Details

Foundations of Image Science


Foundations of Image Science


Wiley Series in Pure and Applied Optics 1. Aufl.

von: Harrison H. Barrett, Kyle J. Myers

227,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.06.2013
ISBN/EAN: 9781118772775
Sprache: englisch
Anzahl Seiten: 1584

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Winner of the 2006 Joseph W. Goodman Book Writing Award!</b></p> <p><b>A comprehensive treatment of the principles, mathematics, and statistics of image science</b></p> <p>In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world.</p> <p><i>Foundations of Image Science</i> presents a comprehensive treatment of the principles, mathematics, and statistics needed to understand and evaluate imaging systems. The book is the first to provide a thorough treatment of the continuous-to-discrete, or CD, model of digital imaging. Foundations of Image Science emphasizes the need for meaningful, objective assessment of image quality and presents the necessary tools for this purpose. Approaching the subject within a well-defined theoretical and physical context, this landmark text presents the mathematical underpinnings of image science at a level that is accessible to graduate students and practitioners working with imaging systems, as well as well-motivated undergraduate students.</p> <p>Destined to become a standard text in the field, <i>Foundations of Image Science</i> covers:</p> <ul> <li>Mathematical Foundations: Examines the essential mathematical foundations of image science</li> <li>Image Formation–Models and Mechanisms: Presents a comprehensive and unified treatment of the mathematical and statistical principles of imaging, with an emphasis on digital imaging systems and the use of SVD methods</li> <li>Image Quality: Provides a systematic exposition of the methodology for objective or task-based assessment of image quality</li> <li>Applications: Presents detailed case studies of specific direct and indirect imaging systems and provides examples of how to apply the various mathematical tools covered in the book</li> <li>Appendices: Covers the prerequisite material necessary for understanding the material in the main text, including matrix algebra, complex variables, and the basics of probability theory</li> </ul>
<b>1. VECTORS AND OPERATORS.</b> <p>1.1 LINEAR VECTOR SPACES.</p> <p>1.1.1 Vector addition and scalar multiplication.</p> <p>1.1.2 Metric spaces and norms.</p> <p>1.1.3 Sequences of vectors and complete metric spaces.</p> <p>1.1.4 Scalar products and Hilbert space.</p> <p>1.1.5 Basis vectors.</p> <p>1.1.6 Continuous bases.</p> <p>1.2 TYPES OF OPERATORS.</p> <p>1.2.1 Functions and functionals.</p> <p>1.2.2 Integral transforms.</p> <p>1.2.3 Matrix operators.</p> <p>1.2.4 Continuous-to-discrete mappings.</p> <p>1.2.5 Differential operators.</p> <p>1.3 HILBERT-SPACE OPERATORS.</p> <p>1.3.1 Range and domain.</p> <p>1.3.2 Linearity, boundedness and continuity.</p> <p>1.3.3 Compactness.</p> <p>1.3.4 Inverse operators.</p> <p>1.3.5 Adjoint operators.</p> <p>1.3.6 Projection operators.</p> <p>1.3.7 Outer products.</p> <p>1.4 EIGENANALYSIS.</p> <p>1.4.1 Eigenvectors and eigenvalue spectra.</p> <p>1.4.2 Similarity transformations.</p> <p>1.4.3 Eigenanalysis infinite-dimensional spaces.</p> <p>1.4.4 Eigenanalysis of Hermitian operators.</p> <p>1.4.5 Diago nalization of a Hermitian operator.</p> <p>1.4.6 Simultaneo us diagonalization of Hermitian matrices.</p> <p>1.5 SINGULAR-VALUE DECOMPOSITION.</p> <p>1.5.1 Definition and properties.</p> <p>1.5.2 Subspaces.</p> <p>1.5.3 SVD representation of vectors and operators.</p> <p>1.6 MOORE-PENROSE PSEUDOINVERSE.</p> <p>1.6.1 Penrose equations.</p> <p>1.6.2 Pseudoinverses and SVD.</p> <p>1.6.3 Properties of the pseudoinverse.</p> <p>1.6.4 Pseudoinverses and projection operators.</p> <p>1.7 PSEUDOINVERSES AND LINEAR EQUATIONS.</p> <p>1.7.1 Nature of solutions of linear equations.</p> <p>1.7.2 Existence and uniqueness of exact solutions.</p> <p>1.7.3 Explicit solutions for consistent data.</p> <p>1.7.4 Least-squares solutions.</p> <p>1.7.5 Minimum-norm solutions.</p> <p>1.7.6 Iterative calculation of pseudoinverse solution.</p> <p>1.8 REPRODUCING-KERNEL HILBERT SPACES.</p> <p>1.8.1 Positive-definite Hermitian operators.</p> <p>1.8.2 Nonnegative-definite Hermitian operators.</p> <p><b>2. THE DIRAC DELTA AND OTHER GENERALIZED FUNCTIONS.</b></p> <p>2.1 THEORY OF DISTRIBUTIONS.</p> <p>2.1.1 Basic concepts.</p> <p>2.1.2 Well-behaved functions.</p> <p>2.1.3 Approximation of other functions.</p> <p>2.1.4 Formal definition of distributions.</p> <p>2.1.5 Properties of distributions.</p> <p>2.1.6 Tempered distributions.</p> <p>2.2 ONE-DIMENSIONAL DELTA FUNCTION.</p> <p>2.2.1 Intuitive definition and elementary properties.</p> <p>2.2.2 Limiting representations.</p> <p>2.2.3 Distributional approach.</p> <p>2.2.4 Derivatives of delta functions.</p> <p>2.2.5 A synthesis.</p> <p>2.2.6 Delta functions as basis vectors.</p> <p>2.3 OTHER GENERALIZED FUNCTIONS IN 1D.</p> <p>2.3.1 Generalized functions as limits.</p> <p>2.3.2 Generalized functions related to the delta function.</p> <p>2.3.3 Other point singularities.</p> <p>2.4 MULTIDIMENSIONAL DELTA FUNCTIONS.</p> <p>2.4.1 Multidimensional distributions.</p> <p>2.4.2 Multidimensional delta functions.</p> <p>2.4.3 Delta functions in polar coordinates.</p> <p>2.4.4 Line masses and plane masses.</p> <p>2.4.5 Multidimensional derivatives of delta functions.</p> <p>2.4.6 Other point singularities.</p> <p>2.4.7 Angular delta functions.</p> <p><b>3. FOURIER ANALYSIS.</b></p> <p>3.1 SINES, COSINES AND COMPLEX EXPONENTIALS.</p> <p>3.1.1 Orthogonality on a finite interval.</p> <p>3.1.2 Complex exponentials.</p> <p>3.1.3 Orthogonality on the infinite interval.</p> <p>3.1.4 Discrete orthogonality.</p> <p>3.1.5 The view from the complex plane.</p> <p>3.2 FOURIER SERIES.</p> <p>3.2.1 Basic concepts.</p> <p>3.2.2 Convergence of the Fourier series.</p> <p>3.2.3 Properties of the Fourier coefficients.</p> <p>3.3 1D FOURIER TRANSFORM.</p> <p>3.3.1 Basic concepts.</p> <p>3.3.2 Convergence issues.</p> <p>3.3.3 Unitarity of the Fourier operator.</p> <p>3.3.4 Fourier transforms of generalized functions.</p> <p>3.3.5 Properties of the 1D Fourier transform.</p> <p>3.3.6 Convolution and correlation.</p> <p>3.3.7 Fourier transforms of some special functions.</p> <p>3.3.8 Relation between Fourier series and Fourier transforms.</p> <p>3.3.9 Analyticity of Fourier transforms.</p> <p>3.3.10 Related transforms.</p> <p>3.4 MULTIDIMENSIONAL FOURIER TRANSFORMS.</p> <p>3.4.1 Basis functions.</p> <p>3.4.2 Definitions and elementary properties.</p> <p>3.4.3 Multidimensional convolution and correlation.</p> <p>3.4.4 Rotationally symmetric functions.</p> <p>3.4.5 Some special functions and their transforms.</p> <p>3.4.6 Multidimensional periodicity.</p> <p>3.5 SAMPLING THEORY.</p> <p>3.5.1 Bandlimited functions.</p> <p>3.5.2 Reconstruction of a bandlimited function from uniform samples.</p> <p>3.5.3 Aliasing.</p> <p>3.5.4 Sampling in frequency space.</p> <p>3.5.5 Multidimensional sampling.</p> <p>3.5.6 Sampling with a finite aperture.</p> <p>3.6 DISCRETE FOURIER TRANSFORM.</p> <p>3.6.1 Motivation and definitions.</p> <p>3.6.2 Basic properties of the DFT.</p> <p>3.6.3 Relation between discrete and continuous Fourier transforms.</p> <p>3.6.4 Discrete-space Fourier Transform.</p> <p>3.6.5 Fast Fourier Transform.</p> <p>3.6.6 Multidimensional DFTs.</p> <p><b>4. SERIES EXPANSIONS AND INTEGRAL TRANSFORMS.</b></p> <p>4.1 EXPANSIONS IN ORTHOGONAL FUNCTIONS.</p> <p>4.1.1 Basic concepts.</p> <p>4.1.2 Orthogonal polynomials.</p> <p>4.1.3 Sturm-Liouville theory.</p> <p>4.1.4 Classical orthogonal polynomials and related functions.</p> <p>4.1.5 Prolate spheroidal wavefunctions.</p> <p>4.2 CLASSICAL INTEGRAL TRANSFORMS.</p> <p>4.2.2 Mellin transform.</p> <p>4.2.3 Z transform.</p> <p>4.2.4 Hilbert transform.</p> <p>4.2.5 Higher-order Hankel transforms.</p> <p>4.3 FRESNEL INTEGRALS AND TRANSFORMS.</p> <p>4.3.1 Fresnel integrals.</p> <p>4.3.2 Fresnel transforms.</p> <p>4.3.3 Chirps and Fourier transforms.</p> <p>4.4 RADON TRANSFORM.</p> <p>4.4.1 2D Radon transform and its adjoint.</p> <p>4.4.2 Central-slice theorem.</p> <p>4.4.3 Filtered backprojection.</p> <p>4.4.4 Unfiltered backprojection.</p> <p>4.4.5 Radon transform in higher dimensions.</p> <p>4.4.6 Radon transform in signal processing.</p> <p><b>5. MIXED REPRESENTATIONS.</b></p> <p>5.1 LOCAL SPECTRAL ANALYSIS.</p> <p>5.1.1 Local Fourier transforms.</p> <p>5.1.2 Uncertainty.</p> <p>5.1.3 Local frequency.</p> <p>5.1.4 Gabor's signal expansion.</p> <p>5.2 BILINEAR TRANSFORMS.</p> <p>5.2.1 Wigner distribution function.</p> <p>5.2.2 Ambiguity functions.</p> <p>5.2.3 Fractional Fourier transforms.</p> <p>5.3 WAVELETS.</p> <p>5.3.1 Mother wavelets and scaling functions.</p> <p>5.3.2 Continuous wavelet transform.</p> <p>5.3.3 Discrete wavelet transform.</p> <p>5.3.4 Multiresolution analysis.</p> <p><b>6. GROUP THEORY.</b></p> <p>6.1 BASIC CONCEPTS.</p> <p>6.1.1 Definition of a group.</p> <p>6.1.2 Group multiplication tables.</p> <p>6.1.3 Isomorphism and homomorphism.</p> <p>6.2 SUBGROUPS AND CLASSES.</p> <p>6.2.1 Definitions.</p> <p>6.2.2 Examples.</p> <p>6.3 GROUP REPRESENTATIONS.</p> <p>6.3.1 Matrices that obey the multiplication table.</p> <p>6.3.2 Irreducible representations.</p> <p>6.3.3 Characters.</p> <p>6.3.4 Unitary irreducible representations and orthogonality.</p> <p>properties.</p> <p>6.4 SOME FINITE GROUPS.</p> <p>6.4.1 Cyclic groups.</p> <p>6.4.2 Dihedral groups.</p> <p>6.5 CONTINUOUS GROUPS.</p> <p>6.5.1 Basic properties.</p> <p>6.5.2 Linear, orthogonal and unitary groups.</p> <p>6.5.3 Abelian and non-Abelian Lie groups.</p> <p>6.6 GROUPS OF OPERATORS ON A HILBERT SPACE.</p> <p>6.6.1 Geometrical transformations of functions.</p> <p>6.6.2 Invariant subspaces.</p> <p>6.6.3 Irreducible subspaces.</p> <p>6.6.4 Orthogonality of basis functions.</p> <p>6.7 QUANTUM MECHANICS AND IMAGE SCIENCE.</p> <p>6.7.1 A smattering of quantum mechanics.</p> <p>6.7.2 Connection with image science.</p> <p>6.7.3 Symmetry group of the Hamiltonian.</p> <p>6.7.4 Symmetry and degeneracy.</p> <p>6.7.5 Reducibility and accidental degeneracy.</p> <p>6.7.6 Parity.</p> <p>6.7.7 Rotational symmetry in three dimensions.</p> <p>6.8 FUNCTIONS AND TRANSFORMS ON GROUPS.</p> <p>6.8.1 Functions on a finite group.</p> <p>6.8.2 Extension to infinite groups.</p> <p>6.8.3 Convolutions on groups.</p> <p>6.8.4 Fourier transforms on groups.</p> <p>6.8.5 Wavelets revisited.</p> <p><b>7. DETERMINISTIC DESCRIPTIONS OF IMAGING SYSTEMS.</b></p> <p>7.1 OBJECTS AND IMAGES.</p> <p>7.1.1 Objects and images as functions.</p> <p>7.1.2 Objects and images as infinite-dimensional vectors.</p> <p>7.1.3 Objects and images as finite-dimensional vectors.</p> <p>7.1.4 Representation accuracy.</p> <p>7.1.5 Uniform translates.</p> <p>7.1.6 Other representations.</p> <p>7.2 LINEAR CONTINUOUS-TO-CONTINUOUS SYSTEMS.</p> <p>7.2.1 General shift-variant systems.</p> <p>7.2.2 Adjoint operators and SVD.</p> <p>7.2.3 Shift-invariant systems.</p> <p>7.2.4 Eigenanalysis of LSIV systems.</p> <p>7.2.5 Singular-value decomposition of LSIV systems.</p> <p>7.2.6 Transfer functions.</p> <p>7.2.7 Magnifiers.</p> <p>7.2.8 Approximately shift-invariant systems.</p> <p>7.2.9 Rotationally symmetric systems.</p> <p>7.2.10 Axial systems.</p> <p>7.3 LINEAR CONTINUOUS-TO-DISCRETE SYSTEMS.</p> <p>7.3.1 System operator.</p> <p>7.3.2 Adjoint operator and SVD.</p> <p>7.3.3 Fourier description.</p> <p>7.3.4 Sampled LSIV systems.</p> <p>7.3.5 Mixed CC-CD systems.</p> <p>7.3.6 Discrete-to-continuous systems.</p> <p>7.4 LINEAR DISCRETE-TO-DISCRETE SYSTEMS.</p> <p>7.4.1 System matrix.</p> <p>7.4.2 Adjoint operator and SVD.</p> <p>7.4.3 Image errors.</p> <p>7.4.4 Discrete representations of shift-invariant system.</p> <p>7.5 NONLINEAR SYSTEMS.</p> <p>7.5.1 Point nonlinearities.</p> <p>7.5.2 Nonlocal nonlinearities.</p> <p>7.5.3 Object-dependent system operators.</p> <p>7.5.4 Postdetection nonlinear operations.</p> <p><b>8. STOCHASTIC DESCRIPTIONS OF OBJECTS AND IMAGES.</b></p> <p>8.1 RANDOM VECTORS.</p> <p>8.1.1 Basic concepts.</p> <p>8.1.2 Expectations.</p> <p>8.1.3 Covariance and correlation matrices.</p> <p>8.1.4 Characteristic functions.</p> <p>8.1.5 Transformations of random vectors.</p> <p>8.1.6 Eigenanalysis of covariance matrices.</p> <p>8.2 RANDOM PROCESSES.</p> <p>8.2.1 Definitions and basic concepts.</p> <p>8.2.2 Averages of random processes.</p> <p>8.2.3 Characteristic functionals.</p> <p>8.2.4 Correlation analysis.</p> <p>8.2.5 Spectral analysis.</p> <p>8.2.6 Linear filtering of random processes.</p> <p>8.2.7 Eigenanalysis of the autocorrelation operator.</p> <p>8.2.8 Discrete random processes.</p> <p>8.3 NORMAL RANDOM VECTORS AND PROCESSES.</p> <p>8.3.1 Probability density functions.</p> <p>8.3.2 The characteristic function.</p> <p>8.3.3 Marginal densities and linear transformations.</p> <p>8.3.4 Central-limit theorem.</p> <p>8.3.5 Normal random processes.</p> <p>8.3.6 Complex Gaussian random fields.</p> <p>8.4 STOCHASTIC MODELS FOR OBJECTS.</p> <p>8.4.1 Probability density functions in Hilbert space.</p> <p>8.4.2 Multipoint densities.</p> <p>8.4.3 Normal models.</p> <p>8.4.4 Texture models.</p> <p>8.4.5 Signals and backgrounds.</p> <p>8.5 STOCHASTIC MODELS FOR IMAGES.</p> <p>8.5.1 Linear systems.</p> <p>8.5.2 Conditional statistics for a single object.</p> <p>8.5.3 Effects of object randomness.</p> <p>8.5.4 Signals and backgrounds in image space.</p> <p><b>9. DIFFRACTION THEORY AND IMAGING.</b></p> <p>9.1 WAVE EQUATIONS.</p> <p>9.1.1 Maxwell's equations.</p> <p>9.1.2 Maxwell's equations in the Fourier domain.</p> <p>9.1.3 Material media.</p> <p>9.1.4 Time-dependent wave equations.</p> <p>9.1.5 Time-independent wave equations.</p> <p>9.2 PLANE WAVES AND SPHERICAL WAVES.</p> <p>9.2.1 Plane waves.</p> <p>9.2.2 Spherical waves.</p> <p>9.3 GREEN'S FUNCTIONS.</p> <p>9.3.1 Differential equations for the Green's functions.</p> <p>9.3.2 Free-space time-dependent Green's function.</p> <p>9.3.3 Free-space GF for the Helmholtz and Poisson equations.</p> <p>9.3.4 Defined-source problems.</p> <p>9.3.5 Boundary-value problems.</p> <p>9.4 DIFFRACTION BY A PLANAR APERTURE.</p> <p>9.4.1 The surface at infinity.</p> <p>9.4.2 Kirchhoff boundary conditions.</p> <p>9.4.3 Application of Green's theorem.</p> <p>9.4.4 Diffraction as a 2D linear filter.</p> <p>9.4.5 Some useful approximations.</p> <p>9.4.6 Fresnel dffraction.</p> <p>9.4.7 Fraunhofer diffraction.</p> <p>9.5 DIFFRACTION IN THE FREQUENCY DOMAIN.</p> <p>9.5.1 Angular spectrum.</p> <p>9.5.2 Fresnel and Fraunhofer approximations.</p> <p>9.5.3 Beams.</p> <p>9.5.4 Reection and refraction of light.</p> <p>9.6 IMAGING OF POINT OBJECTS.</p> <p>9.6.1 The ideal thin lens.</p> <p>9.6.2 Imaging of a monochromatic point source.</p> <p>9.6.3 Transmittance of an aberrated lens.</p> <p>9.6.4 Rotationally symmetric lenses.</p> <p>9.6.5 Field curvature and distortion.</p> <p>9.6.6 Probing the pupil.</p> <p>9.6.7 Interpretation of the other Seidel aberrations.</p> <p>9.7 IMAGING OF EXTENDED PLANAR OBJECTS.</p> <p>9.7.1 Monochromatic objects and a simple lens.</p> <p>9.7.2 A more complicated imaging system.</p> <p>9.7.3 Random fields and coherence.</p> <p>9.7.4 Quasimonochromatic imaging.</p> <p>9.7.5 Spatially incoherent, quasimonochromatic imaging.</p> <p>9.7.6 Polychromatic, incoherent imaging.</p> <p>9.7.7 Partially coherent imaging.</p> <p>9.8 VOLUME DIFFRACTION AND 3D IMAGING.</p> <p>9.8.1 The Born approximation.</p> <p>9.8.2 The Rytov approximation.</p> <p>9.8.3 Fraunhofer diffraction from volume objects.</p> <p>9.8.4 Coherent 3D imaging.</p> <p><b>10. ENERGY TRANSPORT AND PHOTONS.</b></p> <p>10.1 ELECTROMAGNETIC ENERGY FLOW AND DETECTION.</p> <p>10.1.1 Energy ow in classical electrodynamics.</p> <p>10.1.2 Plane waves.</p> <p>10.1.3 Photons.</p> <p>10.1.4 Physics of photodetection.</p> <p>10.1.5 What do real detectors detect?.</p> <p>10.2 RADIOMETRIC QUANTITIES AND UNITS.</p> <p>10.2.1 Self-luminous surface objects.</p> <p>10.2.2 Self-luminous volume objects.</p> <p>10.2.3 Surface reection and scattering.</p> <p>10.2.4 Transmissive objects.</p> <p>10.2.5 Cross sections.</p> <p>10.2.6 Distribution function.</p> <p>10.2.7 Radiance in physical optics and quantum optics.</p> <p>10.3 THE BOLTZMANN TRANSPORT EQUATION.</p> <p>10.3.1 Derivation of the Boltzmann equation.</p> <p>10.3.2 Steady-state solutions in non-absorbing media.</p> <p>10.3.3 Steady-state solutions in absorbing media.</p> <p>10.3.4 Scattering effects.</p> <p>10.3.5 Spherical harmonics.</p> <p>10.3.6 Elastic scattering and diffusion.</p> <p>10.3.7 Inelastic (Compton) scattering.</p> <p>10.4 TRANSPORT THEORY AND IMAGING.</p> <p>10.4.1 The general imaging equation.</p> <p>10.4.2 Pinhole imaging.</p> <p>10.4.3 Optical imaging of planar objects.</p> <p>10.4.4 Adjoint methods.</p> <p>10.4.5 Monte Carlo methods.</p> <p><b>11. POISSON STATISTICS AND PHOTON COUNTING.</b></p> <p>11.1 POISSON RANDOM VARIABLES.</p> <p>11.1.1 Poisson and independence.</p> <p>11.1.2 Poisson and rarity.</p> <p>11.1.3 Binomial selection of a Poisson.</p> <p>11.1.4 Doubly stochastic Poisson random variables.</p> <p>11.2 POISSON RANDOM VECTORS.</p> <p>11.2.1 Multivariate Poisson statistics.</p> <p>11.2.2 Doubly stochastic multivariate statistics.</p> <p>11.3 RANDOM POINT PROCESSES.</p> <p>11.3.1 Temporal point processes.</p> <p>11.3.2 Spatial point processes.</p> <p>11.3.3 Mean and autocorrelation of point processes.</p> <p>11.3.4 Relation between Poisson random vectors and processes.</p> <p>11.3.5 Karhunen-Loéve analysis of Poisson processes.</p> <p>11.3.6 Doubly stochastic spatial Poisson random processes.</p> <p>11.3.7 Doubly stochastic temporal Poisson random processes.</p> <p>11.3.8 Point processes in other domains.</p> <p>11.3.9 Filtered point processes.</p> <p>11.3.10 Characteristic functionals of filtered point processes.</p> <p>11.3.11 Spectral properties of point processes.</p> <p>11.4 RANDOM AMPLIFICATION.</p> <p>11.4.1 Random amplification in single-element detectors.</p> <p>11.4.2 Random amplification and generating functions.</p> <p>11.4.3 Random amplification of point processes.</p> <p>11.4.4 Spectral analysis.</p> <p>11.4.5 Random amplification in arrays.</p> <p>11.5 QUANTUM MECHANICS OF PHOTON COUNTING.</p> <p>11.5.1 Coherent states.</p> <p>11.5.2 Density operators.</p> <p>11.5.3 Counting statistics.</p> <p><b>12. NOISE IN DETECTORS.</b></p> <p>12.1 PHOTON NOISE AND SHOT NOISE IN PHOTODIODES.</p> <p>12.1.1 Vacuum photodiodes.</p> <p>12.1.2 Basics of semiconductor detectors.</p> <p>12.1.3 Shot noise in semiconductor photodiodes.</p> <p>12.2 OTHER NOISE MECHANISMS.</p> <p>12.2.1 Thermal noise.</p> <p>12.2.2 Generation-recombination noise.</p> <p>12.2.3 1/f noise.</p> <p>12.2.4 Noise in gated integrators.</p> <p>12.2.5 Arrays of noisy photodetectors.</p> <p>12.3 X-RAY AND GAMMA-RAY DETECTORS.</p> <p>12.3.1 Interaction mechanisms.</p> <p>12.3.2 Photon-counting semiconductor detectors.</p> <p>12.3.3 Semiconductor detector arrays.</p> <p>12.3.4 Position and energy estimation with semiconductor detectors.</p> <p>12.3.5 Scintillation cameras.</p> <p>12.3.6 Position and energy estimation with scintillation cameras.</p> <p>12.3.7 Imaging characteristics of photon-counting detectors.</p> <p>12.3.8 Integrating detectors.</p> <p>12.3.9 K x rays and Compton scattering.</p> <p><b>13. STATISTICAL DECISION THEORY.</b></p> <p>13.1 BASIC CONCEPTS.</p> <p>13.1.1 Kinds of decisions.</p> <p>13.2 CLASSIFICATION TASKS.</p> <p>13.2.1 Partitioning the data space.</p> <p>13.2.2 Binary decision outcomes.</p> <p>13.2.3 The ROC curve.</p> <p>13.2.4 Performance measures for binary tasks.</p> <p>13.2.5 Computation of AUC.</p> <p>13.2.6 The likelihood ratio and the ideal observer.</p> <p>13.2.7 Statistical properties of the likelihood ratio.</p> <p>13.2.8 Ideal observer with Gaussian statistics.</p> <p>13.2.9 Ideal observer with non-Gaussian statistics.</p> <p>13.2.10 Signal variability and the ideal observer.</p> <p>13.2.11 Background variability and the ideal observer.</p> <p>13.2.12 The optimal linear discriminant.</p> <p>13.2.13 Detectability in continuous data.</p> <p>13.3 ESTIMATION THEORY.</p> <p>13.3.1 Basic concepts.</p> <p>13.3.2 MSE in digital imaging.</p> <p>13.3.3 Bayesian estimation.</p> <p>13.3.4 Maximum-likelihood estimation.</p> <p>13.3.5 Likelihood and Fisher information.</p> <p>13.3.6 Properties of ML estimators.</p> <p>13.3.7 Other classical estimators.</p> <p>13.3.8 Nuisance parameters.</p> <p>13.3.9 Hybrid detection/estimation tasks.</p> <p><b>14. IMAGE QUALITY.</b></p> <p>14.1 SURVEY OF APPROACHES.</p> <p>14.1.1 Subjective assessment.</p> <p>14.1.2 Fidelity measures.</p> <p>14.1.3 JND models.</p> <p>14.1.4 Information-theoretic assessment.</p> <p>14.1.5 Objective assessment of image quality.</p> <p>14.2 HUMAN OBSERVERS AND CLASSIFICATION TASKS.</p> <p>14.2.1 Methods for investigating the visual system.</p> <p>14.2.2 Modified ideal-observer models.</p> <p>14.2.3 Psychophysical methods for image evaluation.</p> <p>14.2.4 Estimation of figures of merit.</p> <p>14.3 MODEL OBSERVERS AND CLASSIFICATION TASKS.</p> <p>14.3.1 General considerations.</p> <p>14.3.2 Linear observers.</p> <p>14.3.3 Ideal observers.</p> <p>14.3.4 Estimation tasks.</p> <p>14.4 ESTIMATION TASKS.</p> <p>14.4.1 Performance metrics.</p> <p>14.4.2 Estimation of linear parameters.</p> <p>14.4.3 Estimation of nonlinear parameters.</p> <p>14.4.4 System optimization for estimation tasks.</p> <p>14.5 SOURCES OF IMAGES.</p> <p>14.5.1 Deterministic simulation of objects.</p> <p>14.5.2 Stochastic simulation of objects.</p> <p>14.5.3 Deterministic simulation of image formation.</p> <p>14.5.4 Stochastic simulation of image formation.</p> <p>14.4.5 Gold standards.</p> <p><b>15. INVERSE PROBLEMS.</b></p> <p>15.1 BASIC CONCEPTS.</p> <p>15.1.1 Classification of inverse problems.</p> <p>15.1.2 The discretization dilemma.</p> <p>15.1.3 Estimability.</p> <p>15.1.4 Positivity.</p> <p>15.1.5 Choosing the best algorithm.</p> <p>15.2 LINEAR RECONSTRUCTION OPERATORS.</p> <p>15.2.1 Matrix operators for estimation of expansion coefficients.</p> <p>15.2.2 Reconstruction of functions from discrete data.</p> <p>15.2.3 Reconstruction from Fourier samples.</p> <p>15.2.4 Discretization of analytic inverses.</p> <p>15.2.5 More on analytic inverses.</p> <p>15.2.6 Noise with linear reconstruction operators.</p> <p>15.3 IMPLICIT ESTIMATES.</p> <p>15.3.1 Functional minimization.</p> <p>15.3.2 Data-agreement functionals.</p> <p>15.3.3 Regularizing functionals.</p> <p>15.3.4 Effects of positivity.</p> <p>15.3.5 Reconstruction without discretization.</p> <p>15.3.6 Resolution and noise in implicit estimates.</p> <p>15.4 ITERATIVE ALGORITHMS.</p> <p>15.4.1 Linear iterative algorithms.</p> <p>15.4.2 Noise propagation in linear algorithms.</p> <p>15.4.3 Search algorithms for functional minimization.</p> <p>15.4.4 Nonlinear constraints and fixed-point iterations.</p> <p>15.4.5 Projections onto convex sets.</p> <p>15.4.6 The MLEM algorithm.</p> <p>15.4.7 Noise propagation in nonlinear algorithms.</p> <p>15.4.8 Stochastic algorithms.</p> <p><b>16. PLANAR IMAGING WITH X RAYS AND GAMMA RAYS.</b></p> <p>16.1 DIGITAL RADIOGRAPHY.</p> <p>16.1.1 The source and the object.</p> <p>16.1.2 X-ray detection.</p> <p>16.1.3 Scattered radiation.</p> <p>16.1.4 Deterministic properties of shadow images.</p> <p>16.1.5 Stochastic properties.</p> <p>16.1.6 Image quality: Detection tasks.</p> <p>16.1.7 Image quality: Estimation tasks.</p> <p>16.2 PLANAR NUCLEAR MEDICINE.</p> <p>16.2.1 Basic issues.</p> <p>16.2.2 Image formation.</p> <p>16.2.3 The detector.</p> <p>16.2.4 Stochastic properties.</p> <p>16.2.5 Image quality: Classification tasks.</p> <p>16.2.6 Image quality: Estimation tasks.</p> <p><b>17. EMISSION COMPUTED TOMOGRAPHY.</b></p> <p>17.1 FORWARD PROBLEMS.</p> <p>17.1.1 CD formulations for parallel-beam SPECT.</p> <p>17.1.2 Equally spaced angles.</p> <p>17.1.3 Fourier analysis in the CD formulation.</p> <p>17.1.4 The 2D Radon transform and parallel-beam SPECT.</p> <p>17.1.5 3D transforms and cone-beam SPECT.</p> <p>17.1.6 Attenuation.</p> <p>17.2 INVERSE PROBLEMS.</p> <p>17.2.1 SVD of the 2D Radon transform.</p> <p>17.2.2 Inverses and pseudoinverses in 2D.</p> <p>17.2.3 Inversion of the 3D x-ray transform.</p> <p>17.2.4 Inversion of attenuated transforms.</p> <p>17.2.5 Discretization of analytic reconstruction algorithms.</p> <p>17.2.6 Matrices for iterative methods.</p> <p>17.3 NOISE AND IMAGE QUALITY.</p> <p>17.3.1 Noise in the data.</p> <p>17.3.2 Noise in reconstructed images.</p> <p>17.3.3 Artifacts.</p> <p>17.3.4 Image quality.</p> <p><b>18. SPECKLE.</b></p> <p>18.1 BASIC CONCEPTS.</p> <p>18.1.1 Elementary statistical considerations.</p> <p>18.1.2 Speckle in imaging.</p> <p>18.2 SPECKLE IN A NONIMAGING SYSTEMS.</p> <p>18.2.1 Description of the ground glass.</p> <p>18.2.2 Some simplifying assumptions.</p> <p>18.2.3 Propagation of characteristic functionals.</p> <p>18.2.4 Central-limit theorem.</p> <p>18.2.5 Statistics of the irradiance.</p> <p>18.3 SPECKLE IN AN IMAGING SYSTEM.</p> <p>18.3.1 The imaging system.</p> <p>18.3.2 Propagation of characteristic functionals.</p> <p>18.3.3 Effect of the detector.</p> <p>18.3.4 Point scatterers.</p> <p>18.4 NOISE AND IMAGE QUALITY.</p> <p>18.4.1 Measurement noise.</p> <p>18.4.2 Random objects.</p> <p>18.4.3 Task performance.</p> <p>18.5 POINT-SCATTERINGMODELSANDNON-GAUSSIANSPECKLE.</p> <p>18.5.1 Object fields and objects.</p> <p>18.5.2 Image fields.</p> <p>18.5.3 Univariate statistics of the image field and irradiance.</p> <p>18.6 COHERENT RANGING.</p> <p>18.6.1 System configurations.</p> <p>18.6.2 Deterministic analysis.</p> <p>18.6.3 Statistical analysis.</p> <p>18.6.4 Task performance.</p> <p><b>19. IMAGING IN FOURIER SPACE.</b></p> <p>19.1 FOURIER MODULATORS.</p> <p>19.1.1 Data acquisition.</p> <p>19.1.2 Noise.</p> <p>19.1.3 Reconstruction.</p> <p>19.1.4 Image quality.</p> <p>19.2 INTERFEROMETERS.</p> <p>19.2.1 Young's double-slit experiment.</p> <p>19.2.2 Visibility estimation.</p> <p>19.2.3 Michelson stellar interferometer.</p> <p>19.2.4 Interferometers with multiple telescopes.</p> <p>EPILOGUE. FRONTIERS IN IMAGE SCIENCE.</p> <p>Appendix A: MATRIX ALGEBRA.</p> <p>Appendix B: COMPLEX VARIABLES.</p> <p>Appendix C: PROBABILITY.</p> <p>Bibliography.</p> <p>Index.</p>
"…an impressive tour-de-force textbook of imaging systems that deserves a place on the bookshelves of many radiologists and students." (<i>Yale Journal of Biology and Medicine</i>, July 2005) <p>"...a worthwhile addition to the armamentarium of any serious researcher in image science and will be an opt-quoted reference for many years to come." (<i>Journal of Electrical Imaging</i>, April-June 2005)</p> <p>In an article whether educational programs for imaging physicists should emphasize science of imaging rather than the technology of imaging, "The new textbook…does appear to be outstanding. It contains over 1500 pages of text, with probably about as many equations...” (<i>Medical Physics</i>, October 2004)</p> <p>"<i>Foundation of Image Science</i> is comprehensive and the mathematics is rigorous and ubiquitous.” (<i>E-Streams</i>, Vol. 7, No. 5)</p> <p>“Containing a clear, detailed and general mathematical description of image formation, representation, and quality assessment, this book will be of great interest to researches and graduate students...highly recommended.” (<i>Medical Physics</i>)</p>
<b>HARRISON H. BARRETT</b> received a BS in physics from Virginia Polytechnic Institute, an MS in Physics from MIT, and a PhD in applied physics from Harvard. Dr. Barrett is a professor in the Optical Sciences Center, the Department of Radiology, and the Program in Applied Mathematics and serves as Director of the Center for Gamma-ray Imaging. The holder of twenty-three U.S. patents, he is the recipient of the IEEE Medical Imaging Scientist Award and a Humboldt Prize and the coauthor, with William Swindell, of <i>Radiological Imaging: The Theory of Image Formation, Detection, and Processing</i>. <p><b>KYLE J. MYERS</b> received a BS in Mathematics and Physics from Occidental College and an MS and PhD in Optical Sciences from the University of Arizona. Dr. Myers is the Chief of the Medical Imaging and Computer Applications Branch of the Center for Devices and Radiological Health of the U.S. Food and Drug Administration. She is a member of the SPIE, the Optical Society of America, and the Medical Image Perception Society (MIPS), and recently served as cochair of the Medical Image Perception Conference sponsored by MIPS.</p>
<b>A comprehensive treatment of the principles, mathematics, and statistics of image science</b> <p>In today’s visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world.</p> <p><i>Foundations of Image Science</i> presents a comprehensive treatment of the principles, mathematics, and statistics needed to understand and evaluate imaging systems. The book is the first to provide a thorough treatment of the continuous-to-discrete, or CD, model of digital imaging. Foundations of Image Science emphasizes the need for meaningful, objective assessment of image quality and presents the necessary tools for this purpose. Approaching the subject within a well-defined theoretical and physical context, this landmark text presents the mathematical underpinnings of image science at a level that is accessible to graduate students and practitioners working with imaging systems, as well as well-motivated undergraduate students.</p> <p>Destined to become a standard text in the field, <i>Foundations of Image Science</i> covers:</p> <ul> <li>Mathematical Foundations: Examines the essential mathematical foundations of image science</li> <li>Image Formation–Models and Mechanisms: Presents a comprehensive and unified treatment of the mathematical and statistical principles of imaging, with an emphasis on digital imaging systems and the use of SVD methods</li> <li>Image Quality: Provides a systematic exposition of the methodology for objective or task-based assessment of image quality</li> <li>Applications: Presents detailed case studies of specific direct and indirect imaging systems and provides examples of how to apply the various mathematical tools covered in the book</li> <li>Appendices: Covers the prerequisite material necessary for understanding the material in the main text, including matrix algebra, complex variables, and the basics of probability theory</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €