Details

Distillation Design and Control Using Aspen Simulation


Distillation Design and Control Using Aspen Simulation


2. Aufl.

von: William L. Luyben

122,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 17.04.2013
ISBN/EAN: 9781118510094
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn how to develop optimal steady-state designs for distillation systems</b></p> <p>As the search for new energy sources grows ever more urgent, distillation remains at the forefront among separation methods in the chemical, petroleum, and energy industries. Most importantly, as renewable sources of energy and chemical feedstocks continue to be developed, distillation design and control will become ever more important in our ability to ensure global sustainability.</p> <p>Using the commercial simulators Aspen Plus® and Aspen Dynamics®, this text enables readers to develop optimal steady-state designs for distillation systems. Moreover, readers will discover how to develop effective control structures. While traditional distillation texts focus on the steady-state economic aspects of distillation design, this text also addresses such issues as dynamic performance in the face of disturbances.</p> <p><i>Distillation Design and Control Using Aspen</i>™ <i>Simulation</i> introduces the current status and future implications of this vital technology from the perspectives of steady-state design and dynamics. The book begins with a discussion of vapor-liquid phase equilibrium and then explains the core methods and approaches for analyzing distillation columns. Next, the author covers such topics as:</p> <ul> <li>Setting up a steady-state simulation</li> <li>Distillation economic optimization</li> <li>Steady-state calculations for control structure selection</li> <li>Control of petroleum fractionators</li> <li>Design and control of divided-wall columns</li> <li>Pressure-compensated temperature control in distillation columns</li> </ul> <p>Synthesizing four decades of research breakthroughs and practical applications in this dynamic field, <i>Distillation Design and Control Using Aspen</i>™ <i>Simulation</i> is a trusted reference that enables both students and experienced engineers to solve a broad range of challenging distillation problems.</p>
<p>PREFACE TO THE SECOND EDITION xv<br /> <br /> PREFACE TO THE FIRST EDITION xvii<br /> <br /> 1 FUNDAMENTALS OF VAPOR–LIQUID–EQUILIBRIUM (VLE) 1<br /> <br /> 1.1 Vapor Pressure 1<br /> <br /> 1.2 Binary VLE Phase Diagrams 3<br /> <br /> 1.3 Physical Property Methods 7<br /> <br /> 1.4 Relative Volatility 7<br /> <br /> 1.5 Bubble Point Calculations 8<br /> <br /> 1.6 Ternary Diagrams 9<br /> <br /> 1.7 VLE Nonideality 11<br /> <br /> 1.8 Residue Curves for Ternary Systems 15<br /> <br /> 1.9 Distillation Boundaries 22<br /> <br /> 1.10 Conclusions 25<br /> <br /> Reference 27<br /> <br /> 2 ANALYSIS OF DISTILLATION COLUMNS 29<br /> <br /> 2.1 Design Degrees of Freedom 29<br /> <br /> 2.2 Binary McCabe–Thiele Method 30<br /> <br /> 2.2.1 Operating Lines 32<br /> <br /> 2.2.2 q-Line 33<br /> <br /> 2.2.3 Stepping Off Trays 35<br /> <br /> 2.2.4 Effect of Parameters 35<br /> <br /> 2.2.5 Limiting Conditions 36<br /> <br /> 2.3 Approximate Multicomponent Methods 36<br /> <br /> 2.3.1 Fenske Equation for Minimum Number of Trays 37<br /> <br /> 2.3.2 Underwood Equations for Minimum Reflux Ratio 37<br /> <br /> 2.4 Conclusions 38<br /> <br /> 3 SETTING UP A STEADY-STATE SIMULATION 39<br /> <br /> 3.1 Configuring a New Simulation 39<br /> <br /> 3.2 Specifying Chemical Components and Physical Properties 46<br /> <br /> 3.3 Specifying Stream Properties 51<br /> <br /> 3.4 Specifying Parameters of Equipment 52<br /> <br /> 3.4.1 Column C1 52<br /> <br /> 3.4.2 Valves and Pumps 55<br /> <br /> 3.5 Running the Simulation 57<br /> <br /> 3.6 Using Design Spec/Vary Function 58<br /> <br /> 3.7 Finding the Optimum Feed Tray and Minimum Conditions 70<br /> <br /> 3.7.1 Optimum Feed Tray 70<br /> <br /> 3.7.2 Minimum Reflux Ratio 71<br /> <br /> 3.7.3 Minimum Number of Trays 71<br /> <br /> 3.8 Column Sizing 72<br /> <br /> 3.8.1 Length 72<br /> <br /> 3.8.2 Diameter 72<br /> <br /> 3.9 Conceptual Design 74<br /> <br /> 3.10 Conclusions 80<br /> <br /> 4 DISTILLATION ECONOMIC OPTIMIZATION 81<br /> <br /> 4.1 Heuristic Optimization 81<br /> <br /> 4.1.1 Set Total Trays to Twice Minimum Number of Trays 81<br /> <br /> 4.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio 83<br /> <br /> 4.2 Economic Basis 83<br /> <br /> 4.3 Results 85<br /> <br /> 4.4 Operating Optimization 87<br /> <br /> 4.5 Optimum Pressure for Vacuum Columns 92<br /> <br /> 4.6 Conclusions 94<br /> <br /> 5 MORE COMPLEX DISTILLATION SYSTEMS 95<br /> <br /> 5.1 Extractive Distillation 95<br /> <br /> 5.1.1 Design 99<br /> <br /> 5.1.2 Simulation Issues 101<br /> <br /> 5.2 Ethanol Dehydration 105<br /> <br /> 5.2.1 VLLE Behavior 106<br /> <br /> 5.2.2 Process Flowsheet Simulation 109<br /> <br /> 5.2.3 Converging the Flowsheet 112<br /> <br /> 5.3 Pressure-Swing Azeotropic Distillation 115<br /> <br /> 5.4 Heat-Integrated Columns 121<br /> <br /> 5.4.1 Flowsheet 121<br /> <br /> 5.4.2 Converging for Neat Operation 122<br /> <br /> 5.5 Conclusions 126<br /> <br /> 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION 127<br /> <br /> 6.1 Control Structure Alternatives 127<br /> <br /> 6.1.1 Dual-Composition Control 127<br /> <br /> 6.1.2 Single-End Control 128<br /> <br /> 6.2 Feed Composition Sensitivity Analysis (ZSA) 128<br /> <br /> 6.3 Temperature Control Tray Selection 129<br /> <br /> 6.3.1 Summary of Methods 130<br /> <br /> 6.3.2 Binary Propane/Isobutane System 131<br /> <br /> 6.3.3 Ternary BTX System 135<br /> <br /> 6.3.4 Ternary Azeotropic System 139<br /> <br /> 6.4 Conclusions 144<br /> <br /> Reference 144<br /> <br /> 7 CONVERTING FROM STEADY-STATE TO DYNAMIC SIMULATION 145<br /> <br /> 7.1 Equipment Sizing 146<br /> <br /> 7.2 Exporting to Aspen Dynamics 148<br /> <br /> 7.3 Opening the Dynamic Simulation in Aspen Dynamics 150<br /> <br /> 7.4 Installing Basic Controllers 152<br /> <br /> 7.4.1 Reflux 156<br /> <br /> 7.4.2 Issues 157<br /> <br /> 7.5 Installing Temperature and Composition Controllers 161<br /> <br /> 7.5.1 Tray Temperature Control 162<br /> <br /> 7.5.2 Composition Control 170<br /> <br /> 7.5.3 Composition/Temperature Cascade Control 170<br /> <br /> 7.6 Performance Evaluation 172<br /> <br /> 7.6.1 Installing a Plot 172<br /> <br /> 7.6.2 Importing Dynamic Results into Matlab 174<br /> <br /> 7.6.3 Reboiler Heat Input to Feed Ratio 176<br /> <br /> 7.6.4 Comparison of Temperature Control with Cascade CC/TC 181<br /> <br /> 7.7 Conclusions 184<br /> <br /> 8 CONTROL OF MORE COMPLEX COLUMNS 185<br /> <br /> 8.1 Extractive Distillation Process 185<br /> <br /> 8.1.1 Design 185<br /> <br /> 8.1.2 Control Structure 188<br /> <br /> 8.1.3 Dynamic Performance 191<br /> <br /> 8.2 Columns with Partial Condensers 191<br /> <br /> 8.2.1 Total Vapor Distillate 192<br /> <br /> 8.2.2 Both Vapor and Liquid Distillate Streams 209<br /> <br /> 8.3 Control of Heat-Integrated Distillation Columns 217<br /> <br /> 8.3.1 Process Studied 217<br /> <br /> 8.3.2 Heat Integration Relationships 218<br /> <br /> 8.3.3 Control Structure 222<br /> <br /> 8.3.4 Dynamic Performance 223<br /> <br /> 8.4 Control of Azeotropic Columns/Decanter System 226<br /> <br /> 8.4.1 Converting to Dynamics and Closing Recycle Loop 227<br /> <br /> 8.4.2 Installing the Control Structure 228<br /> <br /> 8.4.3 Performance 233<br /> <br /> 8.4.4 Numerical Integration Issues 237<br /> <br /> 8.5 Unusual Control Structure 238<br /> <br /> 8.5.1 Process Studied 239<br /> <br /> 8.5.2 Economic Optimum Steady-State Design 242<br /> <br /> 8.5.3 Control Structure Selection 243<br /> <br /> 8.5.4 Dynamic Simulation Results 248<br /> <br /> 8.5.5 Alternative Control Structures 248<br /> <br /> 8.5.6 Conclusions 254<br /> <br /> 8.6 Conclusions 255<br /> <br /> References 255<br /> <br /> 9 REACTIVE DISTILLATION 257<br /> <br /> 9.1 Introduction 257<br /> <br /> 9.2 Types of Reactive Distillation Systems 258<br /> <br /> 9.2.1 Single-Feed Reactions 259<br /> <br /> 9.2.2 Irreversible Reaction with Heavy Product 259<br /> <br /> 9.2.3 Neat Operation Versus Use of Excess Reactant 260<br /> <br /> 9.3 TAME Process Basics 263<br /> <br /> 9.3.1 Prereactor 263<br /> <br /> 9.3.2 Reactive Column C1 263<br /> <br /> 9.4 TAME Reaction Kinetics and VLE 266<br /> <br /> 9.5 Plantwide Control Structure 270<br /> <br /> 9.6 Conclusions 274<br /> <br /> References 274<br /> <br /> 10 CONTROL OF SIDESTREAM COLUMNS 275<br /> <br /> 10.1 Liquid Sidestream Column 276<br /> <br /> 10.1.1 Steady-State Design 276<br /> <br /> 10.1.2 Dynamic Control 277<br /> <br /> 10.2 Vapor Sidestream Column 281<br /> <br /> 10.2.1 Steady-State Design 282<br /> <br /> 10.2.2 Dynamic Control 282<br /> <br /> 10.3 Liquid Sidestream Column with Stripper 286<br /> <br /> 10.3.1 Steady-State Design 286<br /> <br /> 10.3.2 Dynamic Control 288<br /> <br /> 10.4 Vapor Sidestream Column with Rectifier 292<br /> <br /> 10.4.1 Steady-State Design 292<br /> <br /> 10.4.2 Dynamic Control 293<br /> <br /> 10.5 Sidestream Purge Column 300<br /> <br /> 10.5.1 Steady-State Design 300<br /> <br /> 10.5.2 Dynamic Control 302<br /> <br /> 10.6 Conclusions 307<br /> <br /> 11 CONTROL OF PETROLEUM FRACTIONATORS 309<br /> <br /> 11.1 Petroleum Fractions 310<br /> <br /> 11.2 Characterization Crude Oil 314<br /> <br /> 11.3 Steady-State Design of Preflash Column 321<br /> <br /> 11.4 Control of Preflash Column 328<br /> <br /> 11.5 Steady-State Design of Pipestill 332<br /> <br /> 11.5.1 Overview of Steady-State Design 333<br /> <br /> 11.5.2 Configuring the Pipestill in Aspen Plus 335<br /> <br /> 11.5.3 Effects of Design Parameters 344<br /> <br /> 11.6 Control of Pipestill 346<br /> <br /> 11.7 Conclusions 354<br /> <br /> References 354<br /> <br /> 12 DIVIDED-WALL (PETLYUK) COLUMNS 355<br /> <br /> 12.1 Introduction 355<br /> <br /> 12.2 Steady-State Design 357<br /> <br /> 12.2.1 MultiFrac Model 357<br /> <br /> 12.2.2 RadFrac Model 366<br /> <br /> 12.3 Control of the Divided-Wall Column 369<br /> <br /> 12.3.1 Control Structure 369<br /> <br /> 12.3.2 Implementation in Aspen Dynamics 373<br /> <br /> 12.3.3 Dynamic Results 375<br /> <br /> 12.4 Control of the Conventional Column Process 380<br /> <br /> 12.4.1 Control Structure 380<br /> <br /> 12.4.2 Dynamic Results and Comparisons 381<br /> <br /> 12.5 Conclusions and Discussion 383<br /> <br /> References 384<br /> <br /> 13 DYNAMIC SAFETY ANALYSIS 385<br /> <br /> 13.1 Introduction 385<br /> <br /> 13.2 Safety Scenarios 385<br /> <br /> 13.3 Process Studied 387<br /> <br /> 13.4 Basic RadFrac Models 387<br /> <br /> 13.4.1 Constant Duty Model 387<br /> <br /> 13.4.2 Constant Temperature Model 388<br /> <br /> 13.4.3 LMTD Model 388<br /> <br /> 13.4.4 Condensing or Evaporating Medium Models 388<br /> <br /> 13.4.5 Dynamic Model for Reboiler 388<br /> <br /> 13.5 RadFrac Model with Explicit Heat-Exchanger Dynamics 389<br /> <br /> 13.5.1 Column 389<br /> <br /> 13.5.2 Condenser 390<br /> <br /> 13.5.3 Reflux Drum 391<br /> <br /> 13.5.4 Liquid Split 391<br /> <br /> 13.5.5 Reboiler 391<br /> <br /> 13.6 Dynamic Simulations 392<br /> <br /> 13.6.1 Base Case Control Structure 392<br /> <br /> 13.6.2 Rigorous Case Control Structure 393<br /> <br /> 13.7 Comparison of Dynamic Responses 394<br /> <br /> 13.7.1 Condenser Cooling Failure 394<br /> <br /> 13.7.2 Heat-Input Surge 395<br /> <br /> 13.8 Other Issues 397<br /> <br /> 13.9 Conclusions 398<br /> <br /> Reference 398<br /> <br /> 14 CARBON DIOXIDE CAPTURE 399<br /> <br /> 14.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants 400<br /> <br /> 14.1.1 Process Design 400<br /> <br /> 14.1.2 Simulation Issues 401<br /> <br /> 14.1.3 Plantwide Control Structure 404<br /> <br /> 14.1.4 Dynamic Performance 408<br /> <br /> 14.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants 412<br /> <br /> 14.2.1 Design 414<br /> <br /> 14.2.2 Plantwide Control Structure 414<br /> <br /> 14.2.3 Dynamic Performance 418<br /> <br /> 14.3 Conclusions 420<br /> <br /> References 421<br /> <br /> 15 DISTILLATION TURNDOWN 423<br /> <br /> 15.1 Introduction 423<br /> <br /> 15.2 Control Problem 424<br /> <br /> 15.2.1 Two-Temperature Control 425<br /> <br /> 15.2.2 Valve-Position Control 426<br /> <br /> 15.2.3 Recycle Control 427<br /> <br /> 15.3 Process Studied 428<br /> <br /> 15.4 Dynamic Performance for Ramp Disturbances 431<br /> <br /> 15.4.1 Two-Temperature Control 431<br /> <br /> 15.4.2 VPC Control 432<br /> <br /> 15.4.3 Recycle Control 433<br /> <br /> 15.4.4 Comparison 434<br /> <br /> 15.5 Dynamic Performance for Step Disturbances 435<br /> <br /> 15.5.1 Two-Temperature Control 435<br /> <br /> 15.5.2 VPC Control 436<br /> <br /> 15.5.3 Recycle Control 436<br /> <br /> 15.6 Other Control Structures 439<br /> <br /> 15.6.1 No Temperature Control 439<br /> <br /> 15.6.2 Dual Temperature Control 440<br /> <br /> 15.7 Conclusions 442<br /> <br /> References 442<br /> <br /> 16 PRESSURE-COMPENSATED TEMPERATURE CONTROL IN DISTILLATION COLUMNS 443<br /> <br /> 16.1 Introduction 443<br /> <br /> 16.2 Numerical Example Studied 445<br /> <br /> 16.3 Conventional Control Structure Selection 446<br /> <br /> 16.4 Temperature/Pressure/Composition Relationships 450<br /> <br /> 16.5 Implementation in Aspen Dynamics 451<br /> <br /> 16.6 Comparison of Dynamic Results 452<br /> <br /> 16.6.1 Feed Flow Rate Disturbances 452<br /> <br /> 16.6.2 Pressure Disturbances 453<br /> <br /> 16.7 Conclusions 455<br /> <br /> References 456<br /> <br /> 17 ETHANOL DEHYDRATION 457<br /> <br /> 17.1 Introduction 457<br /> <br /> 17.2 Optimization of the Beer Still (Preconcentrator) 459<br /> <br /> 17.3 Optimization of the Azeotropic and Recovery Columns 460<br /> <br /> 17.3.1 Optimum Feed Locations 461<br /> <br /> 17.3.2 Optimum Number of Stages 462<br /> <br /> 17.4 Optimization of the Entire Process 462<br /> <br /> 17.5 Cyclohexane Entrainer 466<br /> <br /> 17.6 Flowsheet Recycle Convergence 466<br /> <br /> 17.7 Conclusions 467<br /> <br /> References 467<br /> <br /> 18 EXTERNAL RESET FEEDBACK TO PREVENT RESET WINDUP 469<br /> <br /> 18.1 Introduction 469<br /> <br /> 18.2 External Reset Feedback Circuit Implementation 471<br /> <br /> 18.2.1 Generate the Error Signal 472<br /> <br /> 18.2.2 Multiply by Controller Gain 472<br /> <br /> 18.2.3 Add the Output of Lag 472<br /> <br /> 18.2.4 Select Lower Signal 472<br /> <br /> 18.2.5 Setting up the Lag Block 472<br /> <br /> 18.3 Flash Tank Example 473<br /> <br /> 18.3.1 Process and Normal Control Structure 473<br /> <br /> 18.3.2 Override Control Structure Without External Reset Feedback 474<br /> <br /> 18.3.3 Override Control Structure with External Reset Feedback 476<br /> <br /> 18.4 Distillation Column Example 479<br /> <br /> 18.4.1 Normal Control Structure 479<br /> <br /> 18.4.2 Normal and Override Controllers Without External Reset 481<br /> <br /> 18.4.3 Normal and Override Controllers with External Reset Feedback 483<br /> <br /> 18.5 Conclusions 486<br /> <br /> References 486<br /> <br /> INDEX 487</p>
<p><b>WILLIAM L. LUYBEN, PhD,</b> is Professor of Chemical Engineering at Lehigh University where he has taught for over forty-five years. Dr. Luyben spent nine years as an engineer with Exxon and DuPont. He has published fourteen books and more than 250 original research papers. Dr. Luyben is a 2003 recipient of the Computing Practice Award from the CAST Division of the AIChE. He was elected to the Process Control Hall of Fame in 2005. In 2011, the Separations Division of the AIChE recognized his contributions to distillation technology by a special honors session.</p>
<p><b>Learn how to develop optimal steady-state designs for distillation systems</b></p> <p>As the search for new energy sources grows ever more urgent, distillation remains at the forefront among separation methods in the chemical, petroleum, and energy industries. Most importantly, as renewable sources of energy and chemical feedstocks continue to be developed, distillation design and control will become ever more important in our ability to ensure global sustainability.</p> <p>Using the commercial simulators Aspen Plus® and Aspen Dynamics®, this text enables readers to develop optimal steady-state designs for distillation systems. Moreover, readers will discover how to develop effective control structures. While traditional distillation texts focus on the steady-state economic aspects of distillation design, this text also addresses such issues as dynamic performance in the face of disturbances.</p> <p><i>Distillation Design and Control Using Aspen</i>™ <i>Simulation</i> introduces the current status and future implications of this vital technology from the perspectives of steady-state design and dynamics. The book begins with a discussion of vapor-liquid phase equilibrium and then explains the core methods and approaches for analyzing distillation columns. Next, the author covers such topics as:</p> <ul> <li>Setting up a steady-state simulation</li> <li>Distillation economic optimization</li> <li>Steady-state calculations for control structure selection</li> <li>Control of petroleum fractionators</li> <li>Design and control of divided-wall columns</li> <li>Pressure-compensated temperature control in distillation columns</li> </ul> <p>Synthesizing four decades of research breakthroughs and practical applications in this dynamic field, <i>Distillation Design and Control Using Aspen</i>™ <i>Simulation</i> is a trusted reference that enables both students and experienced engineers to solve a broad range of challenging distillation problems.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €