Details

Flexible Pipes


Flexible Pipes

Advances in Pipes and Pipelines
1. Aufl.

von: Qiang Bai, Yong Bai, Weidong Ruan

225,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.04.2017
ISBN/EAN: 9781119041276
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Written by one of the most well-respected teams of scientists in the area of pipelines, this revolutionary approach offers the engineer working in the energy industry the theory, analysis, and practical applications for applying new materials and modeling to the design and effective use of flexible pipes.</b></p> <p>Recent changes in the codes for building pipelines has led to a boom in the production of new materials that can be used in flexible pipes. With the use of polymers, steel, and other new materials and variations on existing materials, the construction and, therefore, the installation and operation of flexible pipes is changing and being improved upon all over the world. The authors of this work have written numerous books and papers on these subjects and are some of the most influential authors on flexible pipes in the world, contributing much of the literature on this subject to the industry. This new volume is a presentation of some of the most cutting-edge technological advances in technical publishing.</p> <p>This is the most comprehensive and in-depth book on this subject, covering not just the various materials and their aspects that make them different, but every process that goes into their installation, operation, and design. The thirty-six chapters, divided up into four different parts, have had not just the authors of this text but literally dozens of other engineers who are some of the world's leading scientists in this area contribute to the work. This is the future of pipelines, and it is an important breakthrough. A must-have for the veteran engineer and student alike, this volume is an important new advancement in the energy industry, a strong link in the chain of the world's energy production.</p>
<p><b>Preface xxi</b></p> <p><b>About the Authors xxiii</b></p> <p><b>Part I Design and Analysis</b></p> <p><b>1 Flexible Pipes and Limit-States Design 3</b></p> <p>1.1 I ntroduction 3</p> <p>1.2 Applications of Flexible Pipe 3</p> <p>1.2.1 Metal-Based Flexible Pipes 5</p> <p>1.2.2 Composite-Based Flexible Pipes 7</p> <p>1.2.3 D esign Codes and Specifications 10</p> <p>1.3 Comparison between Flexible Pipes and Rigid Pipes 12</p> <p>1.3.1 Unbonded Flexible Riser vs. Rigid Steel Riser 12</p> <p>1.3.2 Flexible Jumper vs. Rigid Steel Jumper 12</p> <p>1.3.3 Flexible Composite Pipe vs. Rigid Pipe 13</p> <p>1.3.3.1 Material Costs 14</p> <p>1.3.3.2 I nstallation Costs 14</p> <p>1.3.3.3 Operational Costs 15</p> <p>1.3.3.4 Comparison Example 15</p> <p>1.4 Failure Mode and Design Criteria 15</p> <p>1.4.1 Unbonded Flexible Pipe 15</p> <p>1.4.1.1 Failure Modes 15</p> <p>1.4.1.2 D esign Criteria 17</p> <p>1.4.2 Flexible Composite Pipe 20</p> <p>1.4.2.1 Failure Modes 20</p> <p>1.4.2.2 D esign Criteria 20</p> <p>1.5 L imit State Design 24</p> <p>1.5.1 L imit States 24</p> <p>1.5.2 Reliability-Based Methods 25</p> <p>References 26</p> <p><b>2 Materials and Aging 29</b></p> <p>2.1 I ntroduction 29</p> <p>2.1.1 Unbonded Flexible Pipes 30</p> <p>2.1.2 Flexible Composite Pipes 34</p> <p>vi Contents</p> <p>2.2 Metallic Material 35</p> <p>2.2.1 Stainless Steel 35</p> <p>2.2.2 Carbon Steel 36</p> <p>2.3 Polymer Material 36</p> <p>2.3.1 Annulus 36</p> <p>2.3.2 Chemical Resistance 39</p> <p>2.3.3 Permeation and Permeation Control Systems 41</p> <p>2.3.3.1 Theory of Gas Permeation 41</p> <p>2.3.3.2 Permeation Calculation 42</p> <p>2.3.4 Anti H<b>2</b>S Layer 44</p> <p>2.4 Aging 45</p> <p>2.4.1 N onmetallic Material 46</p> <p>2.4.2 Metallic Material 48</p> <p>References 49</p> <p><b>3 Ancillary Equipment and End Fitting Design 51</b></p> <p>3.1 I ntroduction 51</p> <p>3.1.1 D esign Criteria 51</p> <p>3.2 Bend Stiffeners and Bellmouths 53</p> <p>3.2.1 I ntroduction 53</p> <p>3.2.2 D esign Criteria and Failure Modes 55</p> <p>3.2.3 D esign Considerations 56</p> <p>3.2.4 Bellmouths 57</p> <p>3.3 Bend Restrictor 58</p> <p>3.4 Buoyancy Modules 59</p> <p>3.5 Cathodic Protection 60</p> <p>3.6 Annulus Venting System 61</p> <p>3.7 E nd Fittings 63</p> <p>3.7.1 Unbonded Flexible Pipes 64</p> <p>3.7.1.1 D esign Criteria 64</p> <p>3.7.1.2 Metallic Materials 66</p> <p>3.7.1.3 E nd Fittings by Different Manufacturers 66</p> <p>3.7.2 Flexible Composite Pipes 68</p> <p>3.7.2.1 D esign Criteria 70</p> <p>3.7.2.2 Materials 70</p> <p>3.7.2.3 E nd Fitting Types 71</p> <p>3.7.2.4 I nstallation 72</p> <p>References 74</p> <p><b>4 Reliability-Based Design Factors 75</b></p> <p>4.1 Introduction 75</p> <p>4.2 Failure Probability 76</p> <p>4.2.1 L imit State and Failure Mode 76</p> <p>4.2.2 Failure Probability 76</p> <p>4.3 Safety Factor Based on Reliability 77</p> <p>4.3.1 Uncertainties of Resistance and Load Effect 78</p> <p>4.3.2 L RFD Formulation 79</p> <p>4.3.3 D esign Process 79</p> <p>Contents vii</p> <p>4.4 D esign Example 82</p> <p>4.4.1 L imit State Function 83</p> <p>4.4.1.1 Resistance Model for Inner Pressure Load 83</p> <p>4.4.1.2 L imit State Function 83</p> <p>4.4.2 Probability Model of Resistance 83</p> <p>4.4.2.1 Probability Distribution of Resistance Parameters 83</p> <p>4.4.2.2 Probability Model of Resistance 84</p> <p>4.4.3 Probability Model of Load Effect 85</p> <p>4.4.4 Target Reliability 85</p> <p>4.4.5 Safety Factor Design Results 85</p> <p>References 87</p> <p><b>Part II Unbonded Flexible Pipes</b></p> <p><b>5 Unbonded Flexible Pipe Design 91</b></p> <p>5.1 I ntroduction 91</p> <p>5.2 Applications of Flexible Pipe 92</p> <p>5.2.1 Flexible Risers 92</p> <p>5.2.2 Flexible Flowlines 94</p> <p>5.2.3 L oading and Offloading Hoses 94</p> <p>5.2.4 Jumper Lines 96</p> <p>5.2.5 D rilling Risers 97</p> <p>5.3 Flexible Pipe System and Components 97</p> <p>5.3.1 I nterlocked Steel Carcass 98</p> <p>5.3.2 I nternal Polymer Sheath 99</p> <p>5.3.3 Armor Layers 99</p> <p>5.3.3.1 Pressure Armor 99</p> <p>5.3.3.2 Tensile Armor 100</p> <p>5.3.3.3 Composite Armor 100</p> <p>5.3.4 E xternal Polymer Sheath 102</p> <p>5.3.5 Other Layers and Configurations 102</p> <p>5.3.6 Main Ancillaries 103</p> <p>5.3.6.1 E nd Fittings 103</p> <p>5.3.6.2 Bend Stiffener and Bellmouths 104</p> <p>5.3.6.3 Bend Restrictor 105</p> <p>5.3.6.4 Buoyancy Modules 106</p> <p>5.3.6.5 Annulus Venting System 106</p> <p>References 106</p> <p><b>6 Design and Analyses of Unbonded Flexible Pipe 109</b></p> <p>6.1 I ntroduction 109</p> <p>6.2 Flexible Pipe Guidelines 110</p> <p>6.2.1 API Specification 17K 110</p> <p>6.2.2 API Specification 17J 111</p> <p>6.2.2.1 Safety Against Collapse 112</p> <p>6.2.2.2 D esign Criteria 112</p> <p>6.2.3 API RP 17B 112</p> <p>viii Contents</p> <p>6.3 Material and Mechanical Properties 113</p> <p>6.3.1 Properties of Sealing Components 114</p> <p>6.3.1.1 Polymer 114</p> <p>6.3.1.2 Steel 114</p> <p>6.3.1.3 Fibres 115</p> <p>6.3.2 Properties of Armor Components 115</p> <p>6.3.2.1 Submerged Weight 116</p> <p>6.3.2.2 Bending Stiffness and Curvature Radius 116</p> <p>6.3.2.3 Axial Stiffness and Tension Capacity 116</p> <p>6.3.2.4 Torque Stiffness and Torque Capacity 117</p> <p>6.4 Analytical Solutions in Flexible Pipe Design 117</p> <p>6.4.1 Overview 117</p> <p>6.4.2 Analytical Modeling of Flexible Pipes 117</p> <p>6.4.3 Analytical Method of Unbonded Flexible Pipes 118</p> <p>6.4.4 Axis-Symmetric Behavior 120</p> <p>6.4.4.1 Kinematic Restraint 120</p> <p>6.4.4.2 Governing Equations 121</p> <p>6.4.5 Bending Behavior 122</p> <p>6.5 FE Analysis of Unbonded Flexible Pipe 123</p> <p>6.5.1 Static Analysis 123</p> <p>6.5.2 Fatigue Analysis 124</p> <p>References 126</p> <p><b>7 Unbonded Flexible Pipe Under Internal Pressure 129</b></p> <p>7.1 I ntroduction 129</p> <p>7.2 Analytical Solution 130</p> <p>7.2.1 Polymeric Layer 131</p> <p>7.2.2 Helically Wound Steel Layer 132</p> <p>7.2.3 Assembly of Layers 134</p> <p>7.3 FE Analysis 134</p> <p>7.4 Results and Discussion 137</p> <p>7.4.1 General 137</p> <p>7.4.2 Axial Tension and End Displacement 138</p> <p>7.4.3 Hoop Stress 138</p> <p>7.4.4 Axial Stress 141</p> <p>7.4.4.1 Axial Stress of Model A and Model B 141</p> <p>7.4.4.2 Axial Stresses of Model C and Model D_141</p> <p>7.4.5 Comparison of Mises Stress 144</p> <p>7.5 Conclusions 145</p> <p>References 146</p> <p><b>8 Unbonded Flexible Pipe Under External Pressure 149</b></p> <p>8.1 I ntroduction 149</p> <p>8.2 Finite Element Analysis 151</p> <p>8.2.1 Simplification 152</p> <p>8.2.2 Modeling Description 152</p> <p>8.2.3 Models with Different Stiffness Ratios 153</p> <p>8.2.4 Models with Different D/t Ratios 154</p> <p>Contents ix</p> <p>8.3 FEM Results and Discussion 155</p> <p>8.3.1 Prediction of Confined External Pressure 155</p> <p>8.3.1.1 Same D/t Ratio with Different Stiffness Ratios 155</p> <p>8.3.1.2 D ifferent D/t Ratios with Different Stiffness Ratios 157</p> <p>8.3.2 Confined Post-Buckling Behavior 158</p> <p>8.4 Analytical Solution 158</p> <p>8.5 Test Study 161</p> <p>8.5.1 Material Characteristics 162</p> <p>8.5.2 Confined Collapse Tests 163</p> <p>8.5.3 Test Results 165</p> <p>8.6 Comparison of Three Methods 167</p> <p>8.7 Conclusions 168</p> <p>References 169</p> <p><b>9 Unbonded Flexible Pipe Under Tension 171</b></p> <p>9.1 I ntroduction 171</p> <p>9.2 Tension Load 172</p> <p>9.2.1 Helical Layer 172</p> <p>9.2.2 Tube Layer 175</p> <p>9.2.3 Principle of Virtual Work 175</p> <p>9.3 Results and Discussion 177</p> <p>9.4 Parametric Study 180</p> <p>9.4.1 L ay Angle 181</p> <p>9.4.2 D iameter-to-Thickness 183</p> <p>9.5 Conclusions 184</p> <p>References 185</p> <p><b>10 Unbonded Flexible Pipe Under Bending 187</b></p> <p>10.1 I ntroduction 187</p> <p>10.2 Helical Layer within No-Slip Range 188</p> <p>10.2.1 Geometry of Helical Layer 188</p> <p>10.2.2 Bending Stiffness of Helical Layer 191</p> <p>10.3 Helical Layer within Slip Range 192</p> <p>10.3.1 Critical Curvature 192</p> <p>10.3.2 Axial Force in Helical Wire within Slip Range 194</p> <p>10.3.3 Axial Force in Helical Wire within No-Slip Range 194</p> <p>10.3.4 Bending Stiffness of Helical Layer 196</p> <p>References 197</p> <p><b>11 Unbonded Flexible Pipe Under Tension and Internal Pressure 199</b></p> <p>11.1 I ntroduction 199</p> <p>11.2 Analytical Solution 200</p> <p>11.3 FE Analysis 200</p> <p>11.3.1 Case 1: Tension Only 201</p> <p>11.3.2 Case 2: Internal Pressure Only 202</p> <p>11.3.3 Case 3: Combined Tension and Internal Pressure 202</p> <p>x Contents</p> <p>11.4 Results and Discussion 202</p> <p>11.5 Conclusions 208</p> <p>References 208</p> <p><b>12 Cross-Sectional Design and Case Study for Unbonded Flexible Pipes 211</b></p> <p>12.1 I ntroduction 211</p> <p>12.2 Cross-Sectional Design 212</p> <p>12.2.1 General Design Requirements 212</p> <p>12.2.2 Manufacturing Configuration and Material Qualification 213</p> <p>12.2.2.1 Carcass 213</p> <p>12.2.2.2 Pressure Sheath 213</p> <p>12.2.2.3 Pressure Armor 213</p> <p>12.2.2.4 Tensile Armor 214</p> <p>12.2.2.5 Tape 214</p> <p>12.2.2.6 Shield 214</p> <p>12.3 Case Study 214</p> <p>12.3.1 D esign Procedure 214</p> <p>12.3.2 D esign Requirement 214</p> <p>12.3.3 D esign Method 215</p> <p>12.3.3.1 Strength Design for Axisymmetric Loads 215</p> <p>12.3.3.2 Collapse Resistance Design 216</p> <p>12.3.4 D esign Results 216</p> <p>12.3.5 L oad Analysis 217</p> <p>12.3.6 FE Analysis 218</p> <p>12.4 Conclusions 219</p> <p>References 220</p> <p><b>13 Fatigue Analysis of Unbonded Flexible Pipe 223</b></p> <p>13.1 I ntroduction 223</p> <p>13.2 Theoretical Approach 224</p> <p>13.2.1 Assumptions 224</p> <p>13.2.2 E nvironment Conditions 224</p> <p>13.2.3 Transposition of Forces and Bending Moments 225</p> <p>13.2.4 Fatigue Design Criteria 225</p> <p>13.2.4.1 S-N Curves 225</p> <p>13.2.4.2 Miner’s rule 225</p> <p>13.3 Case Study 226</p> <p>13.3.1 I ntroduction 226</p> <p>13.3.2 Base Case 227</p> <p>13.4 Conclusions 230</p> <p>References 230</p> <p>Contents xi</p> <p><b>Part III Steel Reinforced Flexible Pipes</b></p> <p><b>14 Steel Reinforced Flexible Pipe Under Internal Pressure 235</b></p> <p>14.1 I ntroduction 235</p> <p>14.2 Applications 235</p> <p>14.2.1 Offshore 236</p> <p>14.2.2 Onshore 236</p> <p>14.2.3 Rehabilitation 237</p> <p>14.3 D esign and Manufacturing 237</p> <p>14.3.1 D esign Codes 237</p> <p>14.3.2 Manufacturing 237</p> <p>14.3.2.1 I ntroduction 237</p> <p>14.3.2.2 I nner and Outer Layers 238</p> <p>14.3.2.3 Steel Strip Reinforcement Layers 238</p> <p>14.3.2.4 E nd Fitting 238</p> <p>14.4 Analytical Solution 240</p> <p>14.4.1 Mechanical Properties 240</p> <p>14.4.2 Assumptions 242</p> <p>14.4.3 Stress Analysis 242</p> <p>14.4.3.1 L ayer Properties 244</p> <p>14.4.3.2 Stress-Strain Relations of HDPE Layers 246</p> <p>14.4.3.3 Stress-Strain Relations of Steel Strip Layers 247</p> <p>14.4.4 Boundary Condition 248</p> <p>14.4.4.1 Stress Boundary Condition 248</p> <p>14.4.4.2 I nterface Condition 248</p> <p>14.4.4.3 E quilibrium Equation of Axial Force 248</p> <p>14.4.4.4 Torsion Balance Equation 248</p> <p>14.5 FE Analysis 249</p> <p>14.6 Results and Discussion 249</p> <p>14.6.1 Stress Analysis on Layer 2 249</p> <p>14.6.2 Stress Analysis Between Layers 252</p> <p>14.7 Conclusions 253</p> <p>References 254</p> <p><b>15 Steel Reinforced Flexible Pipe Under External Pressure 255</b></p> <p>15.1 I ntroduction 255</p> <p>15.2 E xperimental Tests 256</p> <p>15.2.1 Material Characteristics 256</p> <p>15.2.2 Collapse Experiment 256</p> <p>15.2.3 E xperimental Results 258</p> <p>15.3 FE Analysis 258</p> <p>15.4 Simplified Estimation for Collapse Pressure 262</p> <p>15.5 Parametric Study 264</p> <p>15.6 Conclusions 266</p> <p>References 267</p> <p>xii Contents</p> <p><b>16 Steel Reinforced Flexible Pipe Under Pure Tension 269</b></p> <p>16.1 I ntroduction 269</p> <p>16.2 E xperimental Tests 270</p> <p>16.2.1 Test Processes 270</p> <p>16.2.2 Test Results and Discussions 270</p> <p>16.3 FE Analysis 273</p> <p>16.3.1 E lements and Interactions 273</p> <p>16.3.2 L oad and Boundary Conditions 274</p> <p>16.3.3 Material Properties 274</p> <p>16.4 Comparison and Discussions 275</p> <p>16.4.1 Comparison between Test and FE Analysis 275</p> <p>16.4.2 Mechanical Response of PE Layers 276</p> <p>16.4.3 Mechanical Response of Steel Strips 279</p> <p>16.5 Conclusions 281</p> <p>References 282</p> <p><b>17 Steel Reinforced Flexible Pipe Under Bending 283</b></p> <p>17.1 I ntroduction 283</p> <p>17.2 FE Analysis 284</p> <p>17.2.1 Model and Material Properties 284</p> <p>17.2.2 L oads and Boundary Conditions 285</p> <p>17.2.3 Analysis Results 285</p> <p>17.3 Mechanical Behaviors and Discussions 287</p> <p>17.3.1 I nner PE Layer 287</p> <p>17.3.2 Outer PE Layer 289</p> <p>17.3.3 Steel Strip Layers 290</p> <p>17.4 Conclusions 291</p> <p>References 291</p> <p><b>18 Steel Reinforced Flexible Pipe Under Combined Internal</b></p> <p><b>Pressure and Tension 293</b></p> <p>18.1 I ntroduction 293</p> <p>18.2 Analytical Solution 293</p> <p>18.2.1 Strain Analysis 293</p> <p>18.2.2 Stress Analysis 294</p> <p>18.2.3 Boundary Conditions 297</p> <p>18.3 I nner HDPE layer 297</p> <p>18.3.1 Reinforcement Layers 298</p> <p>18.3.2 Outer HDPE Layer 298</p> <p>18.3.3 E quilibrium Equation 299</p> <p>18.3.4 Solution Chart 299</p> <p>18.4 Finite Element Analysis 300</p> <p>18.4.1 I ntroduction 300</p> <p>18.4.2 Material Properties 300</p> <p>18.4.3 FE Model 301</p> <p>18.4.4 Boundary Conditions 304</p> <p>Contents xiii</p> <p>18.5 Results and Discussion 304</p> <p>18.5.1 Comparison of Methods 304</p> <p>18.5.2 L oad Steps 305</p> <p>18.5.3 Axial Tension Followed by Internal Pressure 306</p> <p>18.5.3.1 Stress Response 306</p> <p>18.5.3.2 Failure Behavior 306</p> <p>18.5.4 I nternal Pressure Followed by Axial Tension 307</p> <p>18.6 Conclusions 309</p> <p>References 310</p> <p><b>19 Steel Reinforced Flexible Pipe Under Combined</b></p> <p><b>Internal Pressure and Bending 311</b></p> <p>19.1 I ntroduction 311</p> <p>19.2 Analytical Solution 312</p> <p>19.3 FE Analysis 316</p> <p>19.3.1 Finite Element Model 316</p> <p>19.3.2 Boundary Conditions 316</p> <p>19.3.3 Analysis Results 317</p> <p>19.4 Summary 319</p> <p>References 321</p> <p><b>20 Steel Reinforced Flexible Pipe Under Combined</b></p> <p><b>Bending and External Pressure 323</b></p> <p>20.1 I ntroduction 323</p> <p>20.2 E xperimental Tests 324</p> <p>20.2.1 Test Procedure 324</p> <p>20.2.2 Test Results and Discussions 325</p> <p>20.3 FE Analysis 326</p> <p>20.3.1 Finite Element Modeling 327</p> <p>20.3.2 Comparison of Test and Analysis Results 327</p> <p>20.4 Analysis Results and Discussions 329</p> <p>20.5 Conclusions 330</p> <p>References 331</p> <p><b>21 Cross-Sectional Design and Case Study for Steel Reinforced Flexible Pipe 333</b></p> <p>21.1 I ntroduction 333</p> <p>21.2 Mechanical Behaviors 334</p> <p>21.3 Cross-Sectional Design 335</p> <p>21.3.1 D esign Requirement 335</p> <p>21.3.2 Strength Capacity 336</p> <p>21.4 Case Study 338</p> <p>21.4.1 General 338</p> <p>21.4.2 D esign Analysis 339</p> <p>21.4.2.1 Preliminary Analysis 339</p> <p>21.4.2.2 FE Analysis 339</p> <p>21.5 Conclusions 340</p> <p>References 340</p> <p><b>22 Damage Assessment for Steel Reinforced Flexible Pipe 343</b></p> <p>22.1 I ntroduction 343</p> <p>22.2 D amage Analysis of Outer Layer 344</p> <p>22.2.1 General 344</p> <p>22.2.2 FE Analysis 344</p> <p>22.2.3 Material Parameters 345</p> <p>22.2.4 Modeling of Damage Analysis 346</p> <p>22.2.5 Analysis Results 347</p> <p>22.3 I nfluence of Different Intervals 351</p> <p>22.4 E ffects of Insufficient Strength in Steel Strip 352</p> <p>References 354</p> <p><b>Part IV Bonded Flexible Pipes</b></p> <p><b>23 Bonded Flexible Rubber Pipes 357</b></p> <p>23.1 I ntroduction 357</p> <p>23.1.1 Constructions of Bonded Flexible Pipe 358</p> <p>23.1.2 Types of Bonded Flexible Pipe 359</p> <p>23.2 D esign and Applications 360</p> <p>23.2.1 I ntroduction 360</p> <p>23.2.2 D esign Criteria 361</p> <p>23.2.3 Hose Design Activities 361</p> <p>23.2.4 Bonded Flexible Hose Design 363</p> <p>23.2.5 E nd Fittings 365</p> <p>23.2.6 Materials 366</p> <p>23.2.7 Applications 369</p> <p>23.3 Failure Modes 371</p> <p>23.3.1 E arly Failures 372</p> <p>23.3.2 Random Failures 373</p> <p>23.3.3 Wear-Down Failures 373</p> <p>23.3.4 E xamples of Hose Failures 373</p> <p>23.4 I ntegrity Management 374</p> <p>23.4.1 Risk Analysis 374</p> <p>23.4.2 Risk Evaluation Process 374</p> <p>23.4.3 Actions Following Risk Assessment 375</p> <p>References 376</p> <p><b>24 Nonmetallic Bonded Flexible Pipe Under Internal Pressure 377</b></p> <p>24.1 I ntroduction 377</p> <p>24.1.1 N omenclature 378</p> <p>24.2 E xperimental Tests 379</p> <p>24.2.1 Material Properties 379</p> <p>24.2.2 Burst Tests 380</p> <p>24.3 Analytical Solution 381</p> <p>24.3.1 I ntroduction 381</p> <p>24.3.2 Assumptions 381</p> <p>xiv Contents</p> <p>Contents xv</p> <p>24.3.3 Coordinate Systems 382</p> <p>24.3.4 I nner Layer and Outer Layer 383</p> <p>24.3.5 Reinforced Layers 385</p> <p>24.3.6 Boundary Conditions 387</p> <p>24.3.7 Failure Criterion 388</p> <p>24.3.8 Burst Pressure Calculation 388</p> <p>24.4 Finite Element Analysis 389</p> <p>24.5 Results and Comparison 391</p> <p>References 392</p> <p><b>25 Nonmetallic Bonded Flexible Pipe Under External Pressure 393</b></p> <p>25.1 I ntroduction 393</p> <p>25.2 Analytical Solution of Collapse 394</p> <p>25.2.1 Kinematics 394</p> <p>25.2.2 Materials of Each Layer 395</p> <p>25.2.2.1 PE_395</p> <p>25.2.2.2 Reinforced Layer 395</p> <p>25.2.2.3 The Material Plasticity 396</p> <p>25.2.3 Principle of Virtual Work 397</p> <p>25.2.4 Amendment of Radius and Wall Thickness 398</p> <p>25.2.5 Analytical Method 399</p> <p>25.3 FE Analysis 400</p> <p>25.3.1 I ntroduction 400</p> <p>25.3.2 FE Modeling 401</p> <p>25.4 E xample of Collapse Analysis 401</p> <p>25.4.1 I ntroduction 401</p> <p>25.4.2 I nput Data 401</p> <p>25.4.3 Pressure-Ovality Curves 402</p> <p>25.5 Sensitivity Analysis 403</p> <p>25.5.1 E ffect of Initial Imperfections 404</p> <p>25.5.2 E ffect of Shear Deformation 404</p> <p>25.5.3 E ffect of Pre-Buckling Deformation 405</p> <p>References 406</p> <p><b>26 Nonmetallic Bonded Flexible Pipe Under Bending 407</b></p> <p>26.1 I ntroduction 407</p> <p>26.2 Analytical Solution 409</p> <p>26.2.1 Assumptions 409</p> <p>26.2.2 Kinematics 409</p> <p>26.2.3 Models of Material 410</p> <p>26.2.3.1 Mechanical Behaviors of HDPE_410</p> <p>26.2.3.2 Mechanical Behaviors of Fiber Reinforced Layer 412</p> <p>26.2.4 Constitutive Model for RTP 415</p> <p>26.2.5 Principle of Virtual Work 415</p> <p>26.3 FE Analysis 416</p> <p>26.4 E xperiment Test 418</p> <p>xvi Contents</p> <p>26.5 Results and Discussion 419</p> <p>26.6 Parametric Studies 421</p> <p>26.6.1 Wall-Thickness 421</p> <p>26.6.2 D iameter of Pipe 422</p> <p>26.6.3 D /t Ratio 422</p> <p>26.6.4 I nitial Ovality 423</p> <p>26.7 Conclusions 424</p> <p>References 424</p> <p>Appendix 426</p> <p><b>27 Nonmetallic Bonded Flexible Pipe Under Combined</b></p> <p><b>Tension and Internal Pressure 429</b></p> <p>27.1 I ntroduction 429</p> <p>27.2 N onlinear Analytical Solution 431</p> <p>27.2.1 Fundamental Assumptions 431</p> <p>27.2.2 Simplification of Reinforcement Layers 432</p> <p>27.2.3 Kinematics of a Single Wire 433</p> <p>27.2.4 D eformation of Cross Section 434</p> <p>27.2.5 E quilibrium Equation 440</p> <p>27.2.6 Constitutive Model 442</p> <p>27.2.7 Solution Method 442</p> <p>27.3 Finite Element Model 442</p> <p>27.3.1 Model Design and Meshing 443</p> <p>27.3.2 Materials 444</p> <p>27.3.3 Constraints 444</p> <p>27.3.4 Boundary Conditions and Loadings 445</p> <p>27.4 Results and Discussion 445</p> <p>27.4.1 Tension-Extension Relation 445</p> <p>27.4.2 Stress in Kevlar Wires 446</p> <p>27.4.3 Radial Deformation 446</p> <p>27.4.4 D iscussion 446</p> <p>27.5 Parametric Study 448</p> <p>27.5.1 I nternal Pressure 449</p> <p>27.5.2 L ay Angle 450</p> <p>27.5.3 D /t Ratio 450</p> <p>27.5.4 Amount of Kevlar Wires 451</p> <p>27.6 Conclusions 452</p> <p>References 453</p> <p><b>28 Nonmetallic Bonded Flexible Pipe Under Combined</b></p> <p><b>External Pressure and Bending 455</b></p> <p>28.1 General 455</p> <p>28.2 I ntroduction 455</p> <p>28.3 Analytical Solution 457</p> <p>28.3.1 Kinematics 457</p> <p>28.3.2 Material Simplification 458</p> <p>28.3.3 Constitutive Model 462</p> <p>Contents xvii</p> <p>28.3.4 Principle of Virtual Work 462</p> <p>28.3.5 Amendment of Radius and Wall Thickness 463</p> <p>28.3.6 Solution Method 463</p> <p>28.4 Finite Element Model 464</p> <p>28.5 Results and Discussions 465</p> <p>28.5.1 Collapse of RTP Under External Pressure 465</p> <p>28.5.2 Collapse of RTP Under Pure Bending 468</p> <p>28.5.3 Collapse of RTP Under Combined Bending</p> <p>and External Pressure 471</p> <p>28.6 Conclusions 473</p> <p>References 474</p> <p><b>29 Fibre Glass Reinforced Flexible Pipes Under Internal Pressure 475</b></p> <p>29.1 I ntroduction 475</p> <p>29.2 Analytical Solution 476</p> <p>29.2.1 Assumptions 476</p> <p>29.2.2 Stress Analysis 476</p> <p>29.2.3 Boundary Conditions 479</p> <p>29.3 Finite Element Analysis 480</p> <p>29.4 Results and Discussions 481</p> <p>29.5 Winding Angle 483</p> <p>29.6 Conclusions 484</p> <p>References 485</p> <p><b>30 Fibre Glass Reinforced Flexible Pipe Under External Pressure 487</b></p> <p>30.1 I ntroduction 487</p> <p>30.2 FE Analysis 488</p> <p>30.2.1 I ntroduction 488</p> <p>30.2.2 Geometrical Parameters and Material Properties 489</p> <p>30.2.3 FE Modeling 490</p> <p>30.3 Results and Discussions 491</p> <p>30.3.1 I ntroduction 491</p> <p>30.3.2 I nitial Imperfection 491</p> <p>30.3.2.1 I nitial Ovality 491</p> <p>30.3.2.2 I nitial Wall Eccentricity 492</p> <p>30.3.3 Geometrical Configurations 494</p> <p>30.3.3.1 D iameter Over Thickness Ratio D1/t1 of</p> <p>Outer PE Layer 494</p> <p>30.3.3.2 N umber of Reinforced Layers 495</p> <p>30.3.3.3 D iameter Over Thickness Ratio D2/t2</p> <p>of Inner Layer 496</p> <p>30.3.4 Material 496</p> <p>30.5 Conclusions 497</p> <p>References 498</p> <p>xviii Contents</p> <p><b>31 Steel Wire Bonded Flexible Pipe Under Internal Pressure 499</b></p> <p>31.1 I ntroduction 499</p> <p>31.2 Analytical Solution 501</p> <p>31.2.1 General 501</p> <p>31.2.2 Stress and Strain Analysis 501</p> <p>31.2.3 Simplification of Reinforced Layers 503</p> <p>31.3 Finite Element Analysis 504</p> <p>31.3.1 General 504</p> <p>31.3.2 ABAQUS Modeling 504</p> <p>31.4 Analysis Results 506</p> <p>31.4.1 Comparison of Strains 506</p> <p>31.4.2 E ffect of Winding Angle 507</p> <p>31.5 E xperimental Test 508</p> <p>31.5.1 General 508</p> <p>31.5.2 Test Results 508</p> <p>31.6 E ngineering Burst Pressure Formula 509</p> <p>References 510</p> <p><b>32 Steel Wire Bonded Flexible Pipe Under External Pressure 513</b></p> <p>32.1 I ntroduction 513</p> <p>32.2 Analytical solution 514</p> <p>32.2.1 Fundamental Assumptions 514</p> <p>32.2.2 N onlinear Ring Theory 514</p> <p>32.2.3 Constitutive Relation of Material 516</p> <p>32.2.4 Principle of Virtual Work Equation 518</p> <p>32.3 N umerical Simulations 520</p> <p>32.4 E xperimental Test 523</p> <p>32.5 Conclusions 525</p> <p>References 525</p> <p><b>33 Steel Wire Bonded Flexible Pipe Under Bending and Internal Pressure 527</b></p> <p>33.1 I ntroduction 527</p> <p>33.2 Analytical Solution 528</p> <p>33.2.1 Principle of Virtual Work 529</p> <p>33.2.2 Burst Pressure of PSP in Axial Direction 531</p> <p>33.2.3 Burst Pressure of PSP in Circumferential Direction 531</p> <p>33.2.4 Constitutive Model for Materials 532</p> <p>33.3 N umerical Simulations 535</p> <p>33.4 Pure Bending Experimental Test 535</p> <p>33.4.1 Test 535</p> <p>33.4.2 Results and Discussion 537</p> <p>33.5 Combined Internal Pressure and Bending Experimental Test 538</p> <p>33.5.1 Test Facilities 539</p> <p>33.5.2 Test Procedure 539</p> <p>33.5.3 Test Results 540</p> <p>33.6 Comparison of Results 540</p> <p>33.7 Conclusions 541</p> <p>References 542</p> <p>Contents xix</p> <p><b>34 Cross-Sectional Design and Case Study for Steel Wire</b></p> <p><b>Bonded Flexible Pipe 543</b></p> <p>34.1 I ntroduction 543</p> <p>34.2 Cross-Sectional Design 544</p> <p>34.2.1 D esign Procedure 544</p> <p>34.2.2 D esign Parameters 544</p> <p>34.2.3 Properties and Capacities 546</p> <p>34.3 Case Study 550</p> <p>34.4 V alidation by FE Model 551</p> <p>34.5 Conclusions 555</p> <p>References 555</p> <p><b>35 Damage Assessment for Steel Wire Bonded Flexible Pipes 557</b></p> <p>35.1 I ntroduction 557</p> <p>35.2 Analytical Method 558</p> <p>35.2.1 Basic Assumptions 558</p> <p>35.2.2 Stress-Strain Relationship 558</p> <p>35.3 Finite Element Analysis 564</p> <p>35.4 Comparison between Analytical Method and FEM 565</p> <p>35.4.1 E ffect of Steel Wire Winding Angle 567</p> <p>35.4.2 E ffects of Steel Wire Diameter 568</p> <p>35.4.3 E ffects of Missing Steel Wire 568</p> <p>35.4.4 E ffect of Damaged Inner and Outer PE Layers 569</p> <p>35.4.5 E ffects of Layer Interfacial Peeling 569</p> <p>35.5 Summary 572</p> <p>References 573</p> <p><b>36 Third-Party Damage for Steel Wire Bonded Flexible Pipe 575</b></p> <p>36.1 I ntroduction 575</p> <p>36.2 Pipeline, Soil and Tamper Parameters 576</p> <p>36.3 Finite Element Model 577</p> <p>36.4 L oading and Boundary Conditions 578</p> <p>36.5 Analysis Results 578</p> <p>36.5.1 D ynamic Response 579</p> <p>36.5.2 Tamping Velocity 581</p> <p>36.5.3 Buried Depth 581</p> <p>36.6 Summary 583</p> <p>References 583</p> <b>Index 585</b>
<p><b>Qiang Bai, </b>PhD, has more than 20 years of experience in subsea and offshore engineering. He has taught at Kyushu University in Japan, UCLA in the USA, and he has worked at OPE, JP Kenny, and Technip. He is also the coauthor of three influential books on pipelines, which are standard in the industry.</p> <p><b>Yong Bai,</b> PhD, is the president of Offshore Pipelines & Risers Inc. in Houston, and is a professor and the director of the Offshore Engineering Research Center at Zhejiang University. He has previously taught at Stavanger University in Norway where he was a professor of offshore structures and has also worked with ABS as manager of the Offshore Technology Department as the JIP project manager and has also worked for Shell International E & P, JP Kenny, and MCS, where he was vice president of engineering. He is the co-author of two books on pipelines and over 100 papers on the design and installation of subsea pipelines and risers. <p><b>Weidong Ruan, </b>PhD, is the author of numerous papers in the field of flexible pipelines and has co-authored chapters of books on pipelines and risers.
<p><b>Written by one of the most well-respected teams of scientists in the area of pipelines, this revolutionary approach offers the engineer working in the energy industry the theory, analysis, and practical applications for applying new materials and modeling to the design and effective use of flexible pipes.</b></p> <p>Recent changes in the codes for building pipelines has led to a boom in the production of new materials that can be used in flexible pipes. With the use of polymers, steel, and other new materials and variations on existing materials, the construction and, therefore, the installation and operation of flexible pipes is changing and being improved upon all over the world. The authors of this work have written numerous books and papers on these subjects and are some of the most influential authors on flexible pipes in the world, contributing much of the literature on this subject to the industry. This new volume is a presentation of some of the most cutting-edge technological advances in technical publishing. <p>This is the most comprehensive and in-depth book on this subject, covering not just the various materials and their aspects that make them different, but every process that goes into their installation, operation, and design. The thirty-six chapters, divided up into four different parts, have had not just the authors of this text but literally dozens of other engineers who are some of the world's leading scientists in this area contribute to the work. This is the future of pipelines, and it is an important breakthrough. A must-have for the veteran engineer and student alike, this volume is an important new advancement in the energy industry, a strong link in the chain of the world's energy production. <p><b><i>Flexible Pipes:</i></b> <ul><li>Introduces a new approach to the design, construction, and installation of flexible pipes</li> <li>Presents both the theory and practical applications of flexible pipes with a view toward its use in pipelines and other industrial settings</li> <li>Describes the new materials being used in flexible pipes and goes through them, considering their construction, chemical composition, strengths, and weaknesses in various industrial contexts</li> <li>Introduces engineering students to a profound theory for stronger and more efficient designs in pipelines and provides the veteran engineer a valuable references</li></ul>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €