Details

Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis


Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis


Wiley Series in Operations Research and Management Science 1. Aufl.

von: Toshiyuki Sueyoshi, Mika Goto

83,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.01.2018
ISBN/EAN: 9781118979297
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Introduces a bold, new model for energy industry pollution prevention and sustainable growth</b></p> <p>Balancing industrial pollution prevention with economic growth is one of the knottiest problems faced by industry today. This book introduces a novel approach to using data envelopment analysis (DEA) as a powerful tool for achieving that balance in the energy industries—the world’s largest producers of greenhouse gases. It describes a rigorous framework that integrates elements of the social sciences, corporate strategy, regional economics, energy economics, and environmental policy, and delivers a methodology and a set of strategies for promoting green innovation while solving key managerial challenges to greenhouse gas reduction and business growth.</p> <p>In writing this book the authors have drawn upon their pioneering work and considerable experience in the field to develop an unconventional, holistic approach to using DEA to assess key aspects of sustainability development. The book is divided into two sections, the first of which lays out a conventional framework of DEA as the basis for new research directions. In the second section, the authors delve into conceptual and methodological extensions of conventional DEA for solving problems of environmental assessment in all contemporary energy industry sectors. </p> <ul> <li>Introduces a powerful new approach to using DEA to achieve pollution prevention, sustainability, and business growth</li> <li>Covers the fundamentals of DEA, including theory, statistical models, and practical issues of conventional applications of DEA</li> <li>Explores new statistical modeling strategies and explores their economic and business implications</li> <li>Examines applications of DEA to environmental analysis across the complete range of energy industries, including coal, petroleum, shale gas, nuclear energy, renewables, and more</li> <li>Summarizes important studies and nearly 800 peer reviewed articles on energy, the environment, and sustainability</li> </ul> <p><i>Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis</i> is must-reading for researchers, academics, graduate students, and practitioners in the energy industries, as well as government officials and policymakers tasked with regulating the environmental impacts of industrial pollution. </p>
<p>PREFACE xv</p> <p><b>SECTION I DATA ENVELOPMENT ANALYSIS (DEA) 1</b></p> <p>1 General Description 3</p> <p>1.1 Introduction 3</p> <p>1.2 Structure 4</p> <p>1.3 Contributions in Sections I and II 10</p> <p>1.4 Abbreviations and Nomenclature 13</p> <p>1.4.1 Abbreviations Used in This Book 13</p> <p>1.4.2 Nomenclature Used in This Book 18</p> <p>1.4.3 Mathematical Concerns 23</p> <p>1.5 Summary 24</p> <p>2 Overview 25</p> <p>2.1 Introduction 25</p> <p>2.2 What is DEA? 26</p> <p>2.3 Remarks 33</p> <p>2.4 Reformulation from Fractional Programming to Linear Programming 35</p> <p>2.5 Reference Set 38</p> <p>2.6 Example for Computational Description 39</p> <p>2.7 Summary 44</p> <p>3 History 45</p> <p>3.1 Introduction 45</p> <p>3.2 O rigin of L1 Regression 46</p> <p>3.3 O rigin of Goal Programming 50</p> <p>3.4 Analytical Properties of L1 Regression 53</p> <p>3.5 From L1 Regression to L2 Regression and Frontier Analysis 55</p> <p>3.5.1 L2 Regression 55</p> <p>3.5.2 L1?-based Frontier Analyses 55</p> <p>3.6 O rigin of DEA 59</p> <p>3.7 Relationships between GP and DEA 61</p> <p>3.8 Historical Progress From L1 Regression to DEA 64</p> <p>3.9 Summary 64</p> <p>4 Radial Measurement 67</p> <p>4.1 Introduction 67</p> <p>4.2 Radial Models: Input?-Oriented 70</p> <p>4.2.1 Input?-Oriented RM(v) under Variable RTS 70</p> <p>4.2.2 Underlying Concept 72</p> <p>4.2.3 Input?-Oriented RM(c) under Constant RTS 74</p> <p>4.3 Radial Models: Desirable Output?-Oriented 75</p> <p>4.3.1 Desirable Output?-oriented RM(v) under Variable RTS 75</p> <p>4.3.2 Desirable Output?-oriented RM(c) under Constant RTS 77</p> <p>4.4 Comparison Between Radial Models 79</p> <p>4.4.1 Comparison Between Input?-Oriented and Desirable Output‑Oriented Radial Models 79</p> <p>4.4.2 Hybrid Radial Model: Modification 81</p> <p>4.5 Multiplier Restriction and Cross?-Reference Approaches 82</p> <p>4.5.1 Multiplier Restriction Methods 82</p> <p>4.5.2 Cone Ratio Method 84</p> <p>4.5.3 Cross?-reference Method 86</p> <p>4.6 Cost Analysis 88</p> <p>4.6.1 Cost Efficiency Measures 88</p> <p>4.6.2 Type of Efficiency Measures in Production and Cost Analyses 89</p> <p>4.6.3 Illustrative Example 91</p> <p>4.7 Summary 94</p> <p>5 Non?-Radial Measurement 95</p> <p>5.1 Introduction 95</p> <p>5.2 Characterization and Classification on DMUs 97</p> <p>5.3 Russell Measure 99</p> <p>5.4 Additive Model 103</p> <p>5.5 Range?-Adjusted Measure 105</p> <p>5.6 Slack?-Adjusted Radial Measure 106</p> <p>5.7 Slack?-Based Measure 108</p> <p>5.8 Methodological Comparison: An Illustrative Example 111</p> <p>5.9 Summary 113</p> <p>6 Desirable Properties 115</p> <p>6.1 Introduction 115</p> <p>6.2 Criteria For OE 117</p> <p>6.3 Supplementary Discussion 119</p> <p>6.4 Previous Studies on Desirable Properties 120</p> <p>6.5 Standard Formulation for Radial and Non?-Radial Models 122</p> <p>6.6 Desirable Properties for DEA Models 126</p> <p>6.6.1 Aggregation 126</p> <p>6.6.2 Frontier Shift Measurability 128</p> <p>6.6.3 Invariance to Alternate Optima 131</p> <p>6.6.4 Formal Definitions on Other Desirable Properties 132</p> <p>6.6.5 Efficiency Requirement 133</p> <p>6.6.6 Homogeneity 134</p> <p>6.6.7 Strict Monotonicity 136</p> <p>6.6.8 Unique Projection for Efficiency Comparison 137</p> <p>6.6.9 Unit Invariance 138</p> <p>6.6.10 Translation Invariance 139</p> <p>6.7 Summary 140</p> <p>6.A Appendix 142</p> <p>6.A.1 Proof of Proposition 6.1 142</p> <p>6.A.2 Proof of Proposition 6.6 143</p> <p>6.A.3 Proof of Proposition 6.7 145</p> <p>6.A.4 Proof of Proposition 6.8 146</p> <p>6.A.5 Proof of Proposition 6.10 147</p> <p>6.A.6 Proof of Proposition 6.11 147</p> <p>7 Strong Complementary Slackness Conditions 149</p> <p>7.1 Introduction 149</p> <p>7.2 Combination Between Primal and Dual Models for SCSCs 150</p> <p>7.3 Three Illustrative Examples 154</p> <p>7.3.1 First Example 155</p> <p>7.3.2 Second Example 158</p> <p>7.3.3 Third Example 161</p> <p>7.4 Theoretical Implications of SCSCs 162</p> <p>7.5 Guideline for Non-Radial Models 167</p> <p>7.6 Summary 167</p> <p>7.A Appendix 168</p> <p>7.A.1 Proof of Proposition 7.1 168</p> <p>7.A.2 Proof of Proposition 7.4 169</p> <p>7.A.3 Proof of Proposition 7.6 170</p> <p>8 Returns to Scale 173</p> <p>8.1 Introduction 173</p> <p>8.2 Underlying Concepts 174</p> <p>8.3 Production?-Based RTS Measurement 178</p> <p>8.4 Cost?-Based RTS Measurement 182</p> <p>8.5 Scale Efficiencies and Scale Economies 185</p> <p>8.6 Summary 188</p> <p>9 Congestion 189</p> <p>9.1 Introduction 189</p> <p>9.2 An Illustrative Example 191</p> <p>9.3 Fundamental Discussions 195</p> <p>9.4 Supporting Hyperplane 200</p> <p>9.4.1 Location of Supporting Hyperplane 200</p> <p>9.4.2 Visual Description of Congestion and RTS 201</p> <p>9.5 Congestion Identification 204</p> <p>9.5.1 Slack Adjustment for Projection 204</p> <p>9.5.2 Congestion Identification on Projected Point 206</p> <p>9.6 Theoretical Linkage Between Congestion and RTS 207</p> <p>9.7 Degree of Congestion 209</p> <p>9.8 Economic Implications 211</p> <p>9.9 Summary 212</p> <p>10 Network Computing 215</p> <p>10.1 Introduction 215</p> <p>10.2 Network Computing Architecture 216</p> <p>10.3 Network Computing for Multi?-Stage Parallel Processes 218</p> <p>10.3.1 Theoretical Preliminary 218</p> <p>10.3.2 Computational Strategy for Network Computing 221</p> <p>10.3.3 Network Computing in Multi?-Stage Parallel Processes 221</p> <p>10.4 Simulation Study 229</p> <p>10.5 Summary 241</p> <p>11 DEA?-Discriminant Analysis 243</p> <p>11.1 Introduction 243</p> <p>11.2 Two MIP Approaches for DEA?-DA 245</p> <p>11.2.1 Standard MIP Approach 245</p> <p>11.2.2 Two?-stage MIP Approach 248</p> <p>11.2.3 Differences between Two MIP Approaches 254</p> <p>11.2.4 Differences between DEA and DEA?-DA 255</p> <p>11.3 Classifying Multiple Groups 255</p> <p>11.4 Illustrative Examples 259</p> <p>11.4.1 First Example 259</p> <p>11.4.2 Second Example 259</p> <p>11.5 Frontier Analysis 261</p> <p>11.6 Summary 263</p> <p>12 Literature Study for Section I 265</p> <p>12.1 Introduction 265</p> <p>12.2 Computer Codes 265</p> <p>12.3 Pedagogical Linkage From Conventional Use to Environmental Assessment 268</p> <p>References for Section I 270</p> <p><b>SECTION II DEA ENVIRONMENTAL ASSESSMENT 281</b></p> <p>13 World Energy 283</p> <p>13.1 Introduction 283</p> <p>13.2 General Trend 284</p> <p>13.3 Primary Energy 286</p> <p>13.3.1 Fossil Fuel Energy 286</p> <p>13.3.2 Non?-fossil Energy 293</p> <p>13.4 Secondary Energy (Electricity) 297</p> <p>13.5 Petroleum Price and World Trade 299</p> <p>13.6 Energy Economics 300</p> <p>13.7 Summary 303</p> <p>14 Environmental Protection 305</p> <p>14.1 Introduction 305</p> <p>14.2 European Union 306</p> <p>14.2.1 General Description 306</p> <p>14.2.2 Environmental Action Program 308</p> <p>14.3 Japan 310</p> <p>14.4 China 311</p> <p>14.5 The United States of America 315</p> <p>14.5.1 General Description 315</p> <p>14.5.2 Regional Comparison between PJM and California ISO 317</p> <p>14.5.3 Federal Regulation of PJM and California ISO 318</p> <p>14.5.4 Local Regulation on PJM 319</p> <p>14.5.5 Local Regulation on California ISO 320</p> <p>14.6 Summary 322</p> <p>15 Concepts 325</p> <p>15.1 Introduction 325</p> <p>15.2 Role of DEA in Measuring Unified Performance 327</p> <p>15.3 Social Sustainability Versus Corporate Sustainability 331</p> <p>15.3.1 Why Is Social Sustainability Important? 332</p> <p>15.3.2 Why Is Corporate Sustainability Important? 333</p> <p>15.4 Strategic Adaptation 336</p> <p>15.5 Two Disposability Concepts 339</p> <p>15.6 Unified Efficiency under Natural and Managerial Disposability 341</p> <p>15.7 Difficulty in DEA Environmental Assessment 343</p> <p>15.8 Undesirable Congestion and Desirable Congestion 345</p> <p>15.9 Comparison With Previous Disposability Concepts 346</p> <p>15.9.1 Weak and Strong Disposability 347</p> <p>15.9.2 Null?-joint Relationship (Assumption on “Byproducts”) 347</p> <p>15.10 Summary 350</p> <p>16 Non?-Radial Approach for Unified Efficiency Measures 351</p> <p>16.1 Introduction 351</p> <p>16.2 Unified Efficiency 352</p> <p>16.2.1 Formulation 352</p> <p>16.2.2 Visual Implications of UE 357</p> <p>16.3 Unified Efficiency under Natural Disposability 359</p> <p>16.4 Unified Efficiency under Managerial Disposability 362</p> <p>16.5 Properties of Non?-Radial Approach 364</p> <p>16.6 National and International Firms in the Petroleum Industry 366</p> <p>16.6.1 Business Structure 366</p> <p>16.6.2 National and International Oil Companies 367</p> <p>16.6.3 UE Measures 367</p> <p>16.6.4 UE Measures under Natural Disposability 369</p> <p>16.6.5 UE Measures under Managerial Disposability 369</p> <p>16.7 Summary 373</p> <p>17 Radial Approach for Unified Efficiency Measures 375</p> <p>17.1 Introduction 375</p> <p>17.2 Unified Efficiency 376</p> <p>17.3 Radial Unification between Desirable and Undesirable Outputs 378</p> <p>17.4 Unified Efficiency under Natural Disposability 381</p> <p>17.5 Unified Efficiency under Managerial Disposability 383</p> <p>17.6 Coal?-Fired Power Plants in the United States 385</p> <p>17.6.1 ISO and RTO 385</p> <p>17.6.2 Data 387</p> <p>17.6.3 Unified Efficiency 388</p> <p>17.6.4 Unified Efficiency under Natural Disposability 390</p> <p>17.6.5 Unified Efficiency under Managerial Disposability 391</p> <p>17.7 Summary 392</p> <p>17.A Appendix 393</p> <p>18 Scale Efficiency 395</p> <p>18.1 Introduction 395</p> <p>18.2 Scale Efficiency under Natural Disposability: Non?-Radial Approach 396</p> <p>18.3 Scale Efficiency under Managerial Disposability: Non?-Radial Approach 399</p> <p>18.4 Scale Efficiency under Natural Disposability: Radial Approach 401</p> <p>18.5 Scale Efficiency under Managerial Disposability: Radial Approach 403</p> <p>18.6 United States Coal?-Fired Power Plants 404</p> <p>18.6.1 The Clean Air Act 404</p> <p>18.6.2 Production Factors 406</p> <p>18.6.3 Research Concerns 407</p> <p>18.6.4 Unified Efficiency Measures of Power Plants 410</p> <p>18.6.5 Mean Tests 410</p> <p>18.7 Summary 414</p> <p>19 Measurement in a Time Horizon 417</p> <p>19.1 Introduction 417</p> <p>19.2 Malmquist Index 418</p> <p>19.3 Frontier Shift in Time Horizon 419</p> <p>19.3.1 No Occurrence of Frontier Crossover 419</p> <p>19.3.2 Occurrence of Frontier Crossover 422</p> <p>19.4 Formulations for Natural Disposability 424</p> <p>19.4.1 No Occurrence of Frontier Crossover 425</p> <p>19.4.2 Occurrence of Frontier Crossover 428</p> <p>19.5 Formulations under Managerial Disposability 430</p> <p>19.5.1 No Occurrence of Frontier Crossover 430</p> <p>19.5.2 Occurrence of Frontier Crossover 432</p> <p>19.6 Energy Mix of Industrial Nations 435</p> <p>19.7 Summary 437</p> <p>19.A Appendix 440</p> <p>20 Returns to Scale and Damages to Scale 443</p> <p>20.1 Introduction 443</p> <p>20.2 Underlying Concepts 444</p> <p>20.2.1 Scale Elasticity 444</p> <p>20.2.2 Differences Between RTS and DTS 445</p> <p>20.3 Non?-Radial Approach 447</p> <p>20.3.1 Scale Economies and RTS under Natural Disposability 447</p> <p>20.3.2 Scale Damages and DTS under Managerial Disposability 450</p> <p>20.4 Radial Approach 451</p> <p>20.4.1 Scale Economies and RTS under Natural Disposability 451</p> <p>20.4.2 Scale Damages and DTS under Managerial Disposability 454</p> <p>20.5 Japanese Chemical and Pharmaceutical Firms 455</p> <p>20.6 Summary 461</p> <p>21 Desirable and Undesirable Congestions 463</p> <p>21.1 Introduction 463</p> <p>21.2 UC and DC 464</p> <p>21.3 Unified Efficiency and UC under Natural Disposability 469</p> <p>21.4 Unified Efficiency and DC under Managerial Disposability 473</p> <p>21.5 Coal?-Fired Power Plants in United States 476</p> <p>21.5.1 Data 476</p> <p>21.5.2 Occurrence of Congestion 477</p> <p>21.6 Summary 477</p> <p>22 Marginal Rate of Transformation and Rate of Substitution 483</p> <p>22.1 Introduction 483</p> <p>22.2 Concepts 485</p> <p>22.2.1 Desirable Congestion 485</p> <p>22.2.2 MRT and RSU 485</p> <p>22.3 A Possible Occurrence of DC 489</p> <p>22.4 Measurement of MRT and RSU Under DC 491</p> <p>22.5 Multiplier Restriction 492</p> <p>22.6 Explorative Analysis 493</p> <p>22.7 International Comparison 495</p> <p>22.8 Summary 503</p> <p>23 Returns to Damage and Damages to Return 505</p> <p>23.1 Introduction 505</p> <p>23.2 Congestion, RTD and DTR 506</p> <p>23.2.1 UC and DC 506</p> <p>23.2.2 RTD under UC 508</p> <p>23.2.3 DTR under DC 510</p> <p>23.2.4 Possible Occurrence of UC and DC 511</p> <p>23.3 Congestion Identification under Natural Disposability 512</p> <p>23.3.1 Possible Occurrence of UC 512</p> <p>23.3.2 RTD Measurement under the Possible Occurrence of UC 516</p> <p>23.4 Congestion Identification under Managerial Disposability 519</p> <p>23.4.1 Possible Occurrence of DC 519</p> <p>23.4.2 DTR Measurement under the Possible Occurrence of DC 522</p> <p>23.5 Energy and Social Sustainability In China 524</p> <p>23.5.1 Data and Empirical Results 524</p> <p>23.6 Summary 534</p> <p>24 Disposability Unification 537</p> <p>24.1 Introduction 537</p> <p>24.2 Unification between Disposability Concepts 538</p> <p>24.3 Non?-Radial Approach for Disposability Unification 540</p> <p>24.4 Radial Approach for Disposability Unification 545</p> <p>24.5 Computational Flow for Disposability Unification 549</p> <p>24.6 US Petroleum Industry 551</p> <p>24.6.1 Data 551</p> <p>24.6.2 Unified Efficiency Measures 554</p> <p>24.6.3 Scale Efficiency 557</p> <p>24.7 Summary 558</p> <p>25 Common Multipliers 561</p> <p>25.1 Introduction 561</p> <p>25.2 Computational Framework 564</p> <p>25.3 Data Envelopment Analysis–Discriminant Analysis 564</p> <p>25.4 Rank Sum Test 571</p> <p>25.5 Japanese Electric Power Industry 571</p> <p>25.5.1 Underlying Concepts 571</p> <p>25.5.2 Empirical Results 573</p> <p>25.6 Summary 580</p> <p>26 Property of Translation Invariance to Handle Zero and Negative Values 581</p> <p>26.1 Introduction 581</p> <p>26.2 Translation Invariance 582</p> <p>26.3 Assessment in Time Horizon 585</p> <p>26.3.1 Formulations under Natural Disposability 585</p> <p>26.3.2 Formulations under Managerial Disposability 588</p> <p>26.3.3 Efficiency Growth 588</p> <p>26.4 Efficiency Measurement for Fuel Mix Strategy 590</p> <p>26.4.1 Unified Efficiency Measures 591</p> <p>26.4.2 Fuel Mix Strategy 595</p> <p>26.5 Summary 598</p> <p>27 Handling Zero and Negative Values in Radial Measurement 601</p> <p>27.1 Introduction 601</p> <p>27.2 Disaggregation 602</p> <p>27.3 Unified Efficiency Measurement 603</p> <p>27.3.1 Conceptual Review of Disposability Unification 603</p> <p>27.3.2 Unified Efficiency under Natural Disposability with Disaggregation 606</p> <p>27.3.3 Unified Efficiency under Managerial Disposability with Disaggregation 607</p> <p>27.4 Possible Occurrence of Desirable Congestion 609</p> <p>27.4.1 Unified Efficiency under Natural and Managerial Disposability 609</p> <p>27.4.2 UENM with Desirable Congestion 610</p> <p>27.4.3 Investment Rule 613</p> <p>27.4.4 Computation Summary 614</p> <p>27.5 United States Industrial Sectors 615</p> <p>27.6 Summary 622</p> <p>28 Literature Study for DEA Environmental Assessment 625</p> <p>28.1 Introduction 625</p> <p>28.2 Applications in Energy and Environment 626</p> <p>28.3 Energy 628</p> <p>28.3.1 Electricity 628</p> <p>28.3.2 Oil, Coal, Gas and Heat 631</p> <p>28.3.3 Renewable Energies 633</p> <p>28.4 Energy Efficiency 634</p> <p>28.5 Environment 637</p> <p>28.6 Other Applications 639</p> <p>28.7 Summary 640</p> <p>References for Section II 641</p> <p>INDEX 685</p>
<p> <b>TOSHIYUKI SUEYOSHI, PhD,</b> is a full professor at New Mexico Institute of Mining and Technology, Soccorro, New Mexico, USA. Dr. Sueyoshi has published more than 300 articles in well-known international (SCI/SSCI listed) journals. <p> <b>MIKA GOTO, PhD,</b> is a full professor at Tokyo Institute of Technology, Tokyo, Japan. Dr. Goto has published more than 100 articles in well-known international (SCI/SSCI listed) journals.
<p> <b>Introduces a bold, new model for energy industry pollution prevention and sustainable growth</b> <p> Balancing industrial pollution prevention with economic growth is one of the knottiest problems faced by industry today. <i>Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis</i> introduces a novel approach to using data envelopment analysis (DEA) as a powerful tool for achieving that balance in the energy industries—the world's largest producers of greenhouse gases. It describes a rigorous framework that integrates elements of the social sciences, corporate strategy, regional economics, energy economics, and environmental policy, and delivers a methodology and a set of strategies for promoting green innovation while solving key managerial challenges to greenhouse gas reduction and business growth. <p> In writing this book the authors have drawn upon their pioneering work and considerable experience in the field to develop an unconventional, holistic approach to using DEA to assess key aspects of sustainability development. The book is divided into two sections, the first of which lays out a conventional framework of DEA as the basis for new research directions. In the second section, the authors delve into conceptual and methodological extensions of conventional DEA for solving problems of environmental assessment in all contemporary energy industry sectors. <ul> <li>Introduces a powerful new approach to using DEA to achieve pollution prevention, sustainability, and business growth</li> <li>Covers the fundamentals of DEA, including theory, statistical models, and practical issues of conventional applications of DEA</li> <li>Explores new statistical modeling strategies and explores their economic and business implications</li> <li>Examines applications of DEA to environmental analysis across the complete range of energy industries, including coal, petroleum, shale gas, nuclear energy, renewables, and more</li> <li>Summarizes important studies and nearly 800 peer reviewed articles on energy, the environment, and sustainability</li> </ul> <br> <p> <i>Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis</i> is a must-read for researchers, academics, graduate students, and practitioners in the energy industries, as well as government officials and policymakers tasked with regulating the environmental impacts of industrial pollution.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €