Details
Electrocatalysis for Membrane Fuel Cells
Methods, Modeling, and Applications1. Aufl.
160,99 € |
|
Verlag: | Wiley-VCH (D) |
Format: | EPUB |
Veröffentl.: | 06.09.2023 |
ISBN/EAN: | 9783527830565 |
Sprache: | englisch |
Anzahl Seiten: | 576 |
DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
<b>Electrocatalysis for Membrane Fuel Cells</b> <p><b>Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods</b> <p><i>Electrocatalysis for Membrane Fuel Cells</i> focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). <p>Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, <i>Electrocatalysis for Membrane Fuel Cells</i> covers sample topics such as: <ul><li>Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects;</li> <li>Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials;</li> <li>Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling;</li> <li>Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design.</li></ul> <p><i>Electrocatalysis for Membrane Fuel Cells quickly</i> and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.
<p>Preface xv</p> <p><b>Part I Overview of Systems 1</b></p> <p><b>1 System-level Constraints on Fuel Cell Materials and Electrocatalysts 3<br /> </b><i>Elliot Padgett and Dimitrios Papageorgopoulos</i></p> <p>1.1 Overview of Fuel Cell Applications and System Designs 3</p> <p>1.1.1 System-level Fuel Cell Metrics 3</p> <p>1.1.2 Fuel Cell Subsystems and Balance of Plant (BOP) Components 5</p> <p>1.1.3 Comparison of Fuel Cell Systems for Different Applications 9</p> <p>1.2 Application-derived Requirements and Constraints 10</p> <p>1.2.1 Fuel Cell Performance and the Heat Rejection Constraint 10</p> <p>1.2.2 Startup, Flexibility, and Robustness 13</p> <p>1.2.3 Fuel Cell Durability 14</p> <p>1.2.4 Cost 16</p> <p>1.3 Material Pathways to Improved Fuel Cells 18</p> <p>1.4 Note 19</p> <p>Acronyms 20</p> <p>Symbols 20</p> <p>References 20</p> <p><b>2 PEM Fuel Cell Design from the Atom to the Automobile 23<br /> </b><i>Andrew Haug and Michael Yandrasits</i></p> <p>2.1 Introduction 23</p> <p>2.2 The PEMFC Catalyst 27</p> <p>2.3 The Electrode 32</p> <p>2.4 Membrane 38</p> <p>2.5 The GDL 42</p> <p>2.6 CCM and MEA 46</p> <p>2.7 Flowfield and Single Fuel Cell 50</p> <p>2.8 Stack and System 55</p> <p>Acronyms 57</p> <p>References 58</p> <p><b>Part II Basics – Fundamentals 69</b></p> <p><b>3 Electrochemical Fundamentals 71<br /> </b><i>Vito Di Noto, Gioele Pagot, Keti Vezzù, Enrico Negro, and Paolo Sgarbossa</i></p> <p>3.1 Principles of Electrochemistry 71</p> <p>3.2 The Role of the First Faraday Law 71</p> <p>3.3 Electric Double Layer and the Formation of a Potential Difference at the Interface 73</p> <p>3.4 The Cell 74</p> <p>3.5 The Spontaneous Processes and the Nernst Equation 75</p> <p>3.6 Representation of an Electrochemical Cell and the Nernst Equation 77</p> <p>3.7 The Electrochemical Series 79</p> <p>3.8 Dependence of the E cell on Temperature and Pressure 82</p> <p>3.9 Thermodynamic Efficiencies 83</p> <p>3.10 Case Study – The Impact of Thermodynamics on the Corrosion of Low-T FC Electrodes 85</p> <p>3.11 Reaction Kinetics and Fuel Cells 88</p> <p>3.11.1 Correlation Between Current and Reaction Kinetics 88</p> <p>3.11.2 The Concept of Exchange Current 89</p> <p>3.12 Charge Transfer Theory Based on Distribution of Energy States 89</p> <p>3.12.1 The Butler–Volmer Equation 96</p> <p>3.12.2 The Tafel Equation 100</p> <p>3.12.3 Interplay Between Exchange Current and Electrocatalyst Activity 101</p> <p>3.13 Conclusions 103</p> <p>Acronyms 104</p> <p>Symbols 104</p> <p>References 107</p> <p><b>4 Quantifying the Kinetic Parameters of Fuel Cell Reactions 111<br /> </b><i>Viktoriia A. Saveleva, Juan Herranz, and Thomas J. Schmidt</i></p> <p>4.1 Introduction 111</p> <p>4.2 Electrochemical Active Surface Area (ECSA) Determination 114</p> <p>4.2.1 ECSA Determination Using Underpotential Deposition 115</p> <p>4.2.1.1 Hydrogen Underpotential Deposition (H <sub>UPD</sub>) 116</p> <p>4.2.1.2 Copper Underpotential Deposition (Cu <sub>UPD</sub>) 117</p> <p>4.2.2 ECSA Quantification Based on the Adsorption of Probe Molecules 118</p> <p>4.2.2.1 CO Stripping 118</p> <p>4.2.2.2 No –<sub>2</sub> ∕NO Sorption 119</p> <p>4.2.3 Double-layer Capacitance Measurements and Other Methods 120</p> <p>4.2.4 ECSA Measurements in a PEFC: Which Method to Choose? 120</p> <p>4.3 H 2 -Oxidation and Electrochemical Setups for the Quantification of Kinetic Parameters 121</p> <p>4.3.1 Rotating Disc Electrodes (RDEs) 122</p> <p>4.3.2 Hydrogen Pump (PEFC) Approach 124</p> <p>4.3.3 Ultramicroelectrode Approach 125</p> <p>4.3.4 Scanning Electrochemical Microscopy (SECM) Approach 125</p> <p>4.3.5 Floating Electrode Method 127</p> <p>4.3.6 Methods Summary 128</p> <p>4.4 ORR Kinetics 129</p> <p>4.4.1 ORR Mechanism Studies with RRDE Setups 129</p> <p>4.4.2 ORR Pathway on Me/N/C ORR Catalysts 130</p> <p>4.4.3 ORR Kinetics: Methods 132</p> <p>4.4.3.1 Pt-based Electrodes 132</p> <p>4.4.3.2 Pt-free Catalysts: RDE vs. PEFC Kinetic Studies 133</p> <p>4.5 Concluding Remarks 133</p> <p>Acronyms 134</p> <p>Symbols 134</p> <p>References 135</p> <p><b>5 Adverse and Beneficial Functions of Surface Layers Formed on Fuel Cell Electrocatalysts 149<br /> </b><i>Shimshon Gottesfeld</i></p> <p>5.1 Introduction 149</p> <p>5.2 Catalyst Capping in Heterogeneous Catalysis and in Electrocatalysis 151</p> <p>5.3 Passivation of PGM/TM and Non-PGM HOR Catalysts and Its Possible Prevention 156</p> <p>5.4 Literature Reports on Fuel Cell Catalyst Protection by Capping 161</p> <p>5.4.1 Protection of ORR Pt catalysts Against Agglomeration by an Ultrathin Overlayer of Mesoporous SiO 2 or Me–SiO 2 161</p> <p>5.4.2 Protection by Carbon Caps Against Catalyst Detachment and Catalyst Passivation Under Ambient Conditions 162</p> <p>5.5 Other Means for Improving the Performance Stability of Supported Electrocatalysts 166</p> <p>5.5.1 Replacement of Carbon Supports by Ceramic Supports 166</p> <p>5.5.2 Protection of Pt Catalysts by Enclosure in Mesopores 167</p> <p>5.6 Conclusions 170</p> <p>Abbreviations 171</p> <p>References 171</p> <p><b>Part III State of the Art 175</b></p> <p><b>6 Design of PGM-free ORR Catalysts: From Molecular to the State of the Art 177<br /> </b><i>Naomi Levy and Lior Elbaz</i></p> <p>6.1 Introduction 177</p> <p>6.2 The Influence of Molecular Changes Within the Complex 179</p> <p>6.2.1 The Role of the Metal Center 179</p> <p>6.2.2 Addition of Substituents to MCs 183</p> <p>6.2.2.1 Beta-substituents 184</p> <p>6.2.3 Meso-substituents 186</p> <p>6.2.4 Axial Ligands 187</p> <p>6.3 Cooperative Effects Between Neighboring MCs 190</p> <p>6.3.1 Bimetallic Cofacial Complexes – “Packman” Complexes 191</p> <p>6.3.2 MC Polymers 191</p> <p>6.4 The Physical and/or Chemical Interactions Between the Catalyst and Its Support Material 193</p> <p>6.5 Effect of Pyrolysis 194</p> <p>Acronyms 196</p> <p>References 196</p> <p><b>7 Recent Advances in Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes 205<br /> </b><i>Indra N. Pulidindi and Meital Shviro</i></p> <p>7.1 Introduction 205</p> <p>7.2 Mechanism of the HOR in Alkaline Media 206</p> <p>7.3 Electrocatalysts for Alkaline HOR 212</p> <p>7.3.1 Platinum Group Metal HOR Electrocatalysts 212</p> <p>7.3.2 Non-platinum Group Metal-based HOR Electrocatalysts 214</p> <p>7.4 Conclusions 220</p> <p>Acronyms 221</p> <p>References 221</p> <p><b>8 Membranes for Fuel Cells 227<br /> </b><i>Paolo Sgarbossa, Giovanni Crivellaro, Francesco Lanero, Gioele Pagot, Afaaf R. Alvi, Enrico Negro, Keti Vezzù, and Vito Di Noto</i></p> <p>8.1 Introduction 227</p> <p>8.2 Properties of the PE separators 228</p> <p>8.2.1 Benchmarking of IEMs 229</p> <p>8.2.2 Ion-exchange Capacity (IEC) 229</p> <p>8.2.3 Water Uptake (WU), Swelling Ratio (SR), and Water Transport 231</p> <p>8.2.4 Ionic Conductivity (σ) 233</p> <p>8.2.5 Gas Permeability 234</p> <p>8.2.6 Chemical Stability 235</p> <p>8.2.7 Thermal and Mechanical Stability 237</p> <p>8.2.8 Cost of the IEMs 239</p> <p>8.3 Classification of Ion-exchange Membranes 240</p> <p>8.3.1 Cation-exchange Membranes (CEMs) 240</p> <p>8.3.1.1 Perfluorinated Membranes 240</p> <p>8.3.1.2 Nonperfluorinated Membranes 245</p> <p>8.3.2 Anion-exchange Membranes (AEMs) 246</p> <p>8.3.2.1 Functionalized Polyketones 247</p> <p>8.3.2.2 Poly(Vinyl Benzyl Trimethyl Ammonium) (PVBTMA) Polymers 248</p> <p>8.3.2.3 Poly(sulfones) (PS) 249</p> <p>8.3.3 Hybrid Ion-exchange Membranes 249</p> <p>8.3.3.1 Hybrid Membranes with Single Ceramic Oxoclusters [P/(M <sub>X</sub> O <sub>Y</sub>) <sub>n</sub> ] 250</p> <p>8.3.3.2 Hybrid Membranes Comprising Surface-functionalized Nanofillers 254</p> <p>8.3.3.3 Hybrid Membranes Doped with hierarchical “Core–Shell” Nanofillers 254</p> <p>8.3.4 Porous Membranes 257</p> <p>8.3.4.1 Porous Membranes as Host Material 257</p> <p>8.3.4.2 Porous Membranes as Support Layer 258</p> <p>8.3.4.3 Porous Membranes as Unconventional Separators 259</p> <p>8.4 Mechanism of Ion Conduction 259</p> <p>8.5 Summary and Perspectives 268</p> <p>Acronyms 271</p> <p>Symbols 272</p> <p>References 272</p> <p><b>9 Supports for Oxygen Reduction Catalysts: Understanding and Improving Structure, Stability, and Activity 287<br /> </b><i>Iwona A. Rutkowska, Sylwia Zoladek, and Pawel J. Kulesza</i></p> <p>9.1 Introduction 287</p> <p>9.2 Carbon Black Supports 288</p> <p>9.3 Decoration and Modification with Metal Oxide Nanostructures 289</p> <p>9.4 Carbon Nanotube as Carriers 291</p> <p>9.5 Doping, Modification, and Other Carbon Supports 293</p> <p>9.6 Graphene as Catalytic Component 293</p> <p>9.7 Metal Oxide-containing ORR Catalysts 296</p> <p>9.8 Photodeposition of Pt on Various Oxide–Carbon Composites 299</p> <p>9.9 Other Supports 301</p> <p>9.10 Alkaline Medium 302</p> <p>9.11 Toward More Complex Hybrid Systems 303</p> <p>9.12 Stabilization Approaches 306</p> <p>9.13 Conclusions and Perspectives 307</p> <p>Acknowledgment 308</p> <p>Acronyms 308</p> <p>References 308</p> <p><b>Part IV Physical–Chemical Characterization 319</b></p> <p><b>10 Understanding the Electrocatalytic Reaction in the Fuel Cell by Tracking the Dynamics of the Catalyst by X-ray Absorption Spectroscopy 321<br /> </b><i>Ditty Dixon, Aiswarya Bhaskar, and Aswathi Thottungal</i></p> <p>10.1 Introduction 321</p> <p>10.2 A Short Introduction to XAS 323</p> <p>10.3 Application of XAS in Electrocatalysis 325</p> <p>10.3.1 Ex Situ Characterization of Electrocatalyst 325</p> <p>10.3.2 Operando XAS Studies 330</p> <p>10.4 Δμ XANES Analysis to Track Adsorbate 334</p> <p>10.5 Time-resolved Operando XAS Measurements in Fuel Cells 338</p> <p>10.6 Fourth-generation Synchrotron Facilities and Advanced Characterization Techniques 340</p> <p>10.6.1 Total-reflection Fluorescence X-ray Absorption Spectroscopy 341</p> <p>10.6.2 Resonant X-ray Emission Spectroscopy (RXES) 341</p> <p>10.6.3 Combined XRD and XAS 342</p> <p>10.7 Conclusions 342</p> <p>Acronyms 343</p> <p>References 344</p> <p><b>Part V Modeling 349</b></p> <p><b>11 Unraveling Local Electrocatalytic Conditions with Theory and Computation 351<br /> </b><i>Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling</i></p> <p>11.1 Local Reaction Conditions: Why Bother? 351</p> <p>11.2 From Electrochemical Cells to Interfaces: Basic Concepts 352</p> <p>11.3 Characteristics of Electrocatalytic Interfaces 355</p> <p>11.4 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356</p> <p>11.5 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358</p> <p>11.5.1 Computational Hydrogen Electrode 359</p> <p>11.5.2 Unit-cell Extrapolation, Explicit Solvated Protons, and Excess Electrons 360</p> <p>11.5.3 Counter Charge and Reference Electrode 361</p> <p>11.5.4 Effective Screening Medium and mPB Theory 361</p> <p>11.5.5 Grand-canonical DFT 362</p> <p>11.6 A Concerted Theoretical–Computational Framework 362</p> <p>11.7 Case Study: Oxygen Reduction at Pt(111) 364</p> <p>11.8 Outlook 367</p> <p>Acronyms 367</p> <p>Symbols 368</p> <p>References 368</p> <p><b>Part VI Protocols 375</b></p> <p><b>12 Quantifying the Activity of Electrocatalysts 377<br /> </b><i>Karla Vega-Granados and Nicolas Alonso-Vante</i></p> <p>12.1 Introduction: Toward a Systematic Protocol for Activity Measurements 377</p> <p>12.2 Materials Consideration 378</p> <p>12.2.1 PGM Group 378</p> <p>12.2.2 Low PGM and PGM-free Approaches 379</p> <p>12.2.3 Impact of Support Effects on Catalytic Sites 381</p> <p>12.3 Electrochemical Cell Considerations 382</p> <p>12.3.1 Cell Configuration and Material 382</p> <p>12.3.2 Electrolyte 385</p> <p>12.3.2.1 Purity 385</p> <p>12.3.2.2 Protons vs. Hydroxide Ions 386</p> <p>12.3.2.3 Influence of Counterions 388</p> <p>12.3.3 Electrode Potential Measurements 388</p> <p>12.3.4 Preparation of Electrodes 391</p> <p>12.3.5 Well-defined and Nanoparticulated Objects 395</p> <p>12.4 Parameters Diagnostic of Electrochemical Performance 396</p> <p>12.4.1 Surface Area 396</p> <p>12.4.2 Hydrogen Underpotential Deposition Integration 397</p> <p>12.4.2.1 Surface Oxide Reduction 398</p> <p>12.4.2.2 CO Monolayer Oxidation (CO Stripping) 400</p> <p>12.4.2.3 Underpotential Deposition of Metals 401</p> <p>12.4.2.4 Double-layer Capacitance 402</p> <p>12.4.3 Electrocatalysts Site Density 402</p> <p>12.4.4 Data Evaluation (Half-Cell Reactions) 404</p> <p>12.4.5 The E <sub>1/2</sub> and E (j <sub>Pt </sub>(5%)) Parameters 405</p> <p>12.5 Stability Tests 407</p> <p>12.6 Data Evaluation (Auxiliary Techniques) 409</p> <p>12.6.1 Surface Atoms vs. Bulk 410</p> <p>12.7 Conclusions 411</p> <p>Acknowledgments 412</p> <p>Acronyms 412</p> <p>Symbols 413</p> <p>References 414</p> <p><b>13 Durability of Fuel Cell Electrocatalysts and Methods for Performance Assessment 429<br /> </b><i>Bianca M. Ceballos and Piotr Zelenay</i></p> <p>13.1 Introduction 429</p> <p>13.2 Fuel Cell PGM-free Electrocatalysts for Low-temperature Applications 431</p> <p>13.3 PGM-free Electrocatalyst Degradation Pathways 432</p> <p>13.3.1 Demetallation 432</p> <p>13.3.2 Carbon Oxidation 436</p> <p>13.3.3 Micropore Flooding 439</p> <p>13.3.4 Nitrogen Protonation and Anionic Adsorption 439</p> <p>13.4 PGM-free Electrocatalyst Durability and Metrics 440</p> <p>13.4.1 Performance and Durability Evaluation in Air-supplied Fuel Cell Cathode 440</p> <p>13.4.2 Assessment of Carbon Corrosion in Nitrogen-purged Cathode 443</p> <p>13.4.3 Determination of Performance Loss upon Cycling Cathode Catalyst in Nitrogen 443</p> <p>13.4.4 Recommendations for ORR Electrocatalyst Evaluation in RRDE in O <sub>2</sub> and in an Inert Gas 446</p> <p>13.4.5 Electrocatalyst Corrosion 447</p> <p>13.5 Low-PGM Catalyst Degradation 447</p> <p>13.5.1 Pt Dissolution 449</p> <p>13.5.2 Carbon Support Corrosion 452</p> <p>13.5.3 Pt Catalyst MEA Activity Assessment and Durability 454</p> <p>13.5.4 PGM Electrocatalyst MEA Conditioning in H <sub>2</sub> /Air 454</p> <p>13.5.5 Accelerated Stress Test of PGM Electrocatalyst Durability 456</p> <p>13.6 Conclusion 457</p> <p>Acronyms 459</p> <p>References 460</p> <p><b>Part VII Systems 471</b></p> <p><b>14 Modeling of Polymer Electrolyte Membrane Fuel Cells 473<br /> </b><i>Andrea Baricci, Andrea Casalegno, Dario Maggiolo, Federico Moro, Matteo Zago, and Massimo Guarnieri</i></p> <p>14.1 Introduction 473</p> <p>14.2 General Equations for PEMFC Models 474</p> <p>14.2.1 Analytical and Numerical Modeling 474</p> <p>14.2.2 Reversible Electromotive Force 476</p> <p>14.2.3 Fuel Cell Voltage 477</p> <p>14.2.4 Activation Overpotential 478</p> <p>14.2.5 Ohmic Overpotential – PEM Model 479</p> <p>14.2.6 Concentration Overpotential 480</p> <p>14.2.7 Examples of Fuel Cell Modeling 482</p> <p>14.3 Multiphase Water Transport Model for PEMFCs 483</p> <p>14.4 Fluid Mechanics in PEMFC Porous Media: From 3D Simulations to 1D Models 488</p> <p>14.4.1 From Micro- to Macroscopic Models 490</p> <p>14.4.2 Porous Medium Anisotropy 491</p> <p>14.4.3 Fluid–Fluid Viscous Drag 492</p> <p>14.4.4 Surface Tension and Capillary Pressure 492</p> <p>14.5 Physical-based Modeling for Electrochemical Impedance Spectroscopy 496</p> <p>14.5.1 Experimental Measurement and Modeling Approaches 496</p> <p>14.5.2 Physical-based Modeling 497</p> <p>14.5.2.1 Current Relaxation 497</p> <p>14.5.2.2 Laplace Transform 498</p> <p>14.5.3 Typical Impedance Features of PEMFC 498</p> <p>14.5.4 Application of EIS Modeling to PEMFC Diagnostic 500</p> <p>14.5.5 Approximations of 1D Approach 501</p> <p>14.6 Conclusions and Perspectives 502</p> <p>Acronyms 503</p> <p>Symbols 504</p> <p>References 507</p> <p><b>15 Physics-based Modeling of Polymer Electrolyte Membrane Fuel Cells: From Cell to Automotive Systems 511<br /> </b><i>Andrea Baricci, Matteo Zago, Simone Buso, Marco Sorrentino, and Andrea Casalegno</i></p> <p>15.1 Polymer Fuel Cell Model for Stack Simulation 511</p> <p>15.1.1 General Characteristics of a Fuel Cell System for Automotive Applications 511</p> <p>15.1.2 Analysis of the Channel Geometry for Stack Performance Modeling 514</p> <p>15.1.3 Analysis of the Air and Hydrogen Utilization for Stack Performance Modeling 516</p> <p>15.1.4 Introduction to Transient Stack Models 518</p> <p>15.2 Auxiliary Subsystems Modeling 519</p> <p>15.2.1 Air Management Subsystem 519</p> <p>15.2.2 Hydrogen Management Subsystem 521</p> <p>15.2.3 Thermal Management Subsystem 522</p> <p>15.2.4 PEMFC System Simulation 522</p> <p>15.3 Electronic Power Converters for Fuel Cell-powered Vehicles 525</p> <p>15.3.1 Power Converter Architecture 527</p> <p>15.3.2 Load Adaptability 527</p> <p>15.3.3 Power Electronic System Components 528</p> <p>15.3.3.1 Port Interface Converters 530</p> <p>15.3.3.2 The PEMFC Interface Converter 530</p> <p>15.3.3.3 The Motor Interface Converter 530</p> <p>15.3.3.4 The Energy Storage Interface 531</p> <p>15.3.3.5 Supervisory Control 531</p> <p>15.4 Fuel Cell Powertrains for Mobility Use 532</p> <p>15.4.1 Transport Application Scenarios 532</p> <p>15.4.2 Tools for the Codesign of Transport Fuel Cell Systems and Energy Management Strategies 534</p> <p>15.4.2.1 Automotive Case Study: Optimal Codesign of an LDV FCHV Powertrain 535</p> <p>Acronyms 540</p> <p>Symbols 541</p> <p>References 541</p> <p>Index 545</p>
<p><i><b>Nicolas Alonso-Vante</b> is emeritus Professor since September 2021 at the University of Poitiers, France. In the field of materials science, electrocatalysis and photoelectrocatalysis, he has authored over 250 peer-reviewed publications, book chapters, editor of a two-volume e-book on electrochemistry in Spanish, author of two books and six patents, with more than 10320 citations and an h-index of 55 (ResearchGate). He has received the awards of the National Polytechnic Institute-Mexico as an R&D distinguished graduate, the Mexican Council of Technology SNI-III recognition as a Mexican researcher working outside Mexico, and has been awarded the NM Emanuel Medal from the Russian Academy of Science.</i> <p><i><b>Vito Di Noto</b> is Full Professor of Electrochemistry for Energy and Solid-State Chemistry in the Department of Industrial Engineering of the University of Padova, Italy. He is Fellow of the Electrochemical Society, Past-President of the Electrochemical Division of the Italian Chemical Society and the recipient of the “Energy Technology Division Award” of The Electrochemical Society. In the field of advanced functional materials for electrochemical energy conversion and storage device, he is author of more than 335 international publications, with more than 9200 citations and an h-index of 54 (Google Scholar). He is inventor of more than 30 international patents.</i>
<p><b>Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods</b> <p><i>Electrocatalysis for Membrane Fuel Cells</i> focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). <p>Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, <i>Electrocatalysis for Membrane Fuel Cells</i> covers sample topics such as: <ul><li>Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects;</li> <li>Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials;</li> <li>Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling;</li> <li>Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design.</li></ul> <p><i>Electrocatalysis for Membrane Fuel Cells quickly</i> and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.