Details

Dam Failure Mechanisms and Risk Assessment


Dam Failure Mechanisms and Risk Assessment


1. Aufl.

von: Limin Zhang, Ming Peng, Dongsheng Chang, Yao Xu

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.03.2017
ISBN/EAN: 9781118558546
Sprache: englisch
Anzahl Seiten: 450

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i><b>This book integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner </b></i><br /><br />• The first book that introduces the causes, processes and consequences of dam failures<br />• Integrates the physical processes of dam breaching and the mathematical aspects of risk assessment in a concise manner<br />• Emphasizes integrating theory and practice to better demonstrate the application of risk assessment and decision methodologies to real cases<br />• Intends to formulate dam-breaching emergency management steps in a scientific structure
<p>Foreword by Kaare Høeg xiii</p> <p>Foreword by Jinsheng Jia xiv</p> <p>Preface xvi</p> <p>Acknowledgements xviii</p> <p>About the Authors xix</p> <p><b>PART I DAM AND DIKE FAILURE DATABASES 1</b></p> <p><b>1 Dams and Their Components 3</b></p> <p>1.1 Classification of Dams 3</p> <p>1.2 Constructed Embankment Dams 4</p> <p>1.3 Landslide Dams 7</p> <p>1.4 Concrete Gravity Dams 7</p> <p>1.5 Concrete Arch Dams 8</p> <p>1.6 Dikes 10</p> <p><b>2 Statistical Analysis of Failures of Constructed Embankment Dams 11</b></p> <p>2.1 Database of Failures of Constructed Embankment Dams 11</p> <p>2.2 Failure Modes and Processes 11</p> <p>2.2.1 Overtopping 16</p> <p>2.2.2 Internal Erosion 17</p> <p>2.3 Common Causes of Embankment Dam Failures 19</p> <p>2.4 Failure of Different Types of Embankment Dams 21</p> <p>2.4.1 Analysis of Homogeneous and Composite Earthfill Dams 23</p> <p>2.4.2 Analysis of Earthfill Dams with Corewalls 23</p> <p><b>3 Statistical Analysis of Failures of Landslide Dams 25</b></p> <p>3.1 Database of Failures of Landslide Dams 25</p> <p>3.1.1 Locations of Landslide Dams 25</p> <p>3.1.2 Formation Times of Landslide Dams 26</p> <p>3.1.3 Triggers of Landslide Dams 26</p> <p>3.1.4 Types of Landslide 26</p> <p>3.1.5 Dam Heights and Lake Volumes 32</p> <p>3.2 Stability, Longevity, and Failure Modes of Landslide Dams 33</p> <p>3.2.1 Stability of Landslide Dams 33</p> <p>3.2.2 Longevity of Landslide Dams 35</p> <p>3.2.3 Failure Modes 36</p> <p>3.3 Mitigation Measures for Landslide Dams 37</p> <p>3.3.1 Stages of Landslide Dam Risk Mitigation 38</p> <p>3.3.2 Engineering Mitigation Measures for Landslide Dams 39</p> <p>3.3.3 Engineering Measures for the Landslide Dams Induced by the Wenchuan Earthquake 41</p> <p>3.3.4 Mitigation Measures for the Tangjiashan Landslide Dam 51</p> <p><b>4 Statistical Analysis of Failures of Concrete Dams 53</b></p> <p>4.1 Database of Failures of Concrete Dams 53</p> <p>4.2 Failure Modes and Processes 53</p> <p>4.3 Common Causes of Concrete Dam Failures 55</p> <p><b>5 Statistical Analysis of Failures of Dikes 57</b></p> <p>5.1 Introduction 57</p> <p>5.2 Database of Dike Breaching Cases 57</p> <p>5.3 Evaluation of Dike Failure Mechanisms 59</p> <p>5.3.1 Most Relevant Failure Mechanisms 59</p> <p>5.3.2 Statistics of Observed Failure Mechanisms 62</p> <p><b>PART II DAM FAILURE MECHANISMS AND BREACHING PROCESS MODELING 67</b></p> <p><b>6 Internal Erosion in Dams and Their Foundations 69</b></p> <p>6.1 Concepts of Internal Erosion 69</p> <p>6.2 Mechanisms of Initiation of Internal Erosion 72</p> <p>6.2.1 Concentrated Leak Erosion 72</p> <p>6.2.2 Backward Erosion 73</p> <p>6.2.3 Contact Erosion 73</p> <p>6.2.4 Suffusion 74</p> <p>6.3 Initiation of Concentrated Leak Erosion Through Cracks 74</p> <p>6.3.1 Causes of Concentrated Leak 75</p> <p>6.3.2 Need for Studying Soil Erodibility for Concentrated Leak Erosion 80</p> <p>6.3.3 Laboratory Tests on Concentrated Leak Erosion 81</p> <p>6.3.4 Factors Affecting Concentrated Leak Erosion 83</p> <p>6.3.5 Soil Dispersivity 84</p> <p>6.4 Initiation of Backward Erosion 87</p> <p>6.4.1 Susceptibility of a Dam or Dike to Backward Erosion 87</p> <p>6.4.2 Methods for Assessing Backward Erosion 89</p> <p>6.4.3 Formation of a Pipe due to Backward Erosion 92</p> <p>6.5 Initiation of Contact Erosion 93</p> <p>6.5.1 Fundamental Aspects of Contact Erosion Process 94</p> <p>6.5.2 Laboratory Investigation on Contact Erosion 96</p> <p>6.5.3 Threshold of Contact Erosion 100</p> <p>6.6 Initiation of Suffusion 102</p> <p>6.6.1 Control Parameters for Likelihood of Suffusion 102</p> <p>6.6.2 Laboratory Testing of Suffusion 103</p> <p>6.6.3 Geometrical Criteria for Internal Stability of Soils 108</p> <p>6.6.4 Critical Hydraulic Gradients for Suffusion 115</p> <p>6.7 Filter Criteria 120</p> <p>6.7.1 Functions of Filter 120</p> <p>6.7.2 Filter Criteria 121</p> <p>6.8 Continuation of Internal Erosion 124</p> <p>6.9 Progression of Internal Erosion 125</p> <p>6.10 Suggested Topics for Further Research 126</p> <p><b>7 Mechanics of Overtopping Erosion of Dams 127</b></p> <p>7.1 Mechanics of Surface Erosion 127</p> <p>7.1.1 Incipient Motion of Sediment 128</p> <p>7.1.2 Sediment Transport 133</p> <p>7.2 Determination of Erodibility of Soils 144</p> <p>7.2.1 Critical Erosive Shear Stress 144</p> <p>7.2.2 Coefficient of Erodibility 145</p> <p>7.2.3 Laboratory Tests 147</p> <p>7.2.4 Field Tests 151</p> <p>7.2.5 Classification of Soil Erodibility 155</p> <p>7.3 Characteristics of Overtopping Erosion Failure of Dams 157</p> <p>7.3.1 Homogeneous Embankment Dams with Cohesionless Materials 157</p> <p>7.3.2 Homogeneous Embankment Dams with Cohesive Materials 158</p> <p>7.3.3 Composite Embankment Dams 159</p> <p>7.4 Suggested Topics for Further Research 159</p> <p><b>8 Dam Breach Modeling 161</b></p> <p>8.1 Methods for Dam Breach Modeling 161</p> <p>8.2 Dam Breaching Data 163</p> <p>8.2.1 Embankment Dam Breaching Data 163</p> <p>8.2.2 Landslide Dam Breaching Data 165</p> <p>8.2.3 Dike Breaching Data 165</p> <p>8.3 Empirical Analysis Methods 166</p> <p>8.3.1 Multivariable Regression 166</p> <p>8.3.2 Empirical Breaching Parameters for Constructed Embankment Dams 169</p> <p>8.3.3 Empirical Breaching Parameters for Landslide Dams 179</p> <p>8.3.4 Empirical Breaching Parameters for Dikes 187</p> <p>8.3.5 Comparison of Breaching Parameters for Landslide Dams and Constructed Embankment Dams 189</p> <p>8.4 Numerical Simulation of Overtopping Erosion 192</p> <p>8.4.1 Simplified Physically Based Methods 197</p> <p>8.4.2 Detailed Physically Based Methods 206</p> <p>8.4.3 Case Studies 211</p> <p>8.5 Numerical Simulation of Internal Erosion 215</p> <p>8.5.1 Continuum Methods 215</p> <p>8.5.2 Particle Level Analysis 218</p> <p>8.5.3 Case Studies 218</p> <p><b>9 Analysis of Dam Breaching Flood Routing 222</b></p> <p>9.1 River Hydraulics 222</p> <p>9.1.1 One?-dimensional Models 223</p> <p>9.1.2 Two?-dimensional Models 223</p> <p>9.2 Numerical Models for Flood Routing Analysis 224</p> <p>9.2.1 One?-dimensional Numerical Models 224</p> <p>9.2.2 Two?-dimensional Numerical Models 227</p> <p>9.2.3 Coupling of 1D/2D Numerical Models 229</p> <p>9.3 Example – Tangjiashan Landslide Dam Failure 229</p> <p>9.3.1 Geometric Information 229</p> <p>9.3.2 Dam Breaching Simulation 232</p> <p>9.3.3 Boundary and Initial Conditions 232</p> <p>9.3.4 Flood Routing Analysis and Results 232</p> <p><b>PART III DAM FAILURE RISK ASSESSMENT AND MANAGEMENT 241</b></p> <p><b>10 Analysis of Probability of Failure of Dams 243</b></p> <p>10.1 Introduction 243</p> <p>10.2 Analysis Methods 243</p> <p>10.2.1 Failure Modes and Effects Analysis 243</p> <p>10.2.2 Event Tree 244</p> <p>10.2.3 Fault Tree 246</p> <p>10.2.4 First?-order Reliability Method/First?-order Second?-moment Method 247</p> <p>10.2.5 Monte Carlo Simulation 250</p> <p>10.2.6 Bayesian Networks 250</p> <p>10.3 Examples of Probabilistic Analysis of Dam Failure 253</p> <p>10.3.1 Probabilistic Analysis of Chinese Dam Distresses 253</p> <p>10.3.2 Probabilistic Analysis of the Chenbihe Dam Distresses Using Bayesian Networks 264</p> <p><b>11 Vulnerability to Dam Breaching Floods</b> 273</p> <p>11.1 Concepts of Vulnerability 273</p> <p>11.2 Human Vulnerability to Dam Breaching Floods 273</p> <p>11.2.1 Human Stability in Flood 274</p> <p>11.2.2 Influence Factors 277</p> <p>11.2.3 Methods for Evaluating Human Vulnerability Factor in a Flood 278</p> <p>11.2.4 Database of Fatalities in Dam/Dike Breaching or Other Floods 283</p> <p>11.3 Bayesian Network Analysis of Human Vulnerability to Floods 284</p> <p>11.3.1 Bayesian Networks 284</p> <p>11.3.2 Building the Bayesian Network for Human Vulnerability 285</p> <p>11.3.3 Quantifying the Networks 291</p> <p>11.3.4 Validation of the Model 297</p> <p>11.4 Damage to Buildings and Infrastructures 300</p> <p>11.4.1 Flood Action on Buildings 300</p> <p>11.4.2 Models for Building Damage Evaluation 303</p> <p>11.4.3 Relationship between Building Damage and Loss of Life 305</p> <p>11.5 Suggested Topics for Further Research 306</p> <p><b>12 Dam Failure Risk Assessment 307</b></p> <p>12.1 Risk and Risk Assessment 307</p> <p>12.1.1 Definition of Risk 307</p> <p>12.1.2 Risk Management 308</p> <p>12.2 Dam Failure Risk Analysis 311</p> <p>12.2.1 Scope Definition 311</p> <p>12.2.2 Hazards Identification 311</p> <p>12.2.3 Identification of Failure Modes 312</p> <p>12.2.4 Estimation of Failure Probability 312</p> <p>12.2.5 Evaluation of Elements at Risk 313</p> <p>12.2.6 Vulnerability Evaluation 314</p> <p>12.2.7 Risk Estimation 314</p> <p>12.3 Risk Assessment 315</p> <p>12.3.1 Risk Tolerance Criteria 315</p> <p>12.3.2 ALARP Considerations 319</p> <p>12.4 Suggested Topics for Further Research 321</p> <p><b>13 Dam Failure Contingency Risk Management 322</b></p> <p>13.1 Process of Contingency Risk Management 322</p> <p>13.1.1 Observation and Prediction 323</p> <p>13.1.2 Decision?-making 323</p> <p>13.1.3 Warning 324</p> <p>13.1.4 Response 325</p> <p>13.1.5 Evacuation 326</p> <p>13.2 Decision?-making Under Uncertainty 328</p> <p>13.2.1 Decision Tree 329</p> <p>13.2.2 Multi?-phase Decision 330</p> <p>13.2.3 Influence Diagrams 333</p> <p>13.3 Dynamic Decision?-Making 334</p> <p>13.3.1 Dam Failure Emergency Management 336</p> <p>13.3.2 Dynamic Decision?-making Framework 339</p> <p>13.3.3 Time Series Models for Estimating Dam Failure Probability 342</p> <p>13.3.4 Evaluation of the Consequences of Dam Failures 348</p> <p>13.3.5 Features of DYDEM 350</p> <p>13.4 Suggested Topics for Further Research 351</p> <p><b>14 Case Study: Risk?-based Decision?-making for the Tangjiashan Landslide Dam Failure 353</b></p> <p>14.1 Timeline for Decision?-making for the Tangjiashan Landslide Dam Failure 353</p> <p>14.2 Prediction of Dam Break Probability with Time Series Analysis 355</p> <p>14.2.1 Forecasting Inflow Rates 355</p> <p>14.2.2 Forecasting Lake Volume 358</p> <p>14.2.3 Prediction of Dam Failure Probability 359</p> <p>14.3 Simulation of Dam Breaching and Flood Routing 361</p> <p>14.3.1 Simulation of Dam Breaching and Flood Routing in Stage 1 362</p> <p>14.3.2 Simulation of Dam Breaching and Flood Routing in Stage 2 363</p> <p>14.3.3 Simulation of Dam Breaching and Flood Routing in Stage 3 365</p> <p>14.4 Evaluation of Flood Consequences 365</p> <p>14.4.1 Methodology 366</p> <p>14.4.2 Calculated Dam Break Flood Consequences 367</p> <p>14.5 Dynamic Decision?-making 370</p> <p>14.5.1 Methodology 370</p> <p>14.5.2 Dynamic Decision?-making in Three Stages 371</p> <p>14.6 Discussions 374</p> <p>14.6.1 Influence of the Value of Human Life 374</p> <p>14.6.2 Influence of Failure Mode 374</p> <p>14.6.3 Sensitivity of the Minimum Expected Total Consequence 375</p> <p><b>PART IV APPENDIXES: DAM FAILURE DATABASES 377</b></p> <p>Appendix A: Database of 1443 Cases of Failures of Constructed Dams 379</p> <p>Appendix B: Database of 1044 Cases of Failures of Landslide Dams 419</p> <p>References 452</p> <p>Index 474</p>
<p><strong>Professor Limin Zhang, Hong Kong University of Science and Technology, China</strong><br />Limin Zhang is currently Professor of Civil Engineering at the Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology. His research areas include embankment dams and slopes, geotechnical risk assessment and foundation engineering. <p><strong>Dr. Ming Peng, Hong Kong University of Science and Technology, China</strong><br />Ming Peng is a Post-doctoral Research Associate at the Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology. His research areas include risk analysis methodologies, flood vulnerability analysis and decision theory. <p><strong>Dr. Dongsheng Chang, Hong Kong University of Science and Technology, China</strong><br />Dongsheng Chang is a Post-doctoral Research Associate at the Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology. Dr. Chang is an expert in internal erosion and overtopping erosion of dams. He invented a laboratory device to test the internal erodibility of soils under complex stress conditions. <p><strong>Dr. Yao Xu, China Institute of Water Resources and Hydropower Research and Chinese National Committee on Large Dams, China</strong><br />Yao Xu recently joined China Institute of Water Resources and Hydropower Research and Chinese National Committee on Large Dams after working as a Post-doctoral Research Associate at the Department of Civil and Environmental Engineering.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €