Details

Forensic Systems Engineering


Forensic Systems Engineering

Evaluating Operations by Discovery
Wiley Series in Systems Engineering and Management 1. Aufl.

von: William A. Stimson

118,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.12.2017
ISBN/EAN: 9781119422761
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A systems-level approach to reducing liability through process improvement</b></p> <p><i>Forensic Systems Analysis: Evaluating Operations by Discovery</i> presents a systematic framework for uncovering and resolving problematic process failures. Carefully building the causal relationship from process to product, the discussion lays out in significant detail the appropriate and tactical approaches necessary to the pursuit of litigation with respect to corporate operations.</p> <p>Systemic process failures are addressed by flipping process improvement models to study both improvement and failure, resulting in arguments and methodologies relevant to any product or service industry. Guidance on risk analysis of operations combines evaluation of process control, stability, capability, verification, validation, specification, product reliability, serial dependence, and more, providing a robust framework with which to target large-scale nonconforming products and services. </p> <p>Relevant to anyone involved in business, manufacturing, service, and control, this book:</p> <ul> <li>Covers process liability and operations management from both engineering and legal perspectives</li> <li>Offers analyses that present novel uses of traditional engineering methods concerning risk and product quality and reliability</li> <li>Takes a rigorous approach to system tactics and constraints related to product and service operations and identifies dysfunctional processes</li> <li>Offers both prescriptive and descriptive solutions to both the plaintiff and the defendant</li> </ul> <p>The global economy has created an environment in which huge production volume, complex data bases, and multiple dispersed suppliers greatly challenge industrial operations. This informative guide provides a practical blueprint for uncovering problematic process failures.</p>
<p>Preface xix</p> <p><b>1 What Is Forensic Systems Engineering? 1</b></p> <p>1.1 Systems and Systems Engineering 1</p> <p>1.2 Forensic Systems Engineering 2</p> <p>References 4</p> <p><b>2 Contracts, Specifications, and Standards 7</b></p> <p>2.1 General 7</p> <p>2.2 The Contract 9</p> <p>2.2.1 Considerations 9</p> <p>2.2.2 Contract Review 10</p> <p>2.3 Specifications 12</p> <p>2.4 Standards 14</p> <p>Credits 16</p> <p>References 16</p> <p><b>3 Management Systems 17</b></p> <p>3.1 Management Standards 18</p> <p>3.1.1 Operations and Good Business Practices 18</p> <p>3.1.2 Attributes of Management Standards 18</p> <p>3.2 Effective Management Systems 19</p> <p>3.2.1 Malcolm Baldrige 19</p> <p>3.2.2 Total Quality Management 20</p> <p>3.2.3 Six Sigma 20</p> <p>3.2.4 Lean 21</p> <p>3.2.5 Production Part Approval Process 22</p> <p>3.3 Performance and Performance 23</p> <p>3.4 Addendum 23</p> <p>Credits 24</p> <p>References 24</p> <p><b>4 Performance Management: ISO 9001 25</b></p> <p>4.1 Background of ISO 9000 26</p> <p>4.1.1 ISO 9001 in the United States 27</p> <p>4.1.2 Structure of ISO 9000: 2005 27</p> <p>4.1.3 The Process Approach 28</p> <p>4.2 Form and Substance 32</p> <p>4.2.1 Reference Performance Standards 33</p> <p>4.2.2 Forensics and the Paper Trail 34</p> <p>Credits 35</p> <p>References 35</p> <p><b>5 The Materiality of Operations 37</b></p> <p>5.1 Rationale for Financial Metrics 38</p> <p>5.1.1 Sarbanes–Oxley 38</p> <p>5.1.1.1 Title III: Corporate Responsibility 38</p> <p>5.1.1.2 Title IV: Enhanced Financial Disclosures 39</p> <p>5.1.2 Internal Control 39</p> <p>5.1.3 The Materiality of Quality 41</p> <p>5.2 Mapping Operations to Finance 41</p> <p>5.2.1 The Liability of Quality 43</p> <p>5.2.2 The Forensic View 44</p> <p>Credits 44</p> <p>References 44</p> <p><b>6 Process Liability 47</b></p> <p>6.1 Theory of Process Liability 48</p> <p>6.1.1 Operations and Process Liability 50</p> <p>6.1.2 Process Liability and Misfeasance 51</p> <p>6.2 Process Liability and the Law 52</p> <p>Credits 52</p> <p>References 52</p> <p><b>7 Forensic Analysis of Process Liability 55</b></p> <p>7.1 Improper Manufacturing Operations 57</p> <p>7.1.1 Verification and Validation 57</p> <p>7.1.1.1 Nonstandard Design Procedures 57</p> <p>7.1.1.2 Unverified or Unvalidated Design 58</p> <p>7.1.1.3 Tests Waived by Management 58</p> <p>7.1.1.4 Altered Test Procedures and Results 58</p> <p>7.1.2 Resource Management 59</p> <p>7.1.2.1 Unmonitored Outsourcing 59</p> <p>7.1.2.2 Substandard Purchased Parts 60</p> <p>7.1.2.3 Ghost Inventory 60</p> <p>7.1.2.4 Ineffective Flow Down 61</p> <p>7.1.3 Process Management 61</p> <p>7.1.3.1 Forced Production 61</p> <p>7.1.3.2 Abuse and Threats by Management 62</p> <p>7.2 Management Responsibility 62</p> <p>7.2.1 Effective Internal Controls 62</p> <p>7.2.2 Business Standards of Care 63</p> <p>7.2.3 Liability Risk Management 64</p> <p>7.2.4 Employee Empowerment 65</p> <p>7.2.5 Effective Management Review 65</p> <p>7.2.6 Closed?]Loop Processes 66</p> <p>References 67</p> <p><b>8 Legal Trends to Process Liability 71</b></p> <p>8.1 An Idea Whose Time Has Come 71</p> <p>8.2 Some Court Actions Thus Far 72</p> <p>8.2.1 QMS Certified Organizations 73</p> <p>8.2.2 QMS Noncertified Organizations 74</p> <p>References 75</p> <p><b>9 Process Stability and Capability 77</b></p> <p>9.1 Process Stability 77</p> <p>9.1.1 Stability and Stationarity 78</p> <p>9.1.2 Stability Conditions 79</p> <p>9.1.3 Stable Processes 80</p> <p>9.1.4 Measuring Process Stability 82</p> <p>9.2 Process Capability 83</p> <p>9.2.1 Measuring Capability 83</p> <p>9.2.2 A Limit of Process Capability 85</p> <p>9.3 The Rare Event 85</p> <p>9.3.1 Instability and the Rare Event 85</p> <p>9.3.2 Identifying the Rare Event 86</p> <p>9.4 Attribute Testing 87</p> <p>References 88</p> <p><b>10 Forensic Issues in Product Reliability 91</b></p> <p>10.1 Background in Product Reliability 91</p> <p>10.2 Legal Issues in the Design of Reliability 94</p> <p>10.2.1 Good Design Practices 95</p> <p>10.2.2 Design Is Intrinsic to Manufacturing and Service 95</p> <p>10.2.3 Intended Use 95</p> <p>10.2.4 Paper Trail of Evidence 96</p> <p>10.2.5 Reliability Is an Implied Design Requirement 97</p> <p>10.3 Legal Issues in Measuring Reliability 97</p> <p>10.3.1 Failure Modes 97</p> <p>10.3.2 Estimation of MTTF 98</p> <p>10.3.3 The More Failure Data the Better 99</p> <p>10.3.4 The Paper Trail of Reliability Measurement 99</p> <p>10.4 Legal Issues in Testing for Reliability 100</p> <p>10.4.1 Defined and Documented Life Test Procedures 100</p> <p>10.4.2 Life Test Records and Reports 101</p> <p>10.4.3 Test Procedures 101</p> <p>10.5 When Product Reliability Is not in the Contract 102</p> <p>10.5.1 Product Liability 102</p> <p>10.5.2 ISO 9001 and FAR 103</p> <p>10.6 Warranty and Reliability 104</p> <p>References 105</p> <p><b>11 Forensic View of Internal Control 107</b></p> <p>11.1 Internal Controls 108</p> <p>11.1.1 Purpose of Control 108</p> <p>11.1.2 Control Defined 109</p> <p>11.1.3 Control Elements in Operations 109</p> <p>11.2 Control Stability 110</p> <p>11.2.1 Model of a Continuous System 111</p> <p>11.2.2 Transfer Functions 112</p> <p>11.3 Implementing Controls 115</p> <p>11.4 Control of Operations 117</p> <p>11.4.1 Proportional (Gain) Control 118</p> <p>11.4.2 Controlling the Effect of Change 119</p> <p>11.4.2.1 Integral Control 120</p> <p>11.4.2.2 Derivative (Rate) Control 121</p> <p>11.4.3 Responsibility, Authority, and Accountability 121</p> <p>References 123</p> <p><b>12 Case Study: Madelena Airframes Corporation 125</b></p> <p>12.1 Background of the Case 126</p> <p>12.2 Problem Description 127</p> <p>12.2.1 MAC Policies and Procedures (Missile Production) 127</p> <p>12.2.2 Missile Test 127</p> <p>12.3 Examining the Evidence 128</p> <p>12.3.1 Evidence: The Players 129</p> <p>12.3.2 Evidence: E?]mails 129</p> <p>12.4 Depositions 132</p> <p>12.4.1 Deposition of the General Manager 132</p> <p>12.4.2 Deposition of the Senior Test Engineer 132</p> <p>12.4.3 Deposition of the Production Manager 132</p> <p>12.4.4 Deposition of the Chief Design Engineer 133</p> <p>12.4.5 Deposition of the Test Programs Manager 133</p> <p>12.5 Problem Analysis 133</p> <p>12.5.1 Review of the Evidence 133</p> <p>12.5.2 Nonconformities 134</p> <p>12.5.2.1 Clause 7.3.1(b) Design and Development Planning 134</p> <p>12.5.2.2 Clause 7.3.5 Design and Development Verification 135</p> <p>12.5.2.3 Clause 7.3.6 Design and Development Validation 135</p> <p>12.5.2.4 Clause 8.1 General Test Requirements 135</p> <p>12.5.2.5 Clause 8.2.4 Monitoring and Measurement of Product 135</p> <p>12.5.2.6 Clause 4.1 General QMS Requirements 135</p> <p>12.5.2.7 Clause 5.6.1 General Management Review</p> <p>Requirements 135</p> <p>12.6 Arriving at the Truth 136</p> <p>12.7 Damages 137</p> <p>12.7.1 Synthesis of Damages 137</p> <p>12.7.2 Costs of Correction 137</p> <p>References 138</p> <p><b>13 Examining Serially Dependent Processes 139</b></p> <p>13.1 Serial Dependence: Causal Correlation 140</p> <p>13.2 Properties of Serial Dependence 142</p> <p>13.2.1 Work Station Definition 142</p> <p>13.2.2 Assumptions 142</p> <p>13.2.2.1 Assumption 1 143</p> <p>13.2.2.2 Assumption 2 143</p> <p>13.2.2.3 Assumption 3 143</p> <p>13.2.3 Development of the Conditional Distribution 144</p> <p>13.2.4 Process Stability 145</p> <p>13.3 Serial Dependence: Noncausal Correlation 147</p> <p>13.4 Forensic Systems Analysis 147</p> <p>Credits 148</p> <p>References 148</p> <p><b>14 Measuring Operations 149</b></p> <p>14.1 ISO 9000 as Internal Controls 151</p> <p>14.2 QMS Characteristics 152</p> <p>14.3 The QMS Forensic Model 154</p> <p>14.3.1 Estimating Control Risk 155</p> <p>14.3.2 Cost of Liability 156</p> <p>14.4 The Forensic Lab and Operations 157</p> <p>14.5 Conclusions 158</p> <p>Credits 159</p> <p>References 159</p> <p><b>15 Stability Analysis of Dysfunctional Processes 161</b></p> <p>15.1 Special Terms 162</p> <p>15.1.1 Dysfunction 162</p> <p>15.1.2 Common and Special Causes 163</p> <p>15.1.3 Disturbances and Interventions 163</p> <p>15.1.4 Cause and Effect 163</p> <p>15.2 Literature Review 165</p> <p>15.3 Question Before the Law 168</p> <p>15.4 Process Stability 169</p> <p>15.4.1 Internal Control 170</p> <p>15.4.2 Mathematical Model for Correlation 170</p> <p>15.5 Conclusions 173</p> <p>Credits 174</p> <p>References 174</p> <p><b>16 Verification and Validation 179</b></p> <p>16.1 Cause and Effect 180</p> <p>16.1.1 An Historical View 180</p> <p>16.1.2 Productivity versus Quality 182</p> <p>16.2 What Is in a Name? 185</p> <p>16.2.1 Verification and Validation Defined 186</p> <p>16.2.2 Inspection and Test 187</p> <p>16.2.3 Monitor and Measure 188</p> <p>16.2.4 Subtle Transitions 189</p> <p>16.3 The Forensic View of Measurement 190</p> <p>16.3.1 Machine Tools and Tooling 190</p> <p>16.3.2 Measurement 191</p> <p>16.3.3 Control Charting 192</p> <p>16.3.4 First Pass Yield 192</p> <p>16.3.5 First Article Inspection 193</p> <p>16.3.6 Tool Try 194</p> <p>References 194</p> <p><b>17 Forensic Sampling of Internal Controls 197</b></p> <p>17.1 Populations 198</p> <p>17.1.1 Sample Population 199</p> <p>17.1.2 Homogeneity 199</p> <p>17.1.3 Population Size 200</p> <p>17.1.4 One Hundred Percent Inspection 201</p> <p>17.2 Sampling Plan 201</p> <p>17.2.1 Objectives 201</p> <p>17.2.2 Statistical and Nonstatistical Sampling 202</p> <p>17.2.3 Fixed Size and Stop?]or?]Go 203</p> <p>17.2.4 Sample Selection and Size 204</p> <p>17.3 Attribute Sampling 204</p> <p>17.3.1 Internal Control Sampling 204</p> <p>17.3.2 Deviation Rates 206</p> <p>17.3.2.1 Acceptable Deviation Rate 206</p> <p>17.3.2.2 System Deviation Rate 207</p> <p>17.3.3 Sampling Risks 207</p> <p>17.3.3.1 Control Risk 207</p> <p>17.3.3.2 Alpha and Beta Risks 208</p> <p>17.3.4 Confidence Level 208</p> <p>17.3.5 Evaluation 209</p> <p>17.4 Forensic System Caveats 209</p> <p>References 210</p> <p><b>18 Forensic Analysis of Supplier Control 211</b></p> <p>18.1 Outsourcing 213</p> <p>18.2 Supply Chain Management 215</p> <p>18.3 Forensic Analysis of Supply Systems 216</p> <p>18.3.1 Basic Principles of Supplier Control 216</p> <p>18.3.2 The Forensic Challenge 216</p> <p>18.3.2.1 Ensure that Purchased Units Conform</p> <p>to Contracted Specifications 217</p> <p>18.3.2.2 Assessment of the Supplier Process 218</p> <p>18.3.2.3 Tracking 218</p> <p>18.3.2.4 Customer Relations 219</p> <p>18.3.2.5 Verification and Storage of Supplies 221</p> <p>18.3.2.6 Identification and Traceability 222</p> <p>18.4 Supplier Verification: A Case Study 223</p> <p>18.4.1 Manufacture 224</p> <p>18.4.2 V50 Testing 224</p> <p>18.4.3 V50 Test Results 226</p> <p>18.5 Malfeasant Supply Systems 226</p> <p>References 227</p> <p><b>19 Discovering System Nonconformity 229</b></p> <p>19.1 Identifying Nonconformities 231</p> <p>19.1.1 Reporting Nonconformities 232</p> <p>19.1.2 Disputes 233</p> <p>19.2 The Elements of Assessment 234</p> <p>19.2.1 Measures of Performance 234</p> <p>19.2.2 Considerations in Forensic Analysis of Systems 235</p> <p>19.3 Forming Decisions 236</p> <p>19.4 Describing Nonconformities 238</p> <p>19.5 A Forensic View of Documented Information 240</p> <p>19.5.1 Requirements in Documented Information 241</p> <p>19.5.2 The Quality Manual 241</p> <p>19.5.3 Documented Information Control 243</p> <p>19.5.4 Records 244</p> <p>Acknowledgment 246</p> <p>References 246</p> <p>Appendix A The Engineering Design Process: A Descriptive View 247</p> <p>A.1 Design and Development 248</p> <p>A.1.1 The Design Process 248</p> <p>A.1.2 Customer Requirements 249</p> <p>A.1.3 Interactive Design 249</p> <p>A.1.4 Intermediate Testing 249</p> <p>A.1.5 Final Iteration 251</p> <p>A.2 Forensic Analysis of the Design Process 252</p> <p>References 253</p> <p>Appendix B Introduction to Product Reliability 255</p> <p>B.1 Reliability Characteristics 256</p> <p>B.1.1 Reliability Metrics 256</p> <p>B.1.2 Visual Life Cycle 257</p> <p>B.2 Weibull Analysis 259</p> <p>B.2.1 Distributions 259</p> <p>B.2.2 Shape and Scale 260</p> <p>B.2.2.1 Shape 260</p> <p>B.2.2.2 Scale 262</p> <p>B.2.3 The B?]Percentile 262</p> <p>B.3 Design for Reliability 263</p> <p>B.4 Measuring Reliability 265</p> <p>B.4.1 On Reliability Metrics 265</p> <p>B.4.2 Graphing Failure Data 266</p> <p>B.5 Testing for Reliability 269</p> <p>References 271</p> <p>Appendix C Brief Review of Probability and Statistics 273</p> <p>C.1 Measures of Location 274</p> <p>C.1.1 Average: The Mean Value 274</p> <p>C.1.2 Average: The Median 275</p> <p>C.1.3 Average: The Mode 275</p> <p>C.2 Measures of Dispersion 276</p> <p>C.2.1 Variance 276</p> <p>C.2.2 Range 276</p> <p>C.3 Distributions 277</p> <p>C.3.1 Continuous Distributions 277</p> <p>C.3.2 Discrete Distributions 279</p> <p>C.4 Tests of Hypotheses 281</p> <p>C.4.1 Estimating Parametric Change 281</p> <p>C.4.2 Confidence Level 284</p> <p>C.5 Ordered Statistics 284</p> <p>References 285</p> <p>Appendix D Sampling of Internal Control Systems 287</p> <p>D.1 Populations 288</p> <p>D.1.1 Sample Populations 289</p> <p>D.1.2 Population Size 290</p> <p>D.1.3 Homogeneity 290</p> <p>D.2 Attribute Sampling 291</p> <p>D.2.1 Acceptable Deviation Rate 292</p> <p>D.2.2 System Deviation Rate 293</p> <p>D.2.3 Controls 293</p> <p>D.3 Sampling</p> <p>Risks 294</p> <p>D.3.1 Control Risk 294</p> <p>D.3.2 Consumer and Producer Risks 294</p> <p>D.3.3 Alpha and Beta Errors 295</p> <p>D.4 Sampling Analysis 297</p> <p>D.4.1 Statistical Inference 297</p> <p>D.4.2 Sample Distributions 298</p> <p>D.4.3 Sample Size 299</p> <p>D.4.4 Estimating the SDR 299</p> <p>D.4.5 Confidence Interval 300</p> <p>References 302</p> <p>Appendix E Statistical Sampling Plans 305</p> <p>E.1 Fixed?]Size Attribute Sampling Plan 306</p> <p>E.1.1 Determine the Objectives 306</p> <p>E.1.2 Define Attribute and Deviation Conditions 306</p> <p>E.1.2.1 Acceptable Deviation Rate 306</p> <p>E.1.2.2 System Deviation Rate 307</p> <p>E.1.3 Define the Population 307</p> <p>E.1.4 Determine the Method of Sample Selection 307</p> <p>E.1.5 Determine the Sample Size 308</p> <p>E.1.6 Perform the Sampling Plan 312</p> <p>E.1.7 Evaluate Sample Results 312</p> <p>E.2 Stop?]or?]Go Sampling 313</p> <p>E.2.1 Acceptable Deviation Rate 313</p> <p>E.2.2 Sample Size 314</p> <p>E.2.3 Evaluation 316</p> <p>E.3 One Hundred Percent Inspection 316</p> <p>E.4 Application: An Attribute Sampling Plan 317</p> <p>References 318</p> <p>Appendix F Nonstatistical Sampling Plans 321</p> <p>F.1 Sampling Format 322</p> <p>F.1.1 Frame of the Sampling Plan 322</p> <p>F.1.2 Attribute and Deviation Conditions 323</p> <p>F.1.3 The Population 323</p> <p>F.1.4 Nonstatistical Sample Selection 324</p> <p>F.1.5 Sample Size 325</p> <p>F.1.6 The Effect of Sample Size on Beta Error 326</p> <p>F.1.7 Evaluating Sample Results 327</p> <p>F.2 Nonstatistical</p> <p>Estimations 327</p> <p>References 328</p> <p>Index</p> <p> </p>
<p> <b>William A. Stimson, PhD,</b> is an independent consultant in systems engineering, and an expert witness for the Department of Justice and private law firms in evaluation of contractor performance. He has taken an active role in developing legal strategy for the evaluation of performance of operations in litigation, presented on the topic of forensic evaluation, and published peer-reviewed papers on dysfunctional processes.
<p><b>A systems-level approach to reducing liability through process improvement</b> <p> <i>Forensic Systems Engineering: Evaluating Operations by Discovery</i> presents a systematic framework for uncovering and resolving problematic process failures. Carefully building the causal relationship from process to product, the discussion lays out in significant detail the appropriate and tactical approaches necessary to the pursuit of litigation with respect to corporate operations. <p> Systemic process failures are addressed by flipping process improvement models to study both improvement and failure, resulting in arguments and methodologies relevant to any product or service industry. Guidance on risk analysis of operations combines evaluation of process control, stability, capability, verification, validation, specification, product reliability, serial dependence, and more, providing a robust framework with which to target large-scale nonconforming products and services. <p> Relevant to anyone involved in business, manufacturing, service, and control, this book: <ul> <li>Covers process liability and operations management from both engineering and legal perspectives</li> <li>Offers analyses that present novel uses of traditional engineering methods concerning risk and product quality and reliability</li> <li>Takes a rigorous approach to system tactics and constraints related to product and service operations and identifies dysfunctional processes</li> <li>Offers both prescriptive and descriptive solutions to both the plaintiff and the defendant</li> </ul> <br> <p> The global economy has created an environment in which huge production volume, complex data bases, and multiple dispersed suppliers greatly challenge industrial operations. This informative guide provides a practical blueprint for uncovering problematic process failures.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €