Details

Energy Principles and Variational Methods in Applied Mechanics


Energy Principles and Variational Methods in Applied Mechanics


3. Aufl.

von: J. N. Reddy

106,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 21.07.2017
ISBN/EAN: 9781119087397
Sprache: englisch
Anzahl Seiten: 768

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics</b></p> <p>This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates.</p> <p>It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method.</p> <p>Featuring more than 200 illustrations and tables, this <i>Third Edition</i> has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates.</p> <ul> <li>Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods</li> <li>Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each</li> <li>Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures</li> <li>Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more</li> </ul> <p><i>Energy Principles and Variational Methods in Applied Mechanics</i>, <i>Third Edition</i> is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.</p>
<p>About the Author xvii</p> <p>About the Companion Website xix</p> <p>Preface to the Third Edition xxi</p> <p>Preface to the Second Edition xxiii</p> <p>Preface to the First Edition xxv</p> <p><b>1. Introduction and Mathematical Preliminaries 1</b></p> <p>1.1 Introduction   1</p> <p>1.1.1 Preliminary Comments 1</p> <p>1.1.2 The Role of Energy Methods and Variational Principles 1</p> <p>1.1.3 A Brief Review of Historical Developments 2</p> <p>1.1.4 Preview 4</p> <p>1.2 Vectors 5</p> <p>1.2.1 Introduction 5</p> <p>1.2.2 Definition of a Vector 6</p> <p>1.2.3 Scalar and Vector Products 8</p> <p>1.2.4 Components of a Vector 12</p> <p>1.2.5 Summation Convention 13</p> <p>1.2.6 Vector Calculus 17</p> <p>1.2.7 Gradient, Divergence, and Curl Theorems 22</p> <p>1.3 Tensors 26</p> <p>1.3.1 Second-Order Tensors 26</p> <p>1.3.2 General Properties of a Dyadic 29</p> <p>1.3.3 Nonion Form and Matrix Representation of a Dyad 30</p> <p>1.3.4 Eigenvectors Associated with Dyads 34</p> <p>1.4 Summary 39</p> <p>Problems 40</p> <p><b>2. Review of Equations of Solid Mechanics 47</b></p> <p>2.1 Introduction 47</p> <p>2.1.1 Classification of Equations 47</p> <p>2.1.2 Descriptions of Motion 48</p> <p>2.2 Balance of Linear and Angular Momenta 50</p> <p>2.2.1 Equations of Motion 50</p> <p>2.2.2 Symmetry of Stress Tensors 54</p> <p>2.3 Kinematics of Deformation 56</p> <p>2.3.1 Green-Lagrange Strain Tensor 56</p> <p>2.3.2 Strain Compatibility Equations 62</p> <p>2.4 Constitutive Equations 65</p> <p>2.4.1 Introduction 65</p> <p>2.4.2 Generalized Hooke's Law 66</p> <p>2.4.3 Plane Stress-Reduced Constitutive Relations 68</p> <p>2.4.4 Thermoelastic Constitutive Relations 70</p> <p>2.5 Theories of Straight Beams 71</p> <p>2.5.1 Introduction 71</p> <p>2.5.2 The Bernoulli-Euler Beam Theory 73</p> <p>2.5.3 The Timoshenko Beam Theory 76</p> <p>2.5.4 The von Ka<sup>’</sup>rma<sup>’</sup>n Theory of Beams 81</p> <p>2.5.4.1 Preliminary Discussion 81</p> <p>2.5.4.2 The Bernoulli-Euler Beam Theory 82</p> <p>2.5.4.3 The Timoshenko Beam Theory 84</p> <p>2.6 Summary 85</p> <p>Problems 88</p> <p><b>3. Work, Energy, and Variational Calculus 97</b></p> <p>3.1 Concepts of Work and Energy 97</p> <p>3.1.1 Preliminary Comments 97</p> <p>3.1.2 External and Internal Work Done 98</p> <p>3.2 Strain Energy and Complementary Strain Energy 102</p> <p>3.2.1 General Development 102</p> <p>3.2.2 Expressions for Strain Energy and Complementary Strain Energy Densities of Isotropic Linear Elastic Solids 107</p> <p>3.2.2.1 Stain energy density 107</p> <p>3.2.2.2 Complementary stain energy density 108</p> <p>3.2.3 Strain Energy and Complementary Strain Energy for Trusses 109</p> <p>3.2.4 Strain Energy and Complementary Strain Energy for Torsional Members 114</p> <p>3.2.5 Strain Energy and Complementary Strain Energy for Beams 117</p> <p>3.2.5.1 The Bernoulli-Euler Beam Theory 117</p> <p>3.2.5.2 The Timoshenko Beam Theory 119</p> <p>3.3 Total Potential Energy and Total Complementary Energy 123</p> <p>3.3.1 Introduction 123</p> <p>3.3.2 Total Potential Energy of Beams 124</p> <p>3.3.3 Total Complementary Energy of Beams 125</p> <p>3.4 Virtual Work 126</p> <p>3.4.1 Virtual Displacements 126</p> <p>3.4.2 Virtual Forces 131</p> <p>3.5 Calculus of Variations 135</p> <p>3.5.1 The Variational Operator 135</p> <p>3.5.2 Functionals 138</p> <p>3.5.3 The First Variation of a Functional 139</p> <p>3.5.4 Fundamental Lemma of Variational Calculus 140</p> <p>3.5.5 Extremum of a Functional 141</p> <p>3.5.6 The Euler Equations 143</p> <p>3.5.7 Natural and Essential Boundary Conditions 146</p> <p>3.5.8 Minimization of Functionals with Equality Constraints 151</p> <p>3.5.8.1 The Lagrange Multiplier Method 151</p> <p>3.5.8.2 The Penalty Function Method 153</p> <p>3.6 Summary 156</p> <p>Problems 159</p> <p><b>4. Virtual Work and Energy Principles of Mechanics 167</b></p> <p>4.1 Introduction 167</p> <p>4.2 The Principle of Virtual Displacements 167</p> <p>4.2.1 Rigid Bodies 167</p> <p>4.2.2 Deformable Solids 168</p> <p>4.2.3 Unit Dummy-Displacement Method 172</p> <p>4.3 The Principle of Minimum Total Potential Energy and Castigliano's Theorem I 179</p> <p>4.3.1 The Principle of Minimum Total Potential Energy179</p> <p>4.3.2 Castigliano's Theorem I 188</p> <p>4.4 The Principle of Virtual Forces 196</p> <p>4.4.1 Deformable Solids 196</p> <p>4.4.2 Unit Dummy-Load Method 198</p> <p>4.5 Principle of Minimum Total Complementary Potential Energy and Castigliano's Theorem II 204</p> <p>4.5.1 The Principle of the Minimum total Complementary Potential Energy 204</p> <p>4.5.2 Castigliano's Theorem II 206</p> <p>4.6 Clapeyron's, Betti's, and Maxwell's Theorems 217</p> <p>4.6.1 Principle of Superposition for Linear Problems 217</p> <p>4.6.2 Clapeyron's Theorem 220</p> <p>4.6.3 Types of Elasticity Problems and Uniqueness of Solutions 224</p> <p>4.6.4 Betti's Reciprocity Theorem 226</p> <p>4.6.5 Maxwell's Reciprocity Theorem 230</p> <p>4.7 Summary 232</p> <p>Problems 235</p> <p><b>5. Dynamical Systems: Hamilton's Principle 243</b></p> <p>5.1 Introduction 243</p> <p>5.2 Hamilton's Principle for Discrete Systems 243</p> <p>5.3 Hamilton's Principle for a Continuum 249</p> <p>5.4 Hamilton's Principle for Constrained Systems 255</p> <p>5.5 Rayleigh's Method 260</p> <p>5.6 Summary 262</p> <p>Problems 263</p> <p><b>6. Direct Variational Methods 269</b></p> <p>6.1 Introduction 269</p> <p>6.2 Concepts from Functional Analysis 270</p> <p>6.2.1 General Introduction 270</p> <p>6.2.2 Linear Vector Spaces 271</p> <p>6.2.3 Normed and Inner Product Spaces 276</p> <p>6.2.3.1 Norm 276</p> <p>6.2.3.2 Inner product 279</p> <p>6.2.3.3 Orthogonality 280</p> <p>6.2.4 Transformations, and Linear and Bilinear Forms 281</p> <p>6.2.5 Minimum of a Quadratic Functional 282</p> <p>6.3 The Ritz Method 287</p> <p>6.3.1 Introduction 287</p> <p>6.3.2 Description of the Method 288</p> <p>6.3.3 Properties of Approximation Functions 293</p> <p>6.3.3.1 Preliminary Comments 293</p> <p>6.3.3.2 Boundary Conditions 293</p> <p>6.3.3.3 Convergence 294</p> <p>6.3.3.4 Completeness 294</p> <p>6.3.3.5 Requirements on <i>ɸ</i><sub>0</sub> and <i>ɸ</i><sub>i</sub> 295</p> <p>6.3.4 General Features of the Ritz Method 299</p> <p>6.3.5 Examples 300</p> <p>6.3.6 The Ritz Method for General Boundary-Value Problems 323</p> <p>6.3.6.1 Preliminary Comments 323</p> <p>6.3.6.2 Weak Forms 323</p> <p>6.3.6.3 Model Equation 1 324</p> <p>6.3.6.4 Model Equation 2 328</p> <p>6.3.6.5 Model Equation 3 330</p> <p>6.3.6.6 Ritz Approximations 332</p> <p>6.4 Weighted-Residual Methods 337</p> <p>6.4.1 Introduction 337</p> <p>6.4.2 The General Method of Weighted Residuals 339</p> <p>6.4.3 The Galerkin Method 44</p> <p>6.4.4 The Least-Squares Method 349</p> <p>6.4.5 The Collocation Method 356</p> <p>6.4.6 The Subdomain Method 359</p> <p>6.4.7 Eigenvalue and Time-Dependent Problems 361</p> <p>6.4.7.1 Eigenvalue Problems 361</p> <p>6.4.7.2 Time-Dependent Problems 362</p> <p>6.5 Summary 381</p> <p>Problems 383</p> <p><b>7. Theory and Analysis of Plates 391</b></p> <p>7.1 Introduction 391</p> <p>7.1.1 General Comments 391</p> <p>7.1.2 An Overview of Plate Theories 393</p> <p>7.1.2.1 The Classical Plate Theory 394</p> <p>7.1.2.2 The First-Order Plate Theory 395</p> <p>7.1.2.3 The Third-Order Plate Theory 396</p> <p>7.1.2.4 Stress-Based Theories 397</p> <p>7.2 The Classical Plate Theory 398</p> <p>7.2.1 Governing Equations of Circular Plates 398</p> <p>7.2.2 Analysis of Circular Plates 405</p> <p>7.2.2.1 Analytical Solutions For Bending 405</p> <p>7.2.2.2 Analytical Solutions For Buckling 411</p> <p>7.2.2.3 Variational Solutions 414</p> <p>7.2.3 Governing Equations in Rectangular Coordinates 427</p> <p>7.2.4 Navier Solutions of Rectangular Plates 435</p> <p>7.2.4.1 Bending 438</p> <p>7.2.4.2 Natural Vibration 443</p> <p>7.2.4.3 Buckling Analysis 445</p> <p>7.2.4.4 Transient Analysis 447</p> <p>7.2.5 Lévy Solutions of Rectangular Plates 449</p> <p>7.2.6 Variational Solutions: Bending 454</p> <p>7.2.7 Variational Solutions: Natural Vibration 470</p> <p>7.2.8 Variational Solutions: Buckling 475</p> <p>7.2.8.1 Rectangular Plates Simply Supported along Two Opposite Sides and Compressed in the Direction Perpendicular to Those Sides 475</p> <p>7.2.8.2 Formulation for Rectangular Plates with Arbitrary Boundary Conditions 478</p> <p>7.3 The First-Order Shear Deformation Plate Theory 486</p> <p>7.3.1 Equations of Circular Plates 486</p> <p>7.3.2 Exact Solutions of Axisymmetric Circular Plates 488</p> <p>7.3.3 Equations of Plates in Rectangular Coordinates 492</p> <p>7.3.4 Exact Solutions of Rectangular Plates 496</p> <p>7.3.4.1 Bending Analysis 498</p> <p>7.3.4.2 Natural Vibration 501</p> <p>7.3.4.3 Buckling Analysis 502</p> <p>7.3.5 Variational Solutions of Circular and Rectangular Plates 503</p> <p>7.3.5.1 Axisymmetric Circular Plates 503</p> <p>7.3.5.2 Rectangular Plates 505</p> <p>7.4 Relationships Between Bending Solutions of Classical and Shear Deformation Theories 507</p> <p>7.4.1 Beams 507</p> <p>7.4.1.1 Governing Equations 508</p> <p>7.4.1.2 Relationships Between BET and TBT 508</p> <p>7.4.2 Circular Plates 512</p> <p>7.4.3 Rectangular Plates 516</p> <p>7.5 Summary 521</p> <p>Problems 521</p> <p><b>8. The Finite Element Method 527</b></p> <p>8.1 Introduction 527</p> <p>8.2 Finite Element Analysis of Straight Bars 529</p> <p>8.2.1 Governing Equation 529</p> <p>8.2.2 Representation of the Domain by Finite Elements 530</p> <p>8.2.3 Weak Form over an Element 531</p> <p>8.2.4 Approximation over an Element 532</p> <p>8.2.5 Finite Element Equations 537</p> <p>8.2.5.1 Linear Element 538</p> <p>8.2.5.2 Quadratic Element 539</p> <p>8.2.6 Assembly (Connectivity) of Elements 539</p> <p>8.2.7 Imposition of Boundary Conditions 542</p> <p>8.2.8 Postprocessing 543</p> <p>8.3 Finite Element Analysis of the Bernoulli-Euler Beam Theory 549</p> <p>8.3.1 Governing Equation 549</p> <p>8.3.2 Weak Form over an Element 549</p> <p>8.3.3 Derivation of the Approximation Functions 550</p> <p>8.3.4 Finite Element Model 552</p> <p>8.3.5 Assembly of Element Equations 553</p> <p>8.3.6 Imposition of Boundary Conditions 555</p> <p>8.4 Finite Element Analysis of the Timoshenko Beam Theory 558</p> <p>8.4.1 Governing Equations 558</p> <p>8.4.2 Weak Forms 558</p> <p>8.4.3 Finite Element Models 559</p> <p>8.4.4 Reduced Integration Element (RIE) 559</p> <p>8.4.5 Consistent Interpolation Element (CIE) 561</p> <p>8.4.6 Superconvergent Element (SCE) 562</p> <p>8.5 Finite Element Analysis of the Classical Plate Theory 565</p> <p>8.5.1 Introduction 565</p> <p>8.5.2 General Formulation 566</p> <p>8.5.3 Conforming and Nonconforming Plate Elements 568</p> <p>8.5.4 Fully Discretized Finite Element Models 569</p> <p>8.5.4.1 Static Bending 569</p> <p>8.5.4.2 Buckling 569</p> <p>8.5.4.3 Natural Vibration 570</p> <p>8.5.4.4 Transient Response 570</p> <p>8.6 Finite Element Analysis of the First-Order Shear Deformation Plate Theory 574</p> <p>8.6.1 Governing Equations and Weak Forms 574</p> <p>8.6.2 Finite Element Approximations 576</p> <p>8.6.3 Finite Element Model 577</p> <p>8.6.4 Numerical Integration 579</p> <p>8.6.5 Numerical Examples 582</p> <p>8.6.5.1 Isotropic Plates 582</p> <p>8.6.5.2 Laminated Plates 584</p> <p>8.7 Summary 587</p> <p>Problems 588</p> <p><b>9. Mixed Variational and Finite Element Formulations 595</b></p> <p>9.1 Introduction 595</p> <p>9.1.1 General Comments 595</p> <p>9.1.2 Mixed Variational Principles 595</p> <p>9.1.3 Extremum and Stationary Behavior of Functionals 597</p> <p>9.2 Stationary Variational Principles 599</p> <p>9.2.1 Minimum Total Potential Energy 599</p> <p>9.2.2 The Hellinger-Reissner Variational Principle 601</p> <p>9.2.3 The Reissner Variational Principle 605</p> <p>9.3 Variational Solutions Based on Mixed Formulations 606</p> <p>9.4 Mixed Finite Element Models of Beams 610</p> <p>9.4.1 The Bernoulli-Euler Beam Theory 610</p> <p>9.4.1.1 Governing Equations And Weak Forms 610</p> <p>9.4.1.2 Weak-Form Mixed Finite Element Model 610</p> <p>9.4.1.3 Weighted-Residual Finite Element Models 613</p> <p>9.4.2 The Timoshenko Beam Theory 615</p> <p>9.4.2.1 Governing Equations 615</p> <p>9.4.2.2 General Finite Element Model 615</p> <p>9.4.2.3 ASD-LLCC Element 617</p> <p>9.4.2.4 ASD-QLCC Element 617</p> <p>9.4.2.5 ASD-HQLC Element 618</p> <p>9.5 Mixed Finite Element Analysis of the Classical Plate Theory 620</p> <p>9.5.1 Preliminary Comments 620</p> <p>9.5.2 Mixed Model I 620</p> <p>9.5.2.1 Governing Equations 620</p> <p>9.5.2.2 Weak Forms 621</p> <p>9.5.2.3 Finite Element Model 622</p> <p>9.5.3 Mixed Model II 625</p> <p>9.5.3.1 Governing Equations 625</p> <p>9.5.3.2 Weak Forms 625</p> <p>9.5.3.3 Finite Element Model 626</p> <p>9.6 Summary 630</p> <p>Problems 631</p> <p><b>10. Analysis of Functionally Graded Beams and Plates 635</b></p> <p>10.1 Introduction 635</p> <p>10.2 Functionally Graded Beams 638</p> <p>10.2.1 The Bernoulli-Euler Beam Theory 638</p> <p>10.2.1.1 Displacement and strain fields  638</p> <p>10.2.1.2 Equations of motion and boundary conditions 638</p> <p>10.2.2 The Timoshenko Beam Theory 639</p> <p>10.2.2.1 Displacement and strain fields 639</p> <p>10.2.2.2 Equations of motion and boundary conditions 640</p> <p>10.2.3 Equations of Motion in terms of Generalized Displacements 641</p> <p>10.2.3.1 Constitutive Equations 641</p> <p>10.2.3.2 Stress Resultants of BET 641</p> <p>10.2.3.3 Stress Resultants of TBT 642</p> <p>10.2.3.4 Equations of Motion of the BET 642</p> <p>10.2.3.5 Equations of Motion of the TBT 642</p> <p>10.2.4 Stiffiness Coefficients643</p> <p>10.3 Functionally Graded Circular Plates 645</p> <p>10.3.1 Introduction 645</p> <p>10.3.2 Classical Plate Theory 646</p> <p>10.3.2.1 Displacement and Strain Fields 646</p> <p>10.3.2.2 Equations of Motion 646</p> <p>10.3.3 First-Order Shear Deformation Theory 647</p> <p>10.3.3.1 Displacement and Strain Fields 647</p> <p>10.3.3.2 Equations of Motion 648</p> <p>10.3.4 Plate Constitutive Relations 649</p> <p>10.3.4.1 Classical Plate Theory 649</p> <p>10.3.4.2 First-Order Plate Theory 649</p> <p>10.4 A General Third-Order Plate Theory 650</p> <p>10.4.1 Introduction 650</p> <p>10.4.2 Displacements and Strains 651</p> <p>10.4.3 Equations of Motion 653</p> <p>10.4.4 Constitutive Relations 657</p> <p>10.4.5 Specialization to Other Theories 658</p> <p>10.4.5.1 A General Third-Order Plate Theory with Traction-Free Top and Bottom Surfaces 658</p> <p>10.4.5.2 The Reddy Third-Order Plate Theory 661</p> <p>10.4.5.3 The First-Order Plate Theory 663</p> <p>10.4.5.4 The Classical Plate Theory 664</p> <p>10.5 Navier's Solutions 664</p> <p>10.5.1 Preliminary Comments 664</p> <p>10.5.2 Analysis of Beams 665</p> <p>10.5.2.1 Bernoulli-Euler Beams 665</p> <p>10.5.2.2 Timoshenko Beams 667</p> <p>10.5.2.3 Numerical Results 669</p> <p>10.5.3 Analysis of Plates 671</p> <p>10.5.3.1 Boundary Conditions 672</p> <p>10.5.3.2 Expansions of Generalized Displacements 672</p> <p>10.5.3.3 Bending Analysis 673</p> <p>10.5.3.4 Free Vibration Analysis 676</p> <p>10.5.3.5 Buckling Analysis 677</p> <p>10.5.3.6 Numerical Results 679</p> <p>10.6 Finite Element Models 681</p> <p>10.6.1 Bending of Beams 681</p> <p>10.6.1.1 Bernoulli-Euler Beam Theory 681</p> <p>10.6.1.2 Timoshenko Beam Theory 683</p> <p>10.6.2 Axisymmetric Bending of Circular Plates 684</p> <p>10.6.2.1 Classical Plate Theory 681</p> <p>10.6.2.2 First-Order Shear Deformation Plate Theory 686</p> <p>10.6.3 Solution of Nonlinear Equations 688</p> <p>10.6.3.1 Times approximation 688</p> <p>10.6.3.2 Newton's Iteration Approach 688</p> <p>10.6.3.3 Tangent Stiffiness Coefficients for the BET 690</p> <p>10.6.3.4 Tangent Stiffiness Coefficients for the TBT 692</p> <p>10.6.3.5 Tangent Stiffiness Coefficients for the CPT 693</p> <p>10.6.3.6 Tangent Stiffiness Coefficients for the FSDT 693</p> <p>10.6.4 Numerical Results for Beams and Circular Plates 694</p> <p>10.6.4.1 Beams 694</p> <p>10.6.4.2 Circular Plates 697</p> <p>10.7 Summary 699</p> <p>Problems 700</p> <p>References 701</p> <p>Answers to Most Problems 711</p> <p>Index 723</p>
<p><b> J. N. REDDY, PhD,</b> is a University Distinguished Professor and inaugural holder of the Oscar S. Wyatt Endowed Chair in Mechanical Engineering at Texas A&M University, College Station, TX. He has authored and coauthored several books, including <i>Energy and Variational Methods in Applied Mechanics: Advanced Engineering Analysis</i> (with M. L. Rasmussen), and <i>A Mathematical Theory of Finite Elements</i> (with J. T. Oden), both published by Wiley.
<p><b> A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics </b> <p> This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. <p> It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton's principle for dynamical systems, and classical variational methods of approximation. This book takes a more unified approach than that found in most solid mechanics books in order to introduce the finite element method. <p> Featuring more than 200 illustrations and tables, this <i>Third Edition</i> has been reorganized and contains extensive new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. <ul> <li>Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods</li> <li>Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each</li> <li>Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations resulting in obtaining solutions for engineering structures</li> <li>Features end-of-chapter problems for course assignments, a Companion Website with a Solutions manual, instructor's manual, figures, and more</li> </ul> <br> <p><i> Energy Principles and Variational Methods in Applied Mechanics, Third Edition</i> is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €