Details

Flexible Multibody Dynamics


Flexible Multibody Dynamics

Efficient Formulations and Applications
1. Aufl.

von: Arun K. Banerjee

92,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 23.03.2016
ISBN/EAN: 9781119015611
Sprache: englisch
Anzahl Seiten: 312

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Arun K. Banerjee is one of the foremost experts in the world on the subject of flexible multibody dynamics. This book describes how to build mathermatical models of multibody systems with elastic components. Examples of such systems include the human body itself, construction cranes, cares with trailers, helicopers, spacecraft deploying antennas, tethered satellites, and underwater maneuvering vehicles. <p>This book provides methods of analysis of complex mechanical systems that can be simulated in less computer time than other methods. It equips the reader with knowledge of algorithms that provide accurate results in reduced simulation time.</p>
Preface ix <p><b>1 Derivation of Equations of Motion 1</b></p> <p>1.1 Available Analytical Methods and the Reason for Choosing Kane’s Method 1</p> <p>1.2 Kane’s Method of Deriving Equations of Motion 2</p> <p>1.2.1 Kane’s Equations 4</p> <p>1.2.2 Simple Example: Equations for a Double Pendulum 4</p> <p>1.2.3 Equations for a Spinning Spacecraft with Three Rotors, Fuel Slosh, and Nutation Damper 6</p> <p>1.3 Comparison to Derivation of Equations of Motion by Lagrange’s Method 11</p> <p>1.3.1 Lagrange’s Equations in Quasi-Coordinates 14</p> <p>Reader’s Exercise 15</p> <p>1.4 Kane’s Method of Direct Derivation of Linearized Dynamical Equation 16</p> <p>1.5 Prematurely Linearized Equations and a Posteriori Correction by ad hoc Addition of Geometric Stiffness due to Inertia Loads 19</p> <p>1.6 Kane’s Equations with Undetermined Multipliers for Constrained Motion 21</p> <p>1.7 Summary of the Equations of Motion with Undetermined Multipliers for Constraints 22</p> <p>1.8 A Simple Application 23</p> <p>Appendix 1.A Guidelines for Choosing Efficient Motion Variables in Kane’s Method 25</p> <p>Problem Set 1 27</p> <p>References 28</p> <p><b>2 Deployment, Station-Keeping, and Retrieval of a Flexible Tether Connecting a Satellite to the Shuttle 29</b></p> <p>2.1 Equations of Motion of a Tethered Satellite Deployment from the Space Shuttle 30</p> <p>2.1.1 Kinematical Equations 31</p> <p>2.1.2 Dynamical Equations 32</p> <p>2.1.3 Simulation Results 35</p> <p>2.2 Thruster-Augmented Retrieval of a Tethered Satellite to the Orbiting Shuttle 37</p> <p>2.2.1 Dynamical Equations 37</p> <p>2.2.2 Simulation Results 47</p> <p>2.2.3 Conclusion 47</p> <p>2.3 Dynamics and Control of Station-Keeping of the Shuttle-Tethered Satellite 47</p> <p>Appendix 2.A Sliding Impact of a Nose Cap with a Package of Parachute Used for Recovery of a Booster Launching Satellites 49</p> <p>Appendix 2.B Formation Flying with Multiple Tethered Satellites 53</p> <p>Appendix 2.C Orbit Boosting of Tethered Satellite Systems by Electrodynamic Forces 55</p> <p>Problem Set 2 60</p> <p>References 60</p> <p><b>3 Kane’s Method of Linearization Applied to the Dynamics of a Beam in Large Overall Motion 63</b></p> <p>3.1 Nonlinear Beam Kinematics with Neutral Axis Stretch, Shear, and Torsion 63</p> <p>3.2 Nonlinear Partial Velocities and Partial Angular Velocities for Correct Linearization 69</p> <p>3.3 Use of Kane’s Method for Direct Derivation of Linearized Dynamical Equations 70</p> <p>3.4 Simulation Results for a Space-Based Robotic Manipulator 76</p> <p>3.5 Erroneous Results Obtained Using Vibration Modes in Conventional Analysis 78</p> <p>Problem Set 3 79</p> <p>References 82</p> <p><b>4 Dynamics of a Plate in Large Overall Motion 83</b></p> <p>4.1 Motivating Results of a Simulation 83</p> <p>4.2 Application of Kane’s Methodology for Proper Linearization 85</p> <p>4.3 Simulation Algorithm 90</p> <p>4.4 Conclusion 92</p> <p>Appendix 4.A Specialized Modal Integrals 93</p> <p>Problem Set 4 94</p> <p>References 96</p> <p><b>5 Dynamics of an Arbitrary Flexible Body in Large Overall Motion 97</b></p> <p>5.1 Dynamical Equations with the Use of Vibration Modes 98</p> <p>5.2 Compensating for Premature Linearization by Geometric Stiffness due to Inertia Loads 100</p> <p>5.2.1 Rigid Body Kinematical Equations 104</p> <p>5.3 Summary of the Algorithm 105</p> <p>5.4 Crucial Test and Validation of the Theory in Application 106</p> <p>Appendix 5.A Modal Integrals for an Arbitrary Flexible Body 112</p> <p>Problem Set 5 114</p> <p>References 114</p> <p><b>6 Flexible Multibody Dynamics: Dense Matrix Formulation 115</b></p> <p>6.1 Flexible Body System in a Tree Topology 115</p> <p>6.2 Kinematics of a Joint in a Flexible Multibody Body System 115</p> <p>6.3 Kinematics and Generalized Inertia Forces for a Flexible Multibody System 116</p> <p>6.4 Kinematical Recurrence Relations Pertaining to a Body and Its Inboard Body 120</p> <p>6.5 Generalized Active Forces due to Nominal and Motion-Induced Stiffness 121</p> <p>6.6 Treatment of Prescribed Motion and Internal Forces 126</p> <p>6.7 “Ruthless Linearization” for Very Slowly Moving Articulating Flexible Structures 126</p> <p>6.8 Simulation Results 127</p> <p>Problem Set 6 129</p> <p>References 131</p> <p><b>7 Component Mode Selection and Model Reduction: A Review 133</b></p> <p>7.1 Craig-Bampton Component Modes for Constrained Flexible Bodies 133</p> <p>7.2 Component Modes by Guyan Reduction 136</p> <p>7.3 Modal Effective Mass 137</p> <p>7.4 Component Model Reduction by Frequency Filtering 138</p> <p>7.5 Compensation for Errors due to Model Reduction by Modal Truncation Vectors 138</p> <p>7.6 Role of Modal Truncation Vectors in Response Analysis 141</p> <p>7.7 Component Mode Synthesis to Form System Modes 143</p> <p>7.8 Flexible Body Model Reduction by Singular Value Decomposition of Projected System Modes 145</p> <p>7.9 Deriving Damping Coefficient of Components from Desired System Damping 147</p> <p>Problem Set 7 148</p> <p>Appendix 7.A Matlab Codes for Structural Dynamics 149</p> <p>7.10 Conclusion 159</p> <p>References 159</p> <p><b>8 Block-Diagonal Formulation for a Flexible Multibody System 161</b></p> <p>8.1 Example: Role of Geometric Stiffness due to Interbody Load on a Component 161</p> <p>8.2 Multibody System with Rigid and Flexible Components 164</p> <p>8.3 Recurrence Relations for Kinematics 165</p> <p>8.4 Construction of the Dynamical Equations in a Block-Diagonal Form 168</p> <p>8.5 Summary of the Block-Diagonal Algorithm for a Tree Configuration 174</p> <p>8.5.1 First Forward Pass 174</p> <p>8.5.2 Backward Pass 174</p> <p>8.5.3 Second Forward Pass 175</p> <p>8.6 Numerical Results Demonstrating Computational Efficiency 175</p> <p>8.7 Modification of the Block-Diagonal Formulation to Handle Motion Constraints 176</p> <p>8.8 Validation of Formulation with Ground Test Results 182</p> <p>8.9 Conclusion 186</p> <p>Appendix 8.A An Alternative Derivation of Geometric Stiffness due to Inertia Loads 187</p> <p>Problem Set 8 188</p> <p>References 189</p> <p><b>9 Efficient Variables, Recursive Formulation, and Multi-Point Constraints in Flexible Multibody Dynamics 191</b></p> <p>9.1 Single Flexible Body Equations in Efficient Variables 191</p> <p>9.2 Multibody Hinge Kinematics for Efficient Generalized Speeds 196</p> <p>9.3 Recursive Algorithm for Flexible Multibody Dynamics with Multiple Structural Loops 201</p> <p>9.3.1 Backward Pass 201</p> <p>9.3.2 Forward Pass 207</p> <p>9.4 Explicit Solution of Dynamical Equations Using Motion Constraints 209</p> <p>9.5 Computational Results and Simulation Efficiency for Moving Multi-Loop Structures 210</p> <p>9.5.1 Simulation Results 210</p> <p>Acknowledgment 215</p> <p>Appendix 9.A Pseudo-Code for Constrained nb-Body m-Loop Recursive Algorithm in Efficient Variables 216</p> <p>Problem Set 9 220</p> <p>References 220</p> <p><b>10 Efficient Modeling of Beams with Large Deflection and Large Base Motion 223</b></p> <p>10.1 Discrete Modeling for Large Deflection of Beams 223</p> <p>10.2 Motion and Loads Analysis by the Order-n Formulation 226</p> <p>10.3 Numerical Integration by the Newmark Method 230</p> <p>10.4 Nonlinear Elastodynamics via the Finite Element Method 231</p> <p>10.5 Comparison of the Order-n Formulation with the Finite Element Method 233</p> <p>10.6 Conclusion 237</p> <p>Acknowledgment 238</p> <p>Problem Set 10 238</p> <p>References 238</p> <p><b>11 Variable-n Order-n Formulation for Deployment and Retraction of Beams and Cables with Large Deflection 239</b></p> <p>11.1 Beam Discretization 239</p> <p>11.2 Deployment/Retraction from a Rotating Base 240</p> <p>11.2.1 Initialization Step 240</p> <p>11.2.2 Forward Pass 240</p> <p>11.2.3 Backward Pass 243</p> <p>11.2.4 Forward Pass 244</p> <p>11.2.5 Deployment/Retraction Step 244</p> <p>11.3 Numerical Simulation of Deployment and Retraction 246</p> <p>11.4 Deployment of a Cable from a Ship to a Maneuvering Underwater Search Vehicle 247</p> <p>11.4.1 Cable Discretization and Variable-n Order-n Algorithm for Constrained Systems with Controlled End Body 248</p> <p>11.4.2 Hydrodynamic Forces on the Underwater Cable 254</p> <p>11.4.3 Nonlinear Holonomic Constraint, Control-Constraint Coupling, Constraint Stabilization, and Cable Tension 255</p> <p>11.5 Simulation Results 257</p> <p>Problem Set 11 261</p> <p>References 267</p> <p><b>12 Order-n Equations of Flexible Rocket Dynamics 269</b></p> <p>12.1 Introduction 269</p> <p>12.2 Kane’s Equation for a Variable Mass Flexible Body 269</p> <p>12.3 Matrix Form of the Equations for Variable Mass Flexible Body Dynamics 274</p> <p>12.4 Order-n Algorithm for a Flexible Rocket with Commanded Gimbaled Nozzle Motion 275</p> <p>12.5 Numerical Simulation of Planar Motion of a Flexible Rocket 278</p> <p>12.6 Conclusion 285</p> <p>Acknowledgment 285</p> <p>Appendix 12.A Summary Algorithm for Finding Two Gimbal Angle Torques for the Nozzle 285</p> <p>Problem Set 12 286</p> <p>References 286</p> <p>Appendix A Efficient Generalized Speeds for a Single Free-Flying Flexible Body 287</p> <p>Appendix B A FORTRAN Code of the Order-n Algorithm: Application to an Example 291</p> <p>Index 301</p>
<p>"The book is intended for readers with backgrounds in rigid body dynamics and structural dynamics. It is well written and may be useful for structural engineers and researchers in applied mechanics." (<i>Zentralblatt MATH</i>, 2016)</p>
<p><strong>Arun Kanti Banerjee</strong>, 28 year career at Lockheed Martin Advanced Technology Center (1982 thru 2010), Palo Alto, California, US.<br />Last position — Principal Research Scientist. Main Contribution: Developer of DYNACON, Lockheed's simulation tool for Multi-flexible-body dynamics and Control that has been used for many projects. Dr. Banerjee is one of the foremost experts in the world on the subject of flexible multibody dynamics.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €