Details

Electrochromic Materials and Devices


Electrochromic Materials and Devices


1. Aufl.

von: Roger J. Mortimer, David R. Rosseinsky, Paul M. S. Monk

196,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 27.07.2015
ISBN/EAN: 9783527679881
Sprache: englisch
Anzahl Seiten: 672

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled.</p> <p>The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.</p>
<p>Preface XIX</p> <p>Acknowledgements XXI</p> <p>List of Contributors XXIII</p> <p><b>Part I ElectrochromicMaterials and Processing 1</b></p> <p><b>1 ElectrochromicMetal Oxides: An Introduction to Materials and Devices 3</b><br /><i>Claes-Göran Granqvist</i></p> <p>1.1 Introduction 3</p> <p>1.2 Some Notes on History and Early Applications 5</p> <p>1.3 Overview of Electrochromic Oxides 6</p> <p>1.3.1 RecentWork on Electrochromic Oxide Thin Films 7</p> <p>1.3.2 Optical and Electronic Effects 9</p> <p>1.3.3 Charge Transfer Absorption in Tungsten Oxide 11</p> <p>1.3.4 Ionic Effects 14</p> <p>1.3.5 On the Importance of Thin-Film Deposition Parameters 18</p> <p>1.3.6 Electrochromism in Films of Mixed Oxide: TheW–Ni-Oxide System 21</p> <p>1.4 Transparent Electrical Conductors and Electrolytes 23</p> <p>1.4.1 Transparent Electrical Conductors: Oxide Films 25</p> <p>1.4.2 Transparent Electrical Conductors: Metal-Based Films 26</p> <p>1.4.3 Transparent Electrical Conductors: Nanowire-Based Coatings and Other Alternatives 27</p> <p>1.4.4 Electrolytes: Some Examples 29</p> <p>1.5 Towards Devices 30</p> <p>1.5.1 Six Hurdles for Device Manufacturing 31</p> <p>1.5.2 Practical Constructions of Electrochromic Devices 32</p> <p>1.6 Conclusions 33</p> <p><b>2 ElectrochromicMaterials Based on Prussian Blue and Other Metal Metallohexacyanates 41</b><br /><i>David R. Rosseinsky and Roger J. Mortimer</i></p> <p>2.1 The Electrochromism of Prussian Blue 41</p> <p>2.1.1 Introduction 41</p> <p>2.1.2 Electrodeposited PB Film and Comparisons with Bulk PB 42</p> <p>2.1.3 PB Prepared from Direct Cell Reaction, with No Applied Potential 45</p> <p>2.1.4 Layer-by-Layer Deposition of PB 46</p> <p>2.1.5 PB on Graphene 46</p> <p>2.1.6 Alternative Preparations of PB: PB from Colloid and Similar Origins 46</p> <p>2.1.7 Alternative Electrolytes Including Polymeric for PB Electrochromism 47</p> <p>2.2 Metal Metallohexacyanates akin to Prussian Blue 48</p> <p>2.2.1 Ruthenium Purple RP 48</p> <p>2.2.2 Vanadium Hexacyanoferrate 48</p> <p>2.2.3 Nickel Hexacyanoferrate 48</p> <p>2.3 Copper Hexacyanoferrate 49</p> <p>2.3.1 Palladium Hexacyanoferrate 49</p> <p>2.3.2 Indium Hexacyanoferrate and Gallium Hexacyanoferrate 49</p> <p>2.3.3 Miscellaneous PB Analogues as Hexacyanoferrates 49</p> <p>2.3.4 Mixed-Metal and Mixed-Ligand PB Analogues Listed 50</p> <p><b>3 Electrochromic Materials and Devices Based on Viologens 57</b><br /><i>Paul M. S. Monk, David R. Rosseinsky, and Roger J. Mortimer</i></p> <p>3.1 Introduction, Naming and Previous Studies 57</p> <p>3.2 Redox Chemistry of Bipyridilium Electrochromes 58</p> <p>3.3 Physicochemical Considerations for Including Bipyridilium Species in ECDs 61</p> <p>3.3.1 Type-1 Viologen Electrochromes 61</p> <p>3.3.2 Type-2 Viologen Electrochromes 61</p> <p>3.3.3 Type-3 Viologen Electrochromes 68</p> <p>3.4 Exemplar Bipyridilium ECDs 72</p> <p>3.4.1 The Philips Device 72</p> <p>3.4.2 The ICI Device 72</p> <p>3.4.3 The IBM Device 74</p> <p>3.4.4 The Gentex Device 74</p> <p>3.4.5 The NTERA Device 76</p> <p>3.4.6 The NanoChromics Cell 76</p> <p>3.4.7 The Grätzel Device 78</p> <p>3.5 Elaborations 78</p> <p>3.5.1 The Use of Pulsed Potentials 79</p> <p>3.5.2 Electropolychromism 79</p> <p>3.5.3 Viologen Electrochemiluminescence 79</p> <p>3.5.4 Viologens Incorporated within Paper 80</p> <p><b>4 Electrochromic Devices Based on Metal Hexacyanometallate/Viologen Pairings 91</b><br /><i>Kuo-Chuan Ho, Chih-Wei Hu, and Thomas S. Varley</i></p> <p>4.1 Introduction 91</p> <p>4.1.1 Overview of Prussian Blue and Viologen Electrochromic Devices 92</p> <p>4.2 Hybrid (Solid-with-Solution) Electrochromic Devices 93</p> <p>4.2.1 Prussian Blue and Heptyl Viologen Solid-with-Solution-Type ECD 93</p> <p>4.2.1.1 Preparation and Characterisation of PBThin Film and HV(BF4)2 94</p> <p>4.2.1.2 Redox Behaviours and Visible Spectra of the PB Film and HV(BF4)2 Solution 94</p> <p>4.2.1.3 Operating Parameters and Properties of PHECD 95</p> <p>4.2.1.4 Analogous Devices 96</p> <p>4.2.2 PBThin Film and Viologen in Ionic Liquid–Based ECD 97</p> <p>4.3 All-Solid Electrochromic Devices 97</p> <p>4.3.1 Prussian Blue and Poly(butyl viologen) Thin-Film ECD 97</p> <p>4.3.1.1 Preparation of Poly(butyl viologen)Thin Film 97</p> <p>4.3.1.2 Electrochemical and Optical Properties of Poly(butyl viologen) Thin Films 98</p> <p>4.3.1.3 Electrochromic Performance of PBV-PB ECD 99</p> <p>4.3.2 Prussian Blue and Viologen Anchored TiO2-Based ECD 99</p> <p>4.3.3 Polypyrrole-Prussian Blue Composite Film and Benzylviologen Polymer–Based Thin-Film-Type ECD 100</p> <p>4.3.3.1 Preparation of PP-PBThin-Film 101</p> <p>4.3.3.2 Performance of the PP-PB Thin-Film and pBPQ-Based Electrochromic Device 101</p> <p>4.3.4 PBThin-Film and Viologen-Doped Poly(3,4-ethylenedioxythiopene) Polymer–Based ECD 102</p> <p>4.3.5 Other Solid-State Viologens 103</p> <p>4.4 Other Metal Hexacyanometallate-Viologen-Based ECDs 104</p> <p>4.5 Prospects for Metal Hexacyanometallate-Viologen-Based ECDs 105</p> <p><b>5 Conjugated Electrochromic Polymers: Structure-Driven Colour and Processing Control 113</b><br /><i>Aubrey L. Dyer, Anna M. Österholm, D. Eric Shen, Keith E. Johnson, and John R. Reynolds</i></p> <p>5.1 Introduction and Background 113</p> <p>5.1.1 Source of Electrochromism in Conjugated Polymers 113</p> <p>5.1.1.3 Steric Interactions 120</p> <p>5.1.1.4 Fused Aromatics 122</p> <p>5.2 Representative Systems 123</p> <p>5.2.1 Coloured-to-Transmissive Polymers 123</p> <p>5.2.2 Anodically Colouring 139</p> <p>5.2.3 Inducing Multicoloured States in ECPs 143</p> <p>5.3 Processability of Electrochromic Polymers 152</p> <p>5.3.1 Electrochemical Polymerisation 152</p> <p>5.3.2 Functionalisation of ECPs for Achieving Organic Solubility 156</p> <p>5.3.3 Aqueous Processability and Compatibility 158</p> <p>5.3.4 Methods for Patterning 165</p> <p>5.4 Summary and Perspective 168</p> <p><b>6 Electrochromism within Transition-Metal Coordination Complexes and Polymers 185</b><br /><i>Yu-Wu Zhong</i></p> <p>6.1 Electronic Transitions and Redox Properties of Transition-Metal Complexes 185</p> <p>6.2 Electrochromism in Reductively Electropolymerised Films of Polypyridyl Complexes 187</p> <p>6.3 Electrochromism in Oxidatively Electropolymerised Films of Transition-Metal Complexes 192</p> <p>6.4 Electrochromism in Self-Assembled or Self-Adsorbed Multilayer Films of Transition-Metal Complexes 196</p> <p>6.5 Electrochromism in Spin-Coated or Drop-CastThin Films of Transition-Metal Complexes 200</p> <p>6.6 Conclusion and Outlook 204</p> <p><b>7 Organic Near-Infrared Electrochromic Materials 211</b><br /><i>Bin Yao, Jie Zhang, and XinhuaWan</i></p> <p>7.1 Introduction 211</p> <p>7.2 Aromatic Quinones 212</p> <p>7.3 Aromatic Imides 216</p> <p>7.4 Anthraquinone Imides 218</p> <p>7.5 Poly(triarylamine)s 221</p> <p>7.6 Conjugated Polymers 228</p> <p>7.7 Other NIR Electrochromic Materials 235</p> <p>7.8 Conclusion 236</p> <p><b>8 Metal Hydrides for Smart-Window Applications 241</b><br /><i>Kazuki Yoshimura</i></p> <p>8.1 Switchable-Mirror Thin Films 241</p> <p>8.2 Optical Switching Property 242</p> <p>8.3 Switching Durability 243</p> <p>8.4 Colour in the Transparent State 244</p> <p>8.5 Electrochromic Switchable Mirror 245</p> <p>8.6 Smart-Window Application 246</p> <p><b>Part II Nanostructured Electrochromic Materials and Device Fabrication 249</b></p> <p><b>9 Nanostructures in Electrochromic Materials 251</b><br /><i>Shanxin Xiong, Pooi See Lee, and Xuehong Lu</i></p> <p>9.1 Introduction 251</p> <p>9.1.1 Why Nanostructures? 251</p> <p>9.1.2 Classification of Nanostructural Electrochromic Materials 252</p> <p>9.1.3 Preparation Method 253</p> <p>9.2 Nanostructures of Transition Metal Oxides (TMOs) 253</p> <p>9.2.1 Introduction 253</p> <p>9.2.2 Single TMO Systems 257</p> <p>9.2.3 Binary TMO Systems 261</p> <p>9.3 Nanostructures of Conjugated Polymers 262</p> <p>9.3.1 Introduction 262</p> <p>9.3.2 Polythiophene and Its Derivatives 263</p> <p>9.3.3 Polyaniline 264</p> <p>9.3.4 Polypyrrole 266</p> <p>9.4 Nanostructures of Organic-Metal Complexes and Viologen 267</p> <p>9.4.1 Introduction 267</p> <p>9.4.2 Organic-Metal Complexes 267</p> <p>9.4.3 Viologens 268</p> <p>9.5 Electrochromic Nanocomposites and Nanohybrids 268</p> <p>9.5.1 Introduction 268</p> <p>9.5.2 Nanocomposites of Electrochromic Materials 269</p> <p>9.5.3 Nanocomposites of Electrochromic/Non-Electrochromic Active Materials 274</p> <p>9.6 Conclusions and Perspective 281</p> <p><b>10 Advances in Polymer Electrolytes for Electrochromic Applications 289</b><br /><i>Alice Lee-Sie Eh, Xuehong Lu, and Pooi See Lee</i></p> <p>10.1 Introduction 289</p> <p>10.2 Requirements of Polymer Electrolytes in Electrochromic Applications 290</p> <p>10.3 Types of Polymer Electrolytes 291</p> <p>10.3.1 Solid Polymer Electrolytes (SPEs) 292</p> <p>10.3.2 Gel Polymer Electrolytes (GPEs) 292</p> <p>10.3.3 Polyelectrolytes 293</p> <p>10.3.4 Composite Polymer Electrolytes (CPEs) 294</p> <p>10.4 Polymer Hosts of Interest in Electrochromic Devices 294</p> <p>10.4.1 PEO/PEG-Based Polymer Electrolytes 295</p> <p>10.4.2 PMMA-Based Polymer Electrolytes 296</p> <p>10.4.3 PVDF-Based Polymer Electrolytes 297</p> <p>10.4.4 Ionic Liquid–Based Polymer Electrolytes 300</p> <p>10.4.5 Poly(propylene carbonate) (PPC)-Based Polymer Electrolytes 302</p> <p>10.5 Recent Trends in Polymer Electrolytes 303</p> <p>10.5.1 Flexible, Imprintable, Bendable and Shape-Conformable Polymer Electrolytes 303</p> <p>10.5.2 Potentially 'Green' Biodegradable Polymer Electrolytes Using Naturally Available Polymer Host 303</p> <p>10.6 Future Outlook 305</p> <p>10.6.1 Recent Trends in Electrochromic Devices 305</p> <p>10.6.2 Challenges in Creating Versatile Polymer Electrolytes for EC Devices 307</p> <p><b>11 Gyroid-Structured Electrodes for Electrochromic and Supercapacitor Applications 311</b><br /><i>Maik R.J. Scherer and Ullrich Steiner</i></p> <p>11.1 Introduction to Nanostructured Electrochromic Electrodes 311</p> <p>11.1.1 Three-Dimensional Nanostructuring Strategies 313</p> <p>11.2 Polymer Self-Assembly and the Gyroid Nanomorphology 315</p> <p>11.2.1 Copolymer Microphase Separation 315</p> <p>11.2.2 Double-Gyroid 316</p> <p>11.2.3 Synthesis of Mesoporous DG Templates 318</p> <p>11.3 Gyroid-Structured Vanadium Pentoxide 320</p> <p>11.3.1 Electrochemical Characterisation of V2O5 Electrodes 322</p> <p>11.3.2 Electrochromic Displays Based on V2O5 Electrodes 322</p> <p>11.3.3 Electrochromic V2O5 Supercapacitors 324</p> <p>11.4 Gyroid-Structured Nickel Oxide 326</p> <p>11.4.1 Electrochromic Displays Based on NiO Electrodes 328</p> <p>11.5 Concluding Remarks 329</p> <p><b>12 Layer-by-Layer Assembly of ElectrochromicMaterials: On the Efficient Method for Immobilisation of Nanomaterials 337</b><br /><i>Susana I. Córdoba de Torresi, Jose R. Martins Neto, Marcio Vidotti, and Fritz Huguenin</i></p> <p>12.1 Introduction to the Layer-by-Layer Deposition Technique 337</p> <p>12.2 Layer-by-Layer Assembly in Electrochromic Materials 337</p> <p>12.2.1 Layer-by-Layer Assembly of Conjugated Conducting Polymers 338</p> <p>12.2.2 Layer-by-Layer Assembly of Intervalence Charge Transfer Coloration Materials 340</p> <p>12.3 Layer-by-Layer Assembly of Metal Oxides 342</p> <p>12.3.1 Tungsten Oxide 344</p> <p>12.3.2 Hexaniobate 346</p> <p>12.3.3 Vanadium Oxide 346</p> <p>12.3.4 Titanium Oxide 348</p> <p>12.3.5 Nickel Hydroxide 349</p> <p>12.4 Layer-by-Layer and Electrophoretic Deposition for Nanoparticles Immobilisation 351</p> <p>12.4.1 Comparing Layer-by-Layer and Electrophoretic Deposition 351</p> <p><b>13 Plasmonic Electrochromism of Metal Oxide Nanocrystals 363</b><br /><i>Anna Llordes, Evan L. Runnerstrom, Sebastien D. Lounis, and Delia J.Milliron</i></p> <p>13.1 Introduction to Plasmonic Electrochromic Nanocrystals 363</p> <p>13.2 History of Electrochromism in Metal and Semiconductor Nanocrystals 368</p> <p>13.3 Doped Metal Oxide Colloidal Nanocrystals as Plasmonic Electrochromic Materials 377</p> <p>13.3.1 Colloidal Synthesis of Doped Metal Oxide Nanocrystals 377</p> <p>13.3.2 Plasmonic Electrochromic Electrodes Based on Colloidal ITO and AZO Nanocrystals 379</p> <p>13.3.3 Design Principles for Nanocrystal-Based Plasmonic Electrochromics 382</p> <p>13.4 Advanced Electrochromic Electrodes Constructed from Colloidal Plasmonic NCs 383</p> <p>13.4.1 NIR-Selective Mesoporous Architectured Electrodes Based on Plasmonic Colloidal Nanocrystals 384</p> <p>13.4.2 Dual-Band Nanocrystal-in-Glass Composite Electrodes Based on Plasmonic Colloidal Nanocrystals and Conventional Electrochromic Materials 385</p> <p>13.4.3 Other Advanced Composite Electrochromic Electrodes Obtained from Non-Colloidal Approaches 391</p> <p>13.5 Conclusions and Outlook 393</p> <p><b>Part III Applications of Electrochromic Materials 399</b></p> <p><b>14 Solution-Phase Electrochromic Devices and Systems 401</b><br /><i>Harlan J. Byker</i></p> <p>14.1 Introduction 401</p> <p>14.2 Early History of Solution-Phase EC 402</p> <p>14.3 The World’s Most Widely Used Electrochromic Material 405</p> <p>14.4 Commercialisation of EC Devices 406</p> <p>14.5 Reversibility and Stability in Solution-Phase EC Systems 409</p> <p>14.6 Thickened and Gelled Solution-Phase Systems 411</p> <p>14.7 Nernst Equilibrium, Disproportionation and Stability 413</p> <p>14.8 Closing Remarks 415</p> <p><b>15 Electrochromic SmartWindows for Dynamic Daylight and Solar Energy Control in Buildings 419 </b><br /><i>Bjørn Petter Jelle</i></p> <p>15.1 Introduction 419</p> <p>15.2 Solar Radiation 421</p> <p>15.3 Solar Radiation throughWindow Panes and Glass Structures 421</p> <p>15.4 Solar Radiation Modulation by Electrochromic Windows 425</p> <p>15.5 Experimental 427</p> <p>15.5.1 Glass Samples and Window Pane Configurations 427</p> <p>15.5.2 UV-VIS-NIR Spectrophotometry 428</p> <p>15.5.3 Emissivity Determination by Specular IR Reflectance 428</p> <p>15.5.4 Emissivity Determination by Heat Flow Meter 428</p> <p>15.5.5 Emissivity Determination by Hemispherical Reflectance 429</p> <p>15.5.6 Actual Emissivity Determinations inThis Study 430</p> <p>15.6 Measurement and Calculation Method of Solar Radiation Glazing Factors 430</p> <p>15.6.1 Ultraviolet Solar Transmittance 430</p> <p>15.6.2 Visible Solar Transmittance 431</p> <p>15.6.3 Solar Transmittance 431</p> <p>15.6.4 Solar Material Protection Factor (SMPF) 432</p> <p>15.6.5 Solar Skin Protection Factor (SSPF) 433</p> <p>15.6.6 External Visible Solar Reflectance 434</p> <p>15.6.7 Internal Visible Solar Reflectance 434</p> <p>15.6.8 Solar Reflectance 435</p> <p>15.6.9 Solar Absorbance 436</p> <p>15.6.10 Emissivity 436</p> <p>15.6.11 Solar Factor (SF) 440</p> <p>15.6.12 Colour Rendering Factor (CRF) 449</p> <p>15.6.13 Additional Heat Transfer 451</p> <p>15.6.14 Number of Glass Layers in a Window Pane 452</p> <p>15.6.15 General Calculation Procedures 452</p> <p>15.7 Spectroscopic Measurement and Calculation of Solar Radiation Glazing Factors 452</p> <p>15.7.1 Spectroscopic Data for Float Glass and Low Emittance Glass 453</p> <p>15.7.2 Spectroscopic Data for Dark Silver Coated Glass 455</p> <p>15.7.3 Spectroscopic Data for Electrochromic Windows 456</p> <p>15.7.4 Solar Radiation Glazing Factors for Float Glass, Low Emittance Glass, Dark Silver Coated Glass and Two-Layer and Three-Layer Window Pane Configurations 461</p> <p>15.7.5 Solar Radiation Glazing Factors for Electrochromic Windows 465</p> <p>15.7.6 Miscellaneous Other Electrochromic Properties 470</p> <p>15.8 Commercial Electrochromic Windows and the Path Ahead 475</p> <p>15.9 Increased Application of Solar Radiation Glazing Factors 476</p> <p>15.10 Conclusions 476</p> <p>15.A Appendix: Tables for Calculation of Solar Radiation Glazing Factors 477</p> <p>15.B Appendix: Tables for Calculation ofThermal Conductance 488</p> <p><b>16 Fabric Electrochromic Displays for Adaptive Camouflage, Biomimicry, Wearable Displays and Fashion 503</b><br /><i>Michael T. Otley,Michael A. Invernale, and Gregory A. Sotzing</i></p> <p>16.1 Introduction 503</p> <p>16.1.1 Colour-Changing Technologies Background 504</p> <p>16.1.2 Previous Work 505</p> <p>16.1.3 Conductivity Trends of PEDOT-PSS Impregnated Fabric and the Effect of Conductivity on Electrochromic Textile 510</p> <p>16.1.4 The Effects of Coloured-Based Fabric on Electrochromic Textile 513</p> <p>16.1.5 Other Electrochromic Fabric 514</p> <p>16.2 Non-Electrochromic Colour-Changing Fabric 517</p> <p>16.2.1 Thermochromic Fabric 517</p> <p>16.2.2 Photochromic Fabric 517</p> <p>16.2.3 LED and LCD Technology 518</p> <p>16.3 Conclusion 519</p> <p><b>Part IV Device Case Studies, Environmental Impact Issues and Elaborations 525</b></p> <p><b>17 Electrochromic Foil: A Case Study 527</b><br /><i>Claes-Göran Granqvist</i></p> <p>17.1 Introduction 527</p> <p>17.2 Device Design and Optical Properties of Electrochromic Foil 528</p> <p>17.3 Comments on Lifetime and Durability 532</p> <p>17.4 Electrolyte Functionalisation by Nanoparticles 538</p> <p>17.5 Comments and Conclusion 541</p> <p><b>18 Life Cycle Analysis (LCA) of Electrochromic SmartWindows 545</b><br /><i>Uwe Posset and Matthias Harsch</i></p> <p>18.1 Life Cycle Analysis 545</p> <p>18.2 Application of LCA to Electrochromic SmartWindows 549</p> <p>18.3 LCA of Novel Plastic-Film-Based Electrochromic Devices 560</p> <p>18.4 LCA for EC Target Applications 564</p> <p>18.4.1 Automotive Sunroof Case 564</p> <p>18.4.2 Appliance Example:Window Case for a House-Hold Oven 566</p> <p>18.4.3 Aircraft CabinWindow Case 567</p> <p>18.5 Conclusion 568</p> <p><b>19 Electrochromic Glazing in Buildings: A Case Study 571</b><br /><i>John Mardaljevic, Ruth KellyWaskett, and Birgit Painter</i></p> <p>19.1 Introduction 571</p> <p>19.1.1 Daylight in Buildings 572</p> <p>19.1.2 The Importance of View 572</p> <p>19.2 Variable Transmission Glazing for Use in Buildings 573</p> <p>19.2.1 Chromogenic Glass 573</p> <p>19.2.2 VTG Performance Characteristics 574</p> <p>19.2.3 EC Product Details and Practicalities 577</p> <p>19.2.4 Operational Factors 578</p> <p>19.2.5 Zoning of EC Glazing 580</p> <p>19.2.6 Performance Prediction Using Building Simulation Tools 582</p> <p>19.2.7 Occupant-Based Studies 583</p> <p>19.3 Case Study:The De Montfort EC Office Installation 584</p> <p>19.3.1 Background 584</p> <p>19.3.2 Installation of the EC Glazing 585</p> <p>19.3.3 Subjective Data Collection 587</p> <p>19.3.4 Measurement of Physical Quantities 587</p> <p>19.3.5 The Daylight Illumination Spectrum with EC Glazing 588</p> <p>19.4 Summary 591</p> <p><b>20 Photoelectrochromic Materials and Devices 593</b><br /><i>Kuo-Chuan Ho, Hsin-Wei Chen, and Chih-Yu Hsu</i></p> <p>20.1 Introduction 593</p> <p>20.2 Structure Design of the PECDs 594</p> <p>20.2.1 Separated-Type PECD (Type I):The Dye-Sensitised TiO2 Layer is Separated from the Electrochromic Layer 594</p> <p>20.2.1.1 Inorganic Materials as EC Layers 599</p> <p>20.2.1.2 Conjugated Conducting Polymer Materials as EC Layers 604</p> <p>20.2.2 Combined-Type PECD (Type II):The Dye-Sensitised TiO2 Layer is Combined with the Electrochromic Layer 610</p> <p>20.2.3 Non-Symmetric-Type PECDs (Type III): The Active Area of the Dye-Sensitised TiO2 Layer is Non-Symmetric to the Electrochromic Layer 613</p> <p>20.2.4 Parallel-Type PECDs: Where the Dye-Sensitised TiO2 Layer is Parallel and Separated with the Electrochromic Layer. The Electrolytes for Both Layers are Different forTheir Optimal Performance 616</p> <p>20.2.5 Prospects 619</p> <p><b>Appendix Definitions of Electrochromic Materials and Device Performance Parameters 623</b><br /><i>Roger J. Mortimer, Paul M. S. Monk, and David R. Rosseinsky</i></p> <p>A.1 Contrast Ratio CR 623</p> <p>A.2 Response Time τ 624</p> <p>A.3 Write–Erase Efficiency 624</p> <p>A.4 Cycle Life 624</p> <p>A.5 Coloration Efficiency η 625</p> <p>Index 627</p>
<b>Paul M. S. Monk</b> received his PhD in the electrochemistry of novel electrochromic viologen species at Exeter University in 1989. A postdoctoral research fellow position (1989-91) at the University of Aberdeen, in Scotland, was followed by lecturing positions in Physical Chemistry at Manchester Polytechnic (1991-2) then Manchester Metropolitan University (1992-2007). He is currently employed as a Vicar in an inner-city parish in Oldham, Greater Manchester, UK.<br /><br /><b>Roger J. Mortimer</b> was Professor in Physical Chemistry at Loughborough University between 2006 and his untimely death in 2015. He graduated from Imperial College London with a PhD in heterogeneous catalysis at sold-liquid interfaces. After a postdoctoral research fellowship (1980-81) and visiting associate in chemistry (1988) at the California Institute of Technology, he became demonstrator and a Research Assistant at Exeter University. Lecturing positions in Physical Chemistry ensued at Anglia Ruskin University (1984-87) and Analytical Chemistry at Sheffield Hallam University (1987-89), followed by his appointment as a Lecturer in Physical Chemistry at Loughborough University in 1989.<br /><br /><b>David R. Rosseinsky</b> is an Emeritus Professor and Honorary Research Fellow in Physics at Exeter University, having been Reader in Physical Chemistry there from 1979-1998. After Rhodes University he pursued studies leading to PhD then DSc on charge transfer interactions at Manchester University. Following a sojourn at the University of Pennsylvania, from 1959 he became a lecturer at the University of the Witwatersrand in Johannesburg and in 1961, lecturer at Exeter University. With his ex research-student H Kellawi (by then Prof at Damascus University, on sabbatical), they studied Prussian blue and other electrochromic systems, extended in an invited appointment to SIMTech, Singapore, 2000-2002.
Electrochromic materials can change their optical properties on the application of an electrical voltage or current. Different classes of materials show this behaviour including transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the colour change is persistent, the electric field usually needs only to be applied to effect the switching, allowing for applications such as low energy-consumption displays, light-adapting mirrors in vehicles, and 'smart windows' for which the amount of transmitted light and heat can be controlled.<br> <br> The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, wearable displays and fashion. The last part of the book comprises case studies and environmental impact issues.<br> <br> From the contents:<br> * Part One: Electrochromic Materials and Processing<br> <br> * Part Two: Nanostructured Electrochromic Materials and Device Fabrication<br> <br> * Part Three: Applications of Electrochromic Materials<br> <br> * Part Four: Device Case Studies, Environmental Impact Issues and Elaborations<br> <br> <br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €