Details

Essentials of Computational Chemistry


Essentials of Computational Chemistry

Theories and Models
2. Aufl.

von: Christopher J. Cramer

45,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.04.2013
ISBN/EAN: 9781118712276
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject.  Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas.  The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.
<p>Preface to the First Edition xv</p> <p>Preface to the Second Edition xix</p> <p>Acknowledgments xxi</p> <p><b>1 What are Theory, Computation, and Modeling? 1</b></p> <p>1.1 Definition of Terms 1</p> <p>1.2 Quantum Mechanics 4</p> <p>1.3 Computable Quantities 5</p> <p>1.3.1 Structure 5</p> <p>1.3.2 Potential Energy Surfaces 6</p> <p>1.3.3 Chemical Properties 10</p> <p>1.4 Cost and Efficiency 11</p> <p>1.4.1 Intrinsic Value 11</p> <p>1.4.2 Hardware and Software 12</p> <p>1.4.3 Algorithms 14</p> <p>1.5 Note on Units 15</p> <p>Bibliography and Suggested Additional Reading 15</p> <p>References 16</p> <p><b>2 Molecular Mechanics 17</b></p> <p>2.1 History and Fundamental Assumptions 17</p> <p>2.2 Potential Energy Functional Forms 19</p> <p>2.2.1 Bond Stretching 19</p> <p>2.2.2 Valence Angle Bending 21</p> <p>2.2.3 Torsions 22</p> <p>2.2.4 van der Waals Interactions 27</p> <p>2.2.5 Electrostatic Interactions 30</p> <p>2.2.6 Cross Terms and Additional Non-bonded Terms 34</p> <p>2.2.7 Parameterization Strategies 36</p> <p>2.3 Force-field Energies and Thermodynamics 39</p> <p>2.4 Geometry Optimization 40</p> <p>2.4.1 Optimization Algorithms 41</p> <p>2.4.2 Optimization Aspects Specific to Force Fields 46</p> <p>2.5 Menagerie of Modern Force Fields 50</p> <p>2.5.1 Available Force Fields 50</p> <p>2.5.2 Validation 59</p> <p>2.6 Force Fields and Docking 62</p> <p>2.7 Case Study: (2<i>R</i><sup>∗</sup>,4<i>S</i><sup>∗</sup>)-1-Hydroxy-2,4-dimethylhex-5-ene 64</p> <p>Bibliography and Suggested Additional Reading 66</p> <p>References 67</p> <p><b>3 Simulations of Molecular Ensembles 69</b></p> <p>3.1 Relationship Between MM Optima and Real Systems 69</p> <p>3.2 Phase Space and Trajectories 70</p> <p>3.2.1 Properties as Ensemble Averages 70</p> <p>3.2.2 Properties as Time Averages of Trajectories 71</p> <p>3.3 Molecular Dynamics 72</p> <p>3.3.1 Harmonic Oscillator Trajectories 72</p> <p>3.3.2 Non-analytical Systems 74</p> <p>3.3.3 Practical Issues in Propagation 77</p> <p>3.3.4 Stochastic Dynamics 79</p> <p>3.4 Monte Carlo 80</p> <p>3.4.1 Manipulation of Phase-space Integrals 80</p> <p>3.4.2 Metropolis Sampling 81</p> <p>3.5 Ensemble and Dynamical Property Examples 82</p> <p>3.6 Key Details in Formalism 88</p> <p>3.6.1 Cutoffs and Boundary Conditions 88</p> <p>3.6.2 Polarization 90</p> <p>3.6.3 Control of System Variables 91</p> <p>3.6.4 Simulation Convergence 93</p> <p>3.6.5 The Multiple Minima Problem 96</p> <p>3.7 Force Field Performance in Simulations 98</p> <p>3.8 Case Study: Silica Sodalite 99</p> <p>Bibliography and Suggested Additional Reading 101</p> <p>References 102</p> <p><b>4 Foundations of Molecular Orbital Theory 105</b></p> <p>4.1 Quantum Mechanics and the Wave Function 105</p> <p>4.2 The Hamiltonian Operator 106</p> <p>4.2.1 General Features 106</p> <p>4.2.2 The Variational Principle 108</p> <p>4.2.3 The Born–Oppenheimer Approximation 110</p> <p>4.3 Construction of Trial Wave Functions 111</p> <p>4.3.1 The LCAO Basis Set Approach 111</p> <p>4.3.2 The Secular Equation 113</p> <p>4.4 H¨uckel Theory 115</p> <p>4.4.1 Fundamental Principles 115</p> <p>4.4.2 Application to the Allyl System 116</p> <p>4.5 Many-electron Wave Functions 119</p> <p>4.5.1 Hartree-product Wave Functions 120</p> <p>4.5.2 The Hartree Hamiltonian 121</p> <p>4.5.3 Electron Spin and Antisymmetry 122</p> <p>4.5.4 Slater Determinants 124</p> <p>4.5.5 The Hartree-Fock Self-consistent Field Method 126</p> <p>Bibliography and Suggested Additional Reading 129</p> <p>References 130</p> <p><b>5 Semiempirical Implementations of Molecular Orbital Theory 131</b></p> <p>5.1 Semiempirical Philosophy 131</p> <p>5.1.1 Chemically Virtuous Approximations 131</p> <p>5.1.2 Analytic Derivatives 133</p> <p>5.2 Extended H¨uckel Theory 134</p> <p>5.3 CNDO Formalism 136</p> <p>5.4 INDO Formalism 139</p> <p>5.4.1 INDO and INDO/S 139</p> <p>5.4.2 MINDO/3 and SINDO1 141</p> <p>5.5 Basic NDDO Formalism 143</p> <p>5.5.1 MNDO 143</p> <p>5.5.2 AM1 145</p> <p>5.5.3 PM3 146</p> <p>5.6 General Performance Overview of Basic NDDO Models 147</p> <p>5.6.1 Energetics 147</p> <p>5.6.2 Geometries 150</p> <p>5.6.3 Charge Distributions 151</p> <p>5.7 Ongoing Developments in Semiempirical MO Theory 152</p> <p>5.7.1 Use of Semiempirical Properties in SAR 152</p> <p>5.7.2 d Orbitals in NDDO Models 153</p> <p>5.7.3 SRP Models 155</p> <p>5.7.4 Linear Scaling 157</p> <p>5.7.5 Other Changes in Functional Form 157</p> <p>5.8 Case Study: Asymmetric Alkylation of Benzaldehyde 159</p> <p>Bibliography and Suggested Additional Reading 162</p> <p>References 163</p> <p><b>6 <i>Ab Initio </i>Implementations of Hartree–Fock Molecular Orbital Theory 165</b></p> <p>6.1 <i>Ab Initio </i>Philosophy 165</p> <p>6.2 Basis Sets 166</p> <p>6.2.1 Functional Forms 167</p> <p>6.2.2 Contracted Gaussian Functions 168</p> <p>6.2.3 Single-<i>ζ </i>, Multiple-<i>ζ </i>, and Split-Valence 170</p> <p>6.2.4 Polarization Functions 173</p> <p>6.2.5 Diffuse Functions 176</p> <p>6.2.6 The HF Limit 176</p> <p>6.2.7 Effective Core Potentials 178</p> <p>6.2.8 Sources 180</p> <p>6.3 Key Technical and Practical Points of Hartree–Fock Theory 180</p> <p>6.3.1 SCF Convergence 181</p> <p>6.3.2 Symmetry 182</p> <p>6.3.3 Open-shell Systems 188</p> <p>6.3.4 Efficiency of Implementation and Use 190</p> <p>6.4 General Performance Overview of <i>Ab Initio </i>HF Theory 192</p> <p>6.4.1 Energetics 192</p> <p>6.4.2 Geometries 196</p> <p>6.4.3 Charge Distributions 198</p> <p>6.5 Case Study: Polymerization of 4-Substituted Aromatic Enynes 199</p> <p>Bibliography and Suggested Additional Reading 201</p> <p>References 201</p> <p><b>7 Including Electron Correlation in Molecular Orbital Theory 203</b></p> <p>7.1 Dynamical vs. Non-dynamical Electron Correlation 203</p> <p>7.2 Multiconfiguration Self-Consistent Field Theory 205</p> <p>7.2.1 Conceptual Basis 205</p> <p>7.2.2 Active Space Specification 207</p> <p>7.2.3 Full Configuration Interaction 211</p> <p>7.3 Configuration Interaction 211</p> <p>7.3.1 Single-determinant Reference 211</p> <p>7.3.2 Multireference 216</p> <p>7.4 Perturbation Theory 216</p> <p>7.4.1 General Principles 216</p> <p>7.4.2 Single-reference 219</p> <p>7.4.3 Multireference 223</p> <p>7.4.4 First-order Perturbation Theory for Some Relativistic Effects 223</p> <p>7.5 Coupled-cluster Theory 224</p> <p>7.6 Practical Issues in Application 227</p> <p>7.6.1 Basis Set Convergence 227</p> <p>7.6.2 Sensitivity to Reference Wave Function 230</p> <p>7.6.3 Price/Performance Summary 235</p> <p>7.7 Parameterized Methods 237</p> <p>7.7.1 Scaling Correlation Energies 238</p> <p>7.7.2 Extrapolation 239</p> <p>7.7.3 Multilevel Methods 239</p> <p>7.8 Case Study: Ethylenedione Radical Anion 244</p> <p>Bibliography and Suggested Additional Reading 246</p> <p>References 247</p> <p><b>8 Density Functional Theory 249</b></p> <p>8.1 Theoretical Motivation 249</p> <p>8.1.1 Philosophy 249</p> <p>8.1.2 Early Approximations 250</p> <p>8.2 Rigorous Foundation 252</p> <p>8.2.1 The Hohenberg–Kohn Existence Theorem 252</p> <p>8.2.2 The Hohenberg–Kohn Variational Theorem 254</p> <p>8.3 Kohn–Sham Self-consistent Field Methodology 255</p> <p>8.4 Exchange-correlation Functionals 257</p> <p>8.4.1 Local Density Approximation 258</p> <p>8.4.2 Density Gradient and Kinetic Energy Density Corrections 263</p> <p>8.4.3 Adiabatic Connection Methods 264</p> <p>8.4.4 Semiempirical DFT 268</p> <p>8.5 Advantages and Disadvantages of DFT Compared to MO Theory 271</p> <p>8.5.1 Densities vs. Wave Functions 271</p> <p>8.5.2 Computational Efficiency 273</p> <p>8.5.3 Limitations of the KS Formalism 274</p> <p>8.5.4 Systematic Improvability 278</p> <p>8.5.5 Worst-case Scenarios 278</p> <p>8.6 General Performance Overview of DFT 280</p> <p>8.6.1 Energetics 280</p> <p>8.6.2 Geometries 291</p> <p>8.6.3 Charge Distributions 294</p> <p>8.7 Case Study: Transition-Metal Catalyzed Carbonylation of Methanol 299</p> <p>Bibliography and Suggested Additional Reading 300</p> <p>References 301</p> <p><b>9 Charge Distribution and Spectroscopic Properties 305</b></p> <p>9.1 Properties Related to Charge Distribution 305</p> <p>9.1.1 Electric Multipole Moments 305</p> <p>9.1.2 Molecular Electrostatic Potential 308</p> <p>9.1.3 Partial Atomic Charges 309</p> <p>9.1.4 Total Spin 324</p> <p>9.1.5 Polarizability and Hyperpolarizability 325</p> <p>9.1.6 ESR Hyperfine Coupling Constants 327</p> <p>9.2 Ionization Potentials and Electron Affinities 330</p> <p>9.3 Spectroscopy of Nuclear Motion 331</p> <p>9.3.1 Rotational 332</p> <p>9.3.2 Vibrational 334</p> <p>9.4 NMR Spectral Properties 344</p> <p>9.4.1 Technical Issues 344</p> <p>9.4.2 Chemical Shifts and Spin–spin Coupling Constants 345</p> <p>9.5 Case Study: Matrix Isolation of Perfluorinated <i>p</i>-Benzyne 349</p> <p>Bibliography and Suggested Additional Reading 351</p> <p>References 351</p> <p><b>10 Thermodynamic Properties 355</b></p> <p>10.1 Microscopic–macroscopic Connection 355</p> <p>10.2 Zero-point Vibrational Energy 356</p> <p>10.3 Ensemble Properties and Basic Statistical Mechanics 357</p> <p>10.3.1 Ideal Gas Assumption 358</p> <p>10.3.2 Separability of Energy Components 359</p> <p>10.3.3 Molecular Electronic Partition Function 360</p> <p>10.3.4 Molecular Translational Partition Function 361</p> <p>10.3.5 Molecular Rotational Partition Function 362</p> <p>10.3.6 Molecular Vibrational Partition Function 364</p> <p>10.4 Standard-state Heats and Free Energies of Formation and Reaction 366</p> <p>10.4.1 Direct Computation 367</p> <p>10.4.2 Parametric Improvement 370</p> <p>10.4.3 Isodesmic Equations 372</p> <p>10.5 Technical Caveats 375</p> <p>10.5.1 Semiempirical Heats of Formation 375</p> <p>10.5.2 Low-frequency Motions 375</p> <p>10.5.3 Equilibrium Populations over Multiple Minima 377</p> <p>10.5.4 Standard-state Conversions 378</p> <p>10.5.5 Standard-state Free Energies, Equilibrium Constants, and Concentrations 379</p> <p>10.6 Case Study: Heat of Formation of H<sub>2</sub>NOH 381</p> <p>Bibliography and Suggested Additional Reading 383</p> <p>References 383</p> <p><b>11 Implicit Models for Condensed Phases 385</b></p> <p>11.1 Condensed-phase Effects on Structure and Reactivity 385</p> <p>11.1.1 Free Energy of Transfer and Its Physical Components 386</p> <p>11.1.2 Solvation as It Affects Potential Energy Surfaces 389</p> <p>11.2 Electrostatic Interactions with a Continuum 393</p> <p>11.2.1 The Poisson Equation 394</p> <p>11.2.2 Generalized Born 402</p> <p>11.2.3 Conductor-like Screening Model 404</p> <p>11.3 Continuum Models for Non-electrostatic Interactions 406</p> <p>11.3.1 Specific Component Models 406</p> <p>11.3.2 Atomic Surface Tensions 407</p> <p>11.4 Strengths and Weaknesses of Continuum Solvation Models 410</p> <p>11.4.1 General Performance for Solvation Free Energies 410</p> <p>11.4.2 Partitioning 416</p> <p>11.4.3 Non-isotropic Media 416</p> <p>11.4.4 Potentials of Mean Force and Solvent Structure 419</p> <p>11.4.5 Molecular Dynamics with Implicit Solvent 420</p> <p>11.4.6 Equilibrium vs. Non-equilibrium Solvation 421</p> <p>11.5 Case Study: Aqueous Reductive Dechlorination of Hexachloroethane 422</p> <p>Bibliography and Suggested Additional Reading 424</p> <p>References 425</p> <p><b>12 Explicit Models for Condensed Phases 429</b></p> <p>12.1 Motivation 429</p> <p>12.2 Computing Free-energy Differences 429</p> <p>12.2.1 Raw Differences 430</p> <p>12.2.2 Free-energy Perturbation 432</p> <p>12.2.3 Slow Growth and Thermodynamic Integration 435</p> <p>12.2.4 Free-energy Cycles 437</p> <p>12.2.5 Potentials of Mean Force 439</p> <p>12.2.6 Technical Issues and Error Analysis 443</p> <p>12.3 Other Thermodynamic Properties 444</p> <p>12.4 Solvent Models 445</p> <p>12.4.1 Classical Models 445</p> <p>12.4.2 Quantal Models 447</p> <p>12.5 Relative Merits of Explicit and Implicit Solvent Models 448</p> <p>12.5.1 Analysis of Solvation Shell Structure and Energetics 448</p> <p>12.5.2 Speed/Efficiency 450</p> <p>12.5.3 Non-equilibrium Solvation 450</p> <p>12.5.4 Mixed Explicit/Implicit Models 451</p> <p>12.6 Case Study: Binding of Biotin Analogs to Avidin 452</p> <p>Bibliography and Suggested Additional Reading 454</p> <p>References 455</p> <p><b>13 Hybrid Quantal/Classical Models 457</b></p> <p>13.1 Motivation 457</p> <p>13.2 Boundaries Through Space 458</p> <p>13.2.1 Unpolarized Interactions 459</p> <p>13.2.2 Polarized QM/Unpolarized MM 461</p> <p>13.2.3 Fully Polarized Interactions 466</p> <p>13.3 Boundaries Through Bonds 467</p> <p>13.3.1 Linear Combinations of Model Compounds 467</p> <p>13.3.2 Link Atoms 473</p> <p>13.3.3 Frozen Orbitals 475</p> <p>13.4 Empirical Valence Bond Methods 477</p> <p>13.4.1 Potential Energy Surfaces 478</p> <p>13.4.2 Following Reaction Paths 480</p> <p>13.4.3 Generalization to QM/MM 481</p> <p>13.5 Case Study: Catalytic Mechanism of Yeast Enolase 482</p> <p>Bibliography and Suggested Additional Reading 484</p> <p>References 485</p> <p><b>14 Excited Electronic States 487</b></p> <p>14.1 Determinantal/Configurational Representation of Excited States 487</p> <p>14.2 Singly Excited States 492</p> <p>14.2.1 SCF Applicability 493</p> <p>14.2.2 CI Singles 496</p> <p>14.2.3 Rydberg States 498</p> <p>14.3 General Excited State Methods 499</p> <p>14.3.1 Higher Roots in MCSCF and CI Calculations 499</p> <p>14.3.2 Propagator Methods and Time-dependent DFT 501</p> <p>14.4 Sum and Projection Methods 504</p> <p>14.5 Transition Probabilities 507</p> <p>14.6 Solvatochromism 511</p> <p>14.7 Case Study: Organic Light Emitting Diode Alq3 513</p> <p>Bibliography and Suggested Additional Reading 515</p> <p>References 516</p> <p><b>15 Adiabatic Reaction Dynamics 519</b></p> <p>15.1 Reaction Kinetics and Rate Constants 519</p> <p>15.1.1 Unimolecular Reactions 520</p> <p>15.1.2 Bimolecular Reactions 521</p> <p>15.2 Reaction Paths and Transition States 522</p> <p>15.3 Transition-state Theory 524</p> <p>15.3.1 Canonical Equation 524</p> <p>15.3.2 Variational Transition-state Theory 531</p> <p>15.3.3 Quantum Effects on the Rate Constant 533</p> <p>15.4 Condensed-phase Dynamics 538</p> <p>15.5 Non-adiabatic Dynamics 539</p> <p>15.5.1 General Surface Crossings 539</p> <p>15.5.2 Marcus Theory 541</p> <p>15.6 Case Study: Isomerization of Propylene Oxide 544</p> <p>Bibliography and Suggested Additional Reading 546</p> <p>References 546</p> <p><b>Appendix A Acronym Glossary 549</b></p> <p><b>Appendix B Symmetry and Group Theory 557</b></p> <p>B.1 Symmetry Elements 557</p> <p>B.2 Molecular Point Groups and Irreducible Representations 559</p> <p>B.3 Assigning Electronic State Symmetries 561</p> <p>B.4 Symmetry in the Evaluation of Integrals and Partition Functions 562</p> <p><b>Appendix C Spin Algebra 565</b></p> <p>C.1 Spin Operators 565</p> <p>C.2 Pure- and Mixed-spin Wave Functions 566</p> <p>C.3 UHF Wave Functions 571</p> <p>C.4 Spin Projection/Annihilation 571</p> <p>Reference 574</p> <p><b>Appendix D Orbital Localization 575</b></p> <p>D.1 Orbitals as Empirical Constructs 575</p> <p>D.2 Natural Bond Orbital Analysis 578</p> <p>References 579</p> <p>Index 581</p>
<b>Christopher Cramer</b>, Professor of Computational Chemistry Department of Chemistry, University of Minnesota,Minneapolis, USA
<i>Essentials of Computational Chemistry, Theories and Models, Second Edition</i> provides an accessible introduction to this fast developing subject. Extensively revised and updated, the Second Edition has been carefully developed to encourage student understanding and to establish seamless <p>connections with the primary literature for the advanced reader. The book opens with a presentation of classical models, before gradually moving on to increasingly more complex quantum mechanical and dynamical theories. Coverage and examples are drawn from inorganic, organic and biological chemistry.</p> <ul> <li>evolving topics like density functional theory, continuum solvation models, and computational thermochemistry brought firmly up-to-date</li> <li>carefully guides the reader through key equations, providing background information and placing each in context.</li> </ul> <ul> <li>numerous examples and applications with selected case studies designed as a basis for classroom discussion.</li> <li>supplementary website with exercises problems and updates: www.pollux.chem.umn.edu/8021/</li> </ul> <p>Invaluable to all students taking a first course in computational chemistry, molecular modelling, computational quantum chemistry or electronic structure theory. This book will also be of interest to postgraduates, researchers and professionals needing an up-to-date, accessible introduction to this subject.</p> <p><i>Reviews of the First Edition</i></p> <p>"This is an excellent text for graduates or advanced undergraduates in any field of chemistry……the text provides an excellent introduction to the field for students and researchers in any area of chemistry" <b>Theoretical Chemistry Accounts, 2003</b></p> <p>"…..this book has a lot to recommend to undergraduate students as a way of getting them involved in computational chemistry…Professor Cramer has done a superb job and deserves congratulating" <b>The Alchemist, 2003</b></p> <p><b>" ‘</b><i>Essentials</i><b>’</b> is a useful tool not only for teaching and learning but also as a quick reference, and thus will most probably become one of the standard text books for computational chemistry"</p> <p><b>Journal of Chemical Information and Computer Science, 2003</b></p>

Diese Produkte könnten Sie auch interessieren:

Isotope Geochemistry
Isotope Geochemistry
von: William M. White
PDF ebook
53,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €