Details

Design and Implementation of Large-Range Compliant Micropositioning Systems


Design and Implementation of Large-Range Compliant Micropositioning Systems


1. Aufl.

von: Qingsong Xu

117,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.09.2016
ISBN/EAN: 9781119131465
Sprache: englisch
Anzahl Seiten: 296

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>An innovative and timely guide to the modeling, design and implementation of large-range compliant micropositioning systems based on flexure hinges</b> <ul> <li>Features innovative compact mechanism designs for large-range translational and rotational positioning</li> <li>Provides original and concise treatment of various flexure hinges with well-presented design and control methods</li> <li>Focuses on design implementation and applications through detailed examples</li> </ul>
<p>Preface xiii</p> <p>Acknowledgments xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Micropositioning Techniques 1</p> <p>1.2 Compliant Guiding Mechanisms 2</p> <p>1.2.1 Basic Flexure Hinges 2</p> <p>1.2.2 Translational Flexure Hinges 3</p> <p>1.2.3 Translational Positioning Mechanisms 4</p> <p>1.2.4 Rotational Positioning Mechanisms 8</p> <p>1.2.5 Multi-Stroke Positioning Mechanisms 10</p> <p>1.3 Actuation and Sensing 11</p> <p>1.4 Control Issues 12</p> <p>1.5 Book Outline 14</p> <p>References 14</p> <p><b>Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS</b></p> <p><b>2 Uniaxial Flexure Stage 21</b></p> <p>2.1 Concept of MCPF 21</p> <p>2.1.1 Limitation of Conventional Flexures 21</p> <p>2.1.2 Proposal of MCPF 23</p> <p>2.2 Design of a Large-Range Flexure Stage 25</p> <p>2.2.1 Mechanism Design 25</p> <p>2.2.2 Analytical Modeling 26</p> <p>2.2.3 Architecture Optimization 29</p> <p>2.2.4 Structure Improvement 31</p> <p>2.3 Prototype Development and Performance Testings 33</p> <p>2.3.1 Statics Performance Testing 34</p> <p>2.3.2 Dynamics Performance Testing 35</p> <p>2.4 Sliding Mode Controller Design 35</p> <p>2.4.1 Dynamics Modeling 35</p> <p>2.4.2 DSMC Design 36</p> <p>2.5 Experimental Studies 38</p> <p>2.5.1 Plant Model Identification 38</p> <p>2.5.2 Controller Setup 39</p> <p>2.5.3 Set-Point Positioning Results 39</p> <p>2.5.4 Sinusoidal Positioning Results 41</p> <p>2.6 Conclusion 42</p> <p>References 44</p> <p><b>3 XY Flexure Stage 45</b></p> <p>3.1 Introduction 45</p> <p>3.2 XY Stage Design 46</p> <p>3.2.1 Decoupled XY Stage Design with MCPF 46</p> <p>3.2.2 Buckling/Bending Effect Consideration 49</p> <p>3.2.3 Actuation Issues 51</p> <p>3.3 Model Verification and Prototype Development 52</p> <p>3.3.1 Performance Assessment with FEA Simulation 52</p> <p>3.3.2 Prototype Fabrication 54</p> <p>3.3.3 Open-Loop Experimental Results 54</p> <p>3.4 EMPC Control Scheme Design 55</p> <p>3.4.1 Problem Formulation 56</p> <p>3.4.2 EMPC Scheme Design 57</p> <p>3.4.3 State Observer Design 60</p> <p>3.4.4 Tracking Error Analysis 61</p> <p>3.5 Simulation and Experimental Studies 61</p> <p>3.5.1 Plant Model Identification 61</p> <p>3.5.2 Controller Parameter Design 64</p> <p>3.5.3 Simulation Studies and Discussion 64</p> <p>3.5.4 Experimental Results and Discussion 66</p> <p>3.6 Conclusion 67</p> <p>References 69</p> <p><b>4 Two-Layer XY Flexure Stage 70</b></p> <p>4.1 Introduction 70</p> <p>4.2 Mechanism Design 71</p> <p>4.2.1 Design of a Two-Layer XY Stage with MCPF 71</p> <p>4.2.2 Structure Improvement of the XY Stage 72</p> <p>4.3 Parametric Design 73</p> <p>4.3.1 Motion Range Design 73</p> <p>4.3.2 Stiffness and Actuation Force Design 74</p> <p>4.3.3 Critical Load of Buckling 75</p> <p>4.3.4 Resonant Frequency 75</p> <p>4.3.5 Out-of-Plane Payload Capability 76</p> <p>4.3.6 Influences of Manufacturing Tolerance 77</p> <p>4.4 Experimental Studies and Results 79</p> <p>4.4.1 Prototype Development 80</p> <p>4.4.2 Statics Performance Testing 80</p> <p>4.4.3 Dynamics Performance Testing 81</p> <p>4.4.4 Positioning Performance Testing 83</p> <p>4.4.5 Contouring Performance Testing 84</p> <p>4.4.6 Control Bandwidth Testing 86</p> <p>4.4.7 Discussion and Future Work 88</p> <p>4.5 Conclusion 89</p> <p>References 89</p> <p><b>Part II MULTI-STROKE TRANSLATIONAL MICROPOSITIONING SYSTEMS</b></p> <p><b>5 Dual-Stroke Uniaxial Flexure Stage 93</b></p> <p>5.1 Introduction 93</p> <p>5.2 Mechanism Design and Analysis 94</p> <p>5.2.1 Mechanism Design to Minimize Interference Behavior 94</p> <p>5.2.2 Mechanism Design to Achieve Large Stroke 99</p> <p>5.2.3 FEA Simulation and Design Improvement 101</p> <p>5.3 Prototype Development and Open-Loop Testing 104</p> <p>5.3.1 Experimental Setup 106</p> <p>5.3.2 Statics Performance Testing 106</p> <p>5.3.3 Dynamics Performance Testing 107</p> <p>5.4 Controller Design and Experimental Studies 109</p> <p>5.4.1 Controller Design 109</p> <p>5.4.2 Experimental Studies 110</p> <p>5.5 Conclusion 111</p> <p>References 113</p> <p><b>6 Dual-Stroke, Dual-Resolution Uniaxial Flexure Stage 114</b></p> <p>6.1 Introduction 114</p> <p>6.2 Conceptual Design 115</p> <p>6.2.1 Design of a Compliant Stage with Dual Ranges 115</p> <p>6.2.2 Design of a Compliant Stage with Dual Resolutions 116</p> <p>6.3 Mechanism Design 117</p> <p>6.3.1 Stiffness Calculation 118</p> <p>6.3.2 Motion Range Design 119</p> <p>6.3.3 Motor Stroke and Driving Force Requirement 120</p> <p>6.3.4 Sensor Deployment 121</p> <p>6.4 Performance Evaluation 123</p> <p>6.4.1 Analytical Model Results 123</p> <p>6.4.2 FEA Simulation Results 124</p> <p>6.5 Prototype Development and Experimental Studies 125</p> <p>6.5.1 Prototype Development 126</p> <p>6.5.2 Statics Performance Testing 127</p> <p>6.5.3 Dynamics Performance Testing 129</p> <p>6.5.4 Further Discussion 131</p> <p>6.6 Conclusion 133</p> <p>References 133</p> <p><b>7 Multi-Stroke, Multi-Resolution XY Flexure Stage 135</b></p> <p>7.1 Introduction 135</p> <p>7.2 Conceptual Design 136</p> <p>7.2.1 Design of Flexure Stage with Multiple Strokes 136</p> <p>7.2.2 Design of Flexure Stage with Multiple Resolutions 138</p> <p>7.3 Flexure-Based Compliant Mechanism Design 139</p> <p>7.3.1 Compliant Element Selection 139</p> <p>7.3.2 Design of a Two-Axis Stage 140</p> <p>7.4 Parametric Design 141</p> <p>7.4.1 Design of Motion Strokes 141</p> <p>7.4.2 Design of Coarse/Fine Sensor Resolution Ratio 144</p> <p>7.4.3 Actuation Issue Consideration 145</p> <p>7.5 Stage Performance Assessment 146</p> <p>7.5.1 Analytical Model Evaluation Results 146</p> <p>7.5.2 FEA Simulation Results 146</p> <p>7.6 Prototype Development and Experimental Studies 149</p> <p>7.6.1 Prototype Development 149</p> <p>7.6.2 Statics Performance Testing 150</p> <p>7.6.3 Dynamics Performance Testing 154</p> <p>7.6.4 Circular Contouring Testing 156</p> <p>7.6.5 Discussion 156</p> <p>7.7 Conclusion 159</p> <p>References 159</p> <p><b>Part III LARGE-RANGE ROTATIONAL MICROPOSITIONING SYSTEMS</b></p> <p><b>8 Rotational Stage with Linear Drive 163</b></p> <p>8.1 Introduction 163</p> <p>8.2 Design of MCRF 164</p> <p>8.2.1 Limitation of Conventional Radial Flexures 164</p> <p>8.2.2 Proposal of MCRF 165</p> <p>8.2.3 Analytical Models 166</p> <p>8.3 Design of a Rotary Stage with MCRF 169</p> <p>8.3.1 Consideration of Actuation Issues 170</p> <p>8.3.2 Consideration of Sensing Issues 172</p> <p>8.4 Performance Evaluation with FEA Simulation 172</p> <p>8.4.1 Analytical Model Results 172</p> <p>8.4.2 FEA Simulation Results 173</p> <p>8.4.3 Structure Improvement 175</p> <p>8.5 Prototype Development and Experimental Studies 176</p> <p>8.5.1 Prototype Development 176</p> <p>8.5.2 Open-Loop Performance Testing 177</p> <p>8.5.3 Controller Design and Closed-Loop Performance Testing 178</p> <p>8.5.4 Further Discussion 181</p> <p>8.6 Conclusion 183</p> <p>References 184</p> <p><b>9 Rotational Stage with Rotary Drive 185</b></p> <p>9.1 Introduction 185</p> <p>9.2 New Design of MCRF 186</p> <p>9.2.1 MCRF Design 186</p> <p>9.2.2 Analytical Model Not Considering Deformation 187</p> <p>9.2.3 Analytical Model Considering Deformation 189</p> <p>9.3 Design of the Rotary Stage 192</p> <p>9.3.1 Actuator Selection 194</p> <p>9.3.2 Sensor Design 194</p> <p>9.4 Performance Evaluation with FEA Simulation 196</p> <p>9.4.1 Analytical Model Results 197</p> <p>9.4.2 FEA Simulation Results 197</p> <p>9.5 Prototype Fabrication and Experimental Testing 201</p> <p>9.5.1 Prototype Development 201</p> <p>9.5.2 Statics Performance Testing 202</p> <p>9.5.3 Dynamics Performance Testing 206</p> <p>9.5.4 Discussion 206</p> <p>9.6 Conclusion 207</p> <p>References 208</p> <p><b>Part IV APPLICATIONS TO COMPLIANT GRIPPER DESIGN</b></p> <p><b>10 Large-Range Rotary Gripper 213</b></p> <p>10.1 Introduction 213</p> <p>10.1.1 Structure Design and Driving Method 213</p> <p>10.1.2 Sensing Requirements 214</p> <p>10.2 Mechanism Design and Analysis 216</p> <p>10.2.1 Actuation Issues 216</p> <p>10.2.2 Position and Force Sensing Issues 218</p> <p>10.3 Performance Evaluation with FEA Simulation 222</p> <p>10.3.1 Analytical Model Results 222</p> <p>10.3.2 FEA Simulation Results 222</p> <p>10.4 Prototype Development and Calibration 227</p> <p>10.4.1 Prototype Development 227</p> <p>10.4.2 Calibration of Position Sensor 228</p> <p>10.4.3 Calibration of Force Sensor 229</p> <p>10.4.4 Verification of Force Sensor 230</p> <p>10.4.5 Consistency Testing of the Sensors 231</p> <p>10.5 Performance Testing Results 232</p> <p>10.5.1 Testing of Gripping Sensing Performance 232</p> <p>10.5.2 Testing of Horizontal Interaction Detection 235</p> <p>10.5.3 Testing of Vertical Interaction Detection 236</p> <p>10.5.4 Testing of Dynamics Performance 237</p> <p>10.5.5 Applications to Pick–Transport–Place in Assembly 238</p> <p>10.5.6 Further Discussion 239</p> <p>10.6 Conclusion 242</p> <p>References 242</p> <p><b>11 MEMS Rotary Gripper 244</b></p> <p>11.1 Introduction 244</p> <p>11.2 MEMS Gripper Design 245</p> <p>11.2.1 Actuator Design 246</p> <p>11.2.2 Sensor Design 249</p> <p>11.3 Performance Evaluation with FEA Simulation 251</p> <p>11.3.1 Statics Analysis 252</p> <p>11.3.2 Dynamics Analysis 254</p> <p>11.4 Gripper Fabrication 254</p> <p>11.5 Experimental Results and Discussion 255</p> <p>11.5.1 Gripping Range Testing Results 255</p> <p>11.5.2 Gripping Force Testing Results 258</p> <p>11.5.3 Interaction Force Testing Results 260</p> <p>11.5.4 Demonstration of Micro-object Gripping 261</p> <p>11.5.5 Further Discussion 262</p> <p>11.6 Conclusion 264</p> <p>References 266</p> <p>Index 267</p>
<p><b>Assistant Professor Qingsong Xu, University of Macau, China,</b> has been working in the area of micro/nano-mechatronics and robotics including design and precision control of micro/nano-positioning systems for over 10 years. He has published over 140 peer-reviewed papers in journals and conferences in related domains.</p>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €