocks 343</p> <p>16.4 DCC Methodologies 346</p> <p>16.5 Application of DCC to Biological Systems 347</p> <p>16.5.1 Enzymes as Targets 349</p> <p>16.5.2 Receptor Proteins as Targets 355</p> <p>16.5.3 Nucleotides as Targets 357</p> <p>16.6 Summary and Outlook 359</p> <p>References 361</p> <p>Index 365</p>
‘…this is indispensable reading for drug discovery researchers in the pharma and biotech sector.’ (<i>Anticancer Research</i>, 2007)
Wolfgang Jahnke is a Senior Research Investigator at the Novartis Institutes for Biomedical Research in Basel, Switzerland, where he leads the Fragment-Based Screening technology platform. During his ten years at Novartis, he has received several honors, among them the appointment as Scientific Expert, and the Leading Scientist Award. Dr. Jahnke received his PhD from the TU Munchen, working with Horst Kessler on the development and application of novel NMR methods. He subsequently carried out research with Peter Wright at the Scripps Research Institute in La Jolla.<br> Daniel A. Erlanson joined Sunesis Pharmaceuticals at its inception in 1998. He has been instrumental in inventing its drug-discovery technologies and using these to design leads against a variety of disease targets. Prior to Sunesis, Dr. Erlanson developed methods to conformationally constrain peptides as a post-doctoral fellow with James A. Wells at Genentech. Dr. Erlanson received his PhD in chemistry from Harvard University in the laboratory of Gregory L. Verdine, and his BA in chemistry from Carleton College, MN.<br>
Based on recent successes in the modular design of pharmaceutically active ligands, the concept and technology of fragment-based design has quickly pervaded the research departments of pharma companies, large and small. Drug developers everywhere are currently struggling to keep ahead of the competition by applying these methods to speed up the drug discovery.<br> This first systematic summary of the impact of such approaches on the drug development process provides essential information that was previously unavailable. Adopting a practice-oriented approach, this book by professionals for professionals is indispensable for drug developers in the pharma and biotech sector who need to keep abreast of the latest technologies and strategies in pharmaceutical ligand design. Clearly divided into sections on ligand design, spectroscopic techniques, and screening and drug discovery, the text is backed by numerous case studies.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €