Details

Essentials of Inorganic Chemistry


Essentials of Inorganic Chemistry

For Students of Pharmacy, Pharmaceutical Sciences and Medicinal Chemistry
1. Aufl.

von: Katja A. Strohfeldt

51,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.01.2015
ISBN/EAN: 9781118695357
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive introduction to inorganic chemistry and, specifically, the science of metal-based drugs, <i>Essentials of Inorganic Chemistry</i> describes the basics of inorganic chemistry, including organometallic chemistry and radiochemistry, from a pharmaceutical perspective. Written for students of pharmacy and pharmacology, pharmaceutical sciences, medicinal chemistry and other health-care related subjects, this accessible text introduces chemical principles with relevant pharmaceutical examples rather than as stand-alone concepts, allowing students to see the relevance of this subject for their future professions. It includes exercises and case studies.
<p>Preface xiii</p> <p>About the Companion Website xv</p> <p><b>1 Introduction 1</b></p> <p>1.1 Medicinal inorganic chemistry 1</p> <p>1.1.1 Why use metal-based drugs? 2</p> <p>1.2 Basic inorganic principles 3</p> <p>1.2.1 Electronic structures of atoms 3</p> <p>1.2.2 Bonds 9</p> <p>1.3 Exercises 17</p> <p>References 18</p> <p>Further Reading 18</p> <p><b>2 Alkali Metals 19</b></p> <p>2.1 Alkali metal ions 19</p> <p>2.1.1 Extraction of alkali metals: an introduction to redox chemistry 20</p> <p>2.1.2 Excursus: reduction – oxidation reactions 21</p> <p>2.1.3 Chemical behaviour of alkali metals 27</p> <p>2.2 Advantages and disadvantages using lithium-based drugs 29</p> <p>2.2.1 Isotopes of lithium and their medicinal application 29</p> <p>2.2.2 Historical developments in lithium-based drugs 29</p> <p>2.2.3 The biology of lithium and its medicinal application 30</p> <p>2.2.4 Excursus: diagonal relationship and periodicity 31</p> <p>2.2.5 What are the pharmacological targets of lithium? 33</p> <p>2.2.6 Adverse effects and toxicity 34</p> <p>2.3 Sodium: an essential ion in the human body 34</p> <p>2.3.1 Osmosis 35</p> <p>2.3.2 Active transport of sodium ions 37</p> <p>2.3.3 Drugs, diet and toxicity 38</p> <p>2.4 Potassium and its clinical application 40</p> <p>2.4.1 Biological importance of potassium ions in the human body – action potential 40</p> <p>2.4.2 Excursus: the Nernst equation 40</p> <p>2.4.3 Potassium salts and their clinical application: hypokalaemia 42</p> <p>2.4.4 Adverse effects and toxicity: hyperkalaemia 43</p> <p>2.5 Exercises 45</p> <p>2.6 Case studies 47</p> <p>2.6.1 Lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) tablets 47</p> <p>2.6.2 Sodium chloride eye drops 47</p> <p>References 48</p> <p>Further Reading 48</p> <p><b>3 Alkaline Earth Metals 49</b></p> <p>3.1 Earth alkaline metal ions 49</p> <p>3.1.1 Major uses and extraction 50</p> <p>3.1.2 Chemical properties 51</p> <p>3.2 Beryllium and chronic beryllium disease 52</p> <p>3.3 Magnesium: competition to lithium? 53</p> <p>3.3.1 Biological importance 53</p> <p>3.3.2 Clinical applications and preparations 54</p> <p>3.4 Calcium: the key to many human functions 55</p> <p>3.4.1 Biological importance 56</p> <p>3.4.2 How does dietary calcium intake influence our lives? 57</p> <p>3.4.3 Calcium deficiency: osteoporosis, hypertension and weight management 57</p> <p>3.4.4 Renal osteodystrophy 58</p> <p>3.4.5 Kidney stones 59</p> <p>3.4.6 Clinical application 59</p> <p>3.4.7 Side effects 61</p> <p>3.5 Barium: rat poison or radio-contrast agent? 61</p> <p>3.6 Exercises 63</p> <p>3.7 Case studies 65</p> <p>3.7.1 Magnesium hydroxide suspension 65</p> <p>3.7.2 Calcium carbonate tablets 65</p> <p>References 66</p> <p>Further Reading 66</p> <p><b>4 The Boron Group – Group 13 67</b></p> <p>4.1 General chemistry of group 13 elements 67</p> <p>4.1.1 Extraction 68</p> <p>4.1.2 Chemical properties 69</p> <p>4.2 Boron 70</p> <p>4.2.1 Introduction 70</p> <p>4.2.2 Pharmaceutical applications of boric acid 71</p> <p>4.2.3 Bortezomib 71</p> <p>4.3 Aluminium 71</p> <p>4.3.1 Introduction 71</p> <p>4.3.2 Biological importance 72</p> <p>4.3.3 Al3+ and its use in water purification 73</p> <p>4.3.4 Aluminium-based adjuvants 73</p> <p>4.3.5 Antacids 74</p> <p>4.3.6 Aluminium-based therapeutics – alginate raft formulations 75</p> <p>4.3.7 Phosphate binders 76</p> <p>4.3.8 Antiperspirant 76</p> <p>4.3.9 Potential aluminium toxicity 77</p> <p>4.4 Gallium 77</p> <p>4.4.1 Introduction 77</p> <p>4.4.2 Chemistry 77</p> <p>4.4.3 Pharmacology of gallium-based drugs 78</p> <p>4.4.4 Gallium nitrate – multivalent use 78</p> <p>4.4.5 Gallium 8-quinolinolate 79</p> <p>4.4.6 Gallium maltolate 79</p> <p>4.4.7 Toxicity and administration 80</p> <p>4.5 Exercises 81</p> <p>4.6 Case studies 83</p> <p>4.6.1 Boric acid – API analysis 83</p> <p>4.6.2 Aluminium hydroxide tablets 83</p> <p>References 84</p> <p>Further Reading 84</p> <p><b>5 The Carbon Group 85</b></p> <p>5.1 General chemistry of group 14 elements 85</p> <p>5.1.1 Occurrence, extraction and use of group 14 elements 85</p> <p>5.1.2 Oxidation states and ionisation energies 87</p> <p>5.1.3 Typical compounds of group 14 elements 87</p> <p>5.2 Silicon-based drugs versus carbon-based analogues 89</p> <p>5.2.1 Introduction of silicon groups 90</p> <p>5.2.2 Silicon isosters 91</p> <p>5.2.3 Organosilicon drugs 93</p> <p>5.3 Organogermanium compounds: balancing act between an anticancer drug and a herbal<br /> supplement 94</p> <p>5.3.1 Germanium sesquioxide 95</p> <p>5.3.2 Spirogermanium 97</p> <p>5.4 Exercises 99</p> <p>5.5 Cases studies 101</p> <p>5.5.1 Simethicone 101</p> <p>5.5.2 Germanium supplements 101</p> <p>References 102</p> <p>Further Reading 102</p> <p><b>6 Group 15 Elements 103</b></p> <p>6.1 Chemistry of group 15 elements 103</p> <p>6.1.1 Occurrence and extraction 103</p> <p>6.1.2 Physical properties 104</p> <p>6.1.3 Oxidation states and ionisation energy 105</p> <p>6.1.4 Chemical properties 106</p> <p>6.2 Phosphorus 106</p> <p>6.2.1 Adenosine phosphates: ATP, ADP and AMP 107</p> <p>6.2.2 Phosphate in DNA 107</p> <p>6.2.3 Clinical use of phosphate 108</p> <p>6.2.4 Drug interactions and toxicity 112</p> <p>6.3 Arsenic 112</p> <p>6.3.1 Salvarsan: the magic bullet – the start of chemotherapy 113</p> <p>6.3.2 Arsenic trioxide: a modern anticancer drug? 116</p> <p>6.4 Exercises 119</p> <p>6.5 Case studies 121</p> <p>6.5.1 Phosphate solution for rectal use 121</p> <p>6.5.2 Forensic test for arsenic 121</p> <p>References 122</p> <p>Further Reading 122</p> <p><b>7 Transition Metals and d-Block Metal Chemistry 123</b></p> <p>7.1 What are d-block metals? 123</p> <p>7.1.1 Electronic configurations 123</p> <p>7.1.2 Characteristic properties 124</p> <p>7.1.3 Coordination numbers and geometries 125</p> <p>7.1.4 Crystal field theory 129</p> <p>7.2 Group 10: platinum anticancer agents 132</p> <p>7.2.1 Cisplatin 134</p> <p>7.2.2 Platinum anticancer agents 140</p> <p>7.3 Iron and ruthenium 147</p> <p>7.3.1 Iron 148</p> <p>7.3.2 Ruthenium 155</p> <p>7.4 The coinage metals 159</p> <p>7.4.1 General chemistry 159</p> <p>7.4.2 Copper-containing drugs 160</p> <p>7.4.3 Silver: the future of antimicrobial agents? 163</p> <p>7.4.4 Gold: the fight against rheumatoid arthritis 165</p> <p>7.5 Group 12 elements: zinc and its role in biological systems 168</p> <p>7.5.1 General chemistry 169</p> <p>7.5.2 The role of zinc in biological systems 170</p> <p>7.5.3 Zinc: clinical applications and toxicity 173</p> <p>7.6 Exercises 177</p> <p>7.7 Case studies 179</p> <p>7.7.1 Silver nitrate solution 179</p> <p>7.7.2 Ferrous sulfate tablets 179</p> <p>7.7.3 Zinc sulfate eye drops 180</p> <p>References 181</p> <p>Further Reading 181</p> <p><b>8 Organometallic Chemistry 183</b></p> <p>8.1 What is organometallic chemistry? 183</p> <p>8.2 What are metallocenes? 185</p> <p>8.3 Ferrocene 187</p> <p>8.3.1 Ferrocene and its derivatives as biosensors 188</p> <p>8.3.2 Ferrocene derivatives as potential antimalarial agent 189</p> <p>8.3.3 Ferrocifen – a new promising agent against breast cancer? 191</p> <p>8.4 Titanocenes 194</p> <p>8.4.1 History of titanium-based anticancer agents: titanocene dichloride and budotitane 195</p> <p>8.4.2 Further developments of titanocenes as potential anticancer agents 197</p> <p>8.5 Vanadocenes 200</p> <p>8.5.1 Vanadocene dichloride as anticancer agents 202</p> <p>8.5.2 Further vanadium-based drugs: insulin mimetics 203</p> <p>8.6 Exercises 207</p> <p>8.7 Case study – titanium dioxide 209</p> <p>References 210</p> <p>Further Reading 210</p> <p><b>9 The Clinical Use of Lanthanoids 211</b></p> <p>9.1 Biology and toxicology of lanthanoids 211</p> <p>9.2 The clinical use of lanthanum carbonate 213</p> <p>9.3 The clinical application of cerium salts 214</p> <p>9.4 The use of gadolinium salts as MRI contrast agents 215</p> <p>9.5 Exercises 219</p> <p>9.6 Case study: lanthanum carbonate tablets 221</p> <p>References 222</p> <p>Further Reading 222</p> <p><b>10 Radioactive Compounds and Their Clinical Application 223</b></p> <p>10.1 What is radioactivity? 223</p> <p>10.1.1 The atomic structure 223</p> <p>10.1.2 Radioactive processes 224</p> <p>10.1.3 Radioactive decay 224</p> <p>10.1.4 Penetration potential 227</p> <p>10.1.5 Quantification of radioactivity 227</p> <p>10.2 Radiopharmacy: dispensing and protection 232</p> <p>10.3 Therapeutic use of radiopharmaceuticals 233</p> <p>10.3.1 <sup>131</sup>Iodine: therapy for hyperthyroidism 233</p> <p>10.3.2 <sup>89</sup>Strontium 234</p> <p>10.3.3 Boron neutron capture therapy (BNCT) 235</p> <p>10.4 Radiopharmaceuticals for imaging 235</p> <p>10.4.1 <sup>99m</sup>Technetium 237</p> <p>10.4.2 <sup>18</sup>Fluoride: PET scan 240</p> <p>10.4.3<sup> 67</sup>Gallium: PET 241</p> <p>10.4.4 <sup>201</sup>Thallium 242</p> <p>10.5 Exercises 245</p> <p>10.6 Case studies 247</p> <p>10.6.1 A sample containing <sup>99m</sup>Tc was found to have a radioactivity of 15 mCi at 8 a.m. when the sample was tested. 247</p> <p>10.6.2 A typical intravenous dose of <sup>99m</sup>Tc-albumin used for lung imaging contains a radioactivity of 4 mCi 247</p> <p>10.6.3 Develop a quick-reference radioactive decay chart for <sup>131</sup>I 247</p> <p>References 248</p> <p>Further Reading 248</p> <p><b>11 Chelation Therapy 249</b></p> <p>11.1 What is heavy-metal poisoning? 249</p> <p>11.2 What is chelation? 250</p> <p>11.3 Chelation therapy 252</p> <p>11.3.1 Calcium disodium edetate 252</p> <p>11.3.2 Dimercaprol (BAL) 253</p> <p>11.3.3 Dimercaptosuccinic acid (DMSA) 254</p> <p>11.3.4 2,3-Dimercapto-1-propanesulfonic acid (DMPS) 254</p> <p>11.3.5 Lipoic acid (ALA) 254</p> <p>11.4 Exercises 257</p> <p>11.5 Case studies 259</p> <p>11.5.1 Disodium edetate 259</p> <p>11.5.2 Dimercaprol 259</p> <p>References 261</p> <p>Further Reading 261</p> <p>Index 263</p>
<p>“It would be a useful adjunct to more general chemistry texts for students in first and second years of study in pharmacy, pharmaceutical sciences, and medicinal chemistry, providing a framework to structure the more detailed but less contextualised information on inorganic pharmaceuticals they will doubtless be looking up on the internet.”  (<i>Chemistry in Australia</i>, 1 October 2015)</p>
<b>Katja A. Strohfeldt</b><br /><i>School of Pharmacy, University of Reading, UK</i>
Medicinal inorganic chemistry is an area of numerous clinical developments and has become very prominent with the discovery of platinum-based anticancer drugs. Currently used clinical applications are not only limited to platinum-based drugs, but indeed encompass a majority of elements found in the periodic table of elements. Therefore, it is crucial that professionals in a variety of healthcare settings have a basic understanding of inorganic chemistry in order to handle the relevant metal-based therapeutics in the correct manner. <br /><br />Essentials of Inorganic Chemistry For Students of Pharmacy, Pharmaceutical Sciences and Medicinal Chemistry, introduces the basic principles of inorganic chemistry and the science of metal-based drugs, using pharmacy-relevant examples. Each chapter deals with a group of elements, including the relevant chemical basics, and discusses clinically used examples. Within each chapter, the main inorganic principles or definitions are highlighted in feature boxes. <br /><br />Topics covered include: <br /><br />• Lithium based drugs – their role in the treatment of bipolar disorder <br /><br />• Organosilicon drugs – a modern alternative to traditional organic drugs <br /><br />• Salvarsan – the origin of chemotherapy <br /><br />• Platinum and other transition metal-based anticancer agents <br /><br />• Lanthanoids and their clinical use <br /><br />• Radiopharmacy <br /><br />• Chelation therapy <br /><br />Each chapter is complemented by a series of exercises and problem-based learning case studies to support self-directed studies, with additional materials available online at <a href="http://www.wiley.com/go/strohfeldt/essentials"><br /><br />www.wiley.com/go/strohfeldt/essentials</a> <br /><br />This textbook will provide students of pharmacy, pharmacology, pharmaceutical sciences, and medicinal chemistry with a detailed introduction to inorganic chemistry and the science of metal-based drugs.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €