Details

Conventional and Alternative Power Generation


Conventional and Alternative Power Generation

Thermodynamics, Mitigation and Sustainability
1. Aufl.

von: Neil Packer, Tarik Al-Shemmeri

111,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.06.2018
ISBN/EAN: 9781119479376
Sprache: englisch
Anzahl Seiten: 296

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A much-needed, up-to-date guide on conventional and alternative power generation</b> </p> <p>This book goes beyond the traditional methods of power generation. It introduces the many recent innovations on the production of electricity and the way they play a major role in combating global warming and improving the efficiency of generation. It contains a strong analytical approach to underpin the theory of power plants—for those using conventional fuels, as well as those using renewable fuels—and looks at the problems from a unique environmental engineering perspective. The book also includes numerous worked examples and case studies to demonstrate the working principles of these systems.</p> <p><i>Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability</i> is divided into 8 chapters that comprehensively cover: thermodynamic systems; vapor power cycles, gas power cycles, combustion; control of particulates; carbon capture and storage; air pollution dispersal; and renewable energy and power plants.</p> <ul> <li>Features an abundance of worked examples and tutorials</li> <li>Examines the problems of generating power from an environmental engineering perspective</li> <li>Includes all of the latest information, technology, theories, and principles on power generation</li> </ul> <p><i>Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability</i> is an ideal text for courses on mechanical, chemical, and electrical engineering.</p>
<p>Preface xi</p> <p>Structure of the Book xiii</p> <p>Notation xvii</p> <p><b>1 Thermodynamic Systems 1</b></p> <p>1.1 Overview 1</p> <p>Learning Outcomes 1</p> <p>1.2 Thermodynamic System Definitions 1</p> <p>1.3 Thermodynamic Properties 1</p> <p>1.4 Thermodynamic Processes 3</p> <p>1.5 Formation of Steam and the State Diagrams 4</p> <p>1.5.1 Property Tables and Charts for Vapours 6</p> <p>1.6 Ideal Gas Behaviour in Closed and Open Systems and Processes 7</p> <p>1.7 First Law ofThermodynamics 9</p> <p>1.7.1 First Law of Thermodynamics Applied to Open Systems 10</p> <p>1.7.2 First Law of Thermodynamics Applied to Closed Systems 10</p> <p>1.8 Worked Examples 11</p> <p>1.9 Tutorial Problems 17</p> <p><b>2 Vapour Power Cycles 19</b></p> <p>2.1 Overview 19</p> <p>Learning Outcomes 19</p> <p>2.2 Steam Power Plants 19</p> <p>2.3 Vapour Power Cycles 20</p> <p>2.3.1 The Carnot Cycle 21</p> <p>2.3.2 The Simple Rankine Cycle 22</p> <p>2.3.3 The Rankine Superheat Cycle 22</p> <p>2.3.4 The Rankine Reheat Cycle 23</p> <p>2.3.4.1 Analysis of the Rankine Reheat Cycle 24</p> <p>2.3.5 Real Steam Processes 25</p> <p>2.3.6 Regenerative Cycles 25</p> <p>2.3.6.1 Single Feed Heater 26</p> <p>2.3.6.2 Multiple Feed Heaters 27</p> <p>2.3.7 Organic Rankine Cycle (ORc) 29</p> <p>2.3.7.1 Choice of theWorking Fluid for ORc 29</p> <p>2.4 Combined Heat and Power 30</p> <p>2.4.1 Scenario One: Power Only 30</p> <p>2.4.2 Scenario Two: Heat Only 31</p> <p>2.4.3 ScenarioThree: Heat and Power 32</p> <p>2.4.4 Cogeneration, Trigeneration and Quad Generation 33</p> <p>2.5 Steam Generation Hardware 33</p> <p>2.5.1 Steam Boiler Components 34</p> <p>2.5.2 Types of Boiler 35</p> <p>2.5.3 Fuel Preparation System 35</p> <p>2.5.4 Methods of Superheat Control 36</p> <p>2.5.5 Performance of Steam Boilers 36</p> <p>2.5.5.1 Boiler Efficiency 36</p> <p>2.5.5.2 Boiler Rating 37</p> <p>2.5.5.3 Equivalent Evaporation 38</p> <p>2.5.6 Steam Condensers 38</p> <p>2.5.6.1 Condenser Calculations 38</p> <p>2.5.7 Cooling Towers 39</p> <p>2.5.8 Power-station Pumps 39</p> <p>2.5.8.1 Pump Applications 39</p> <p>2.5.9 Steam Turbines 41</p> <p>2.6 Worked Examples 41</p> <p>2.7 Tutorial Problems 54</p> <p><b>3 Gas Power Cycles 57</b></p> <p>3.1 Overview 57</p> <p>Learning Outcomes 57</p> <p>3.2 Introduction to Gas Turbines 57</p> <p>3.3 Gas Turbine Cycle 57</p> <p>3.3.1 Irreversibilities in Gas Turbine Processes 58</p> <p>3.3.2 The Compressor Unit 58</p> <p>3.3.3 The Combustion Chamber 59</p> <p>3.3.4 The Turbine Unit 60</p> <p>3.3.5 Overall Performance of Gas Turbine Plants 60</p> <p>3.4 Modifications to the Simple Gas Turbine Cycle 61</p> <p>3.4.1 Heat Exchanger 61</p> <p>3.4.2 Intercooling 61</p> <p>3.4.3 Reheating 62</p> <p>3.4.4 Compound System 63</p> <p>3.4.5 Combined Gas Turbine/Steam Turbine Cycle 65</p> <p>3.5 Gas Engines 68</p> <p>3.5.1 Internal Combustion Engines 68</p> <p>3.5.2 The Otto Cycle 68</p> <p>3.5.2.1 Analysis of the Otto Cycle 69</p> <p>3.5.3 The Diesel Cycle 69</p> <p>3.5.3.1 Analysis of the Diesel Cycle 70</p> <p>3.5.4 The Dual Combustion Cycle 71</p> <p>3.5.4.1 Analysis of the Dual Cycle 72</p> <p>3.5.5 Diesel Engine Power Plants 72</p> <p>3.5.6 External Combustion Engines –The Stirling Engine 72</p> <p>3.6 Worked Examples 75</p> <p>3.7 Tutorial Problems 84</p> <p><b>4 Combustion 87</b></p> <p>4.1 Overview 87</p> <p>Learning Outcomes 87</p> <p>4.2 Mass and Matter 87</p> <p>4.2.1 Chemical Quantities 88</p> <p>4.2.2 Chemical Reactions 88</p> <p>4.2.3 Physical Quantities 88</p> <p>4.3 Balancing Chemical Equations 89</p> <p>4.3.1 Combustion Equations 90</p> <p>4.4 Combustion Terminology 90</p> <p>4.4.1 Oxidizer Provision 90</p> <p>4.4.2 Combustion Product Analyses 91</p> <p>4.4.3 Fuel mixtures 92</p> <p>4.5 Energy Changes During Combustion 92</p> <p>4.6 First Law ofThermodynamics Applied to Combustion 93</p> <p>4.6.1 Steady-flow Systems (SFEE) [Applicable to Boilers, Furnaces] 93</p> <p>4.6.2 Closed Systems (NFEE) [Applicable to Engines] 93</p> <p>4.6.3 Flame Temperature 94</p> <p>4.7 Oxidation of Nitrogen and Sulphur 94</p> <p>4.7.1 Nitrogen and Sulphur 95</p> <p>4.7.2 Formation of Nitrogen Oxides (NOx) 95</p> <p>4.7.3 NOx Control 97</p> <p>4.7.3.1 Modify the Combustion Process 97</p> <p>4.7.3.2 Post-flame Treatment 97</p> <p>4.7.4 Formation of Sulphur Oxides (SOx) 98</p> <p>4.7.5 SOx Control 98</p> <p>4.7.5.1 Flue Gas Sulphur Compounds from Fossil-fuel Consumption 98</p> <p>4.7.5.2 Sulphur Compounds from Petroleum and Natural Gas Streams 100</p> <p>4.7.6 Acid Rain 100</p> <p>4.8 Worked Examples 101</p> <p>4.9 Tutorial Problems 111</p> <p><b>5 Control of Particulates 115</b></p> <p>5.1 Overview 115</p> <p>Learning Outcomes 115</p> <p>5.2 Some Particle Dynamics 115</p> <p>5.2.1 Nature of Particulates 115</p> <p>5.2.2 Stokes’s Law and Terminal Velocity 116</p> <p>5.3 Principles of Collection 119</p> <p>5.3.1 Collection Surfaces 119</p> <p>5.3.2 Collection Devices 119</p> <p>5.3.3 Fractional Collection Efficiency 121</p> <p>5.4 Control Technologies 121</p> <p>5.4.1 Gravity Settlers 121</p> <p>5.4.1.1 Model 1: Unmixed Flow Model 122</p> <p>5.4.1.2 Model 2:Well-mixed Flow Model 123</p> <p>5.4.2 Centrifugal Separators or Cyclones 124</p> <p>5.4.3 Electrostatic Precipitators (ESPs) 128</p> <p>5.4.4 Fabric Filters 132</p> <p>5.4.5 Spray Chambers and Scrubbers 135</p> <p>5.5 Worked Examples 137</p> <p>5.6 Tutorial Problems 140</p> <p><b>6 Carbon Capture and Storage 145</b></p> <p>6.1 Overview 145</p> <p>Learning Outcomes 145</p> <p>6.2 Thermodynamic Properties of CO2 146</p> <p>6.2.1 General Properties 146</p> <p>6.2.2 Equations of State 148</p> <p>6.2.2.1 The Ideal or Perfect Gas Law 148</p> <p>6.2.2.2 The Compressibility Factor 148</p> <p>6.2.2.3 Van derWaal Equation of State 148</p> <p>6.2.2.4 Beattie–Bridgeman Equation (1928) 149</p> <p>6.2.2.5 Benedict–Webb–Rubin Equation (1940) 150</p> <p>6.2.2.6 Peng–Robinson Equation of State (1976) 150</p> <p>6.3 Gas Mixtures 150</p> <p>6.3.1 Fundamental Mixture Laws 151</p> <p>6.3.2 PVT Behaviour of Gas Mixtures 151</p> <p>6.3.2.1 Dalton’s Law 152</p> <p>6.3.2.2 Amagat’s Law 152</p> <p>6.3.3 Thermodynamic Properties of Gas Mixtures 153</p> <p>6.3.4 Thermodynamics of Mixture Separation 155</p> <p>6.3.4.1 Minimum SeparationWork 155</p> <p>6.3.4.2 Separation of a Two-component Mixture 156</p> <p>6.4 Gas SeparationMethods 157</p> <p>6.4.1 Chemical Absorption by Liquids 157</p> <p>6.4.1.1 Aqueous Carbon Dioxide and Alkanolamine Chemistry 158</p> <p>6.4.1.2 Alternative Absorber Solutions 159</p> <p>6.4.2 Physical Absorption by Liquids 160</p> <p>6.4.3 Oxyfuel, Cryogenics and Chemical Looping 161</p> <p>6.4.4 Gas Membranes 162</p> <p>6.4.4.1 Membrane Flux 163</p> <p>6.4.4.2 Maximizing Flux 163</p> <p>6.4.4.3 Membrane Types 163</p> <p>6.5 Aspects of CO2 Conditioning and Transport 164</p> <p>6.5.1 Multi-stage Compression 165</p> <p>6.5.2 Pipework Design 167</p> <p>6.5.2.1 Pressure Drop 167</p> <p>6.5.2.2 Materials 167</p> <p>6.5.2.3 Maintenance and Control 167</p> <p>6.5.3 Carbon Dioxide Hazards 168</p> <p>6.5.3.1 Respiration 168</p> <p>6.5.3.2 Temperature 168</p> <p>6.5.3.3 Ventilation 168</p> <p>6.6 Aspects of CO2 Storage 169</p> <p>6.6.1 Biological Sequestration 169</p> <p>6.6.2 Mineral Carbonation 171</p> <p>6.6.3 Geological Storage Media 172</p> <p>6.6.4 Oceanic Storage 174</p> <p>6.7 Worked Examples 176</p> <p>6.8 Tutorial Problems 182</p> <p><b>7 Pollution Dispersal 185</b></p> <p>7.1 Overview 185</p> <p>Learning Outcomes 185</p> <p>7.2 Atmospheric Behaviour 186</p> <p>7.2.1 The Atmosphere 186</p> <p>7.2.2 Atmospheric Vertical Temperature Variation and Air Motion 187</p> <p>7.3 Atmospheric Stability 189</p> <p>7.3.1 Stability Classifications 190</p> <p>7.3.2 Stability and Stack Dispersal 191</p> <p>7.3.2.1 Non-inversion Conditions 191</p> <p>7.3.2.2 Inversion Conditions 192</p> <p>7.3.3 Variation inWind Velocity with Elevation 192</p> <p>7.4 Dispersion Modelling 193</p> <p>7.4.1 Point Source Modelling 193</p> <p>7.4.2 Plume Rise 198</p> <p>7.4.3 Effect of Non-uniform Terrain on Dispersal 199</p> <p>7.5 Alternative Expressions of Concentration 200</p> <p>7.6 Worked Examples 200</p> <p>7.7 Tutorial Problems 203</p> <p><b>8 Alternative Energy and Power Plants 207</b></p> <p>8.1 Overview 207</p> <p>Learning Outcomes 207</p> <p>8.2 Nuclear Power Plants 208</p> <p>8.2.1 Components of a Typical Nuclear Reactor 208</p> <p>8.2.2 Types of Nuclear Reactor 209</p> <p>8.2.3 Environmental Impact of Nuclear Reactors 209</p> <p>8.3 Solar Power Plants 210</p> <p>8.3.1 Photovoltaic Power Plants 211</p> <p>8.3.2 Solar Thermal Power Plants 215</p> <p>8.4 Biomass Power Plants 216</p> <p>8.4.1 Forestry, Agricultural and Municipal Biomass for Direct Combustion 217</p> <p>8.4.1.1 Bulk Density (kg/m<sup>3</sup>) 217</p> <p>8.4.1.2 Moisture Content (% by Mass) 217</p> <p>8.4.1.3 Ash Content (% by Mass) 218</p> <p>8.4.1.4 Calorific Value (kJ/kg) and Combustion 218</p> <p>8.4.2 Anaerobic Digestion 220</p> <p>8.4.3 Biofuels 222</p> <p>8.4.3.1 Biodiesel 222</p> <p>8.4.3.2 Bioethanol 222</p> <p>8.4.4 Gasification and Pyrolysis of Biomass 223</p> <p>8.5 Geothermal Power Plants 224</p> <p>8.6 Wind Energy 226</p> <p>8.6.1 Theory ofWind Energy 227</p> <p>8.6.1.1 Actual Power Output of the Turbine 229</p> <p>8.6.2 Wind Turbine Types and Components 230</p> <p>8.7 Hydropower 230</p> <p>8.7.1 Types of Hydraulic Power Plant 231</p> <p>8.7.1.1 Run-of-river Hydropower 231</p> <p>8.7.1.2 Storage Hydropower 232</p> <p>8.7.2 Estimation of Hydropower 233</p> <p>8.7.3 Types of Hydraulic Turbine 233</p> <p>8.8 Wave and Tidal (or Marine) Power 233</p> <p>8.8.1 Characteristics ofWaves 234</p> <p>8.8.2 Estimation ofWave Energy 235</p> <p>8.8.3 Types ofWave Power Device 235</p> <p>8.8.4 Tidal Power 237</p> <p>8.8.4.1 Tidal Barrage Energy 238</p> <p>8.8.4.2 Tidal Stream Energy 239</p> <p>8.9 Thermoelectric Energy 239</p> <p>8.9.1 DirectThermal Energy to Electrical Energy Conversion 240</p> <p>8.9.2 Thermoelectric Generators (TEGs) 241</p> <p>8.10 Fuel Cells 242</p> <p>8.10.1 Principles of Simple Fuel Cell Operation 243</p> <p>8.10.2 Fuel Cell Efficiency 243</p> <p>8.10.3 Fuel Cell Types 244</p> <p>8.11 Energy Storage Technologies 244</p> <p>8.11.1 Energy Storage Characteristics 246</p> <p>8.11.2 Energy Storage Technologies 246</p> <p>8.11.2.1 Hydraulic Energy 246</p> <p>8.11.2.2 Pneumatic Energy 247</p> <p>8.11.2.3 Ionic Energy 247</p> <p>8.11.2.4 Rotational Energy 248</p> <p>8.11.2.5 Electrostatic Energy 249</p> <p>8.11.2.6 Magnetic Energy 249</p> <p>8.12 Worked Examples 250</p> <p>8.13 Tutorial Problems 255</p> <p>A Properties ofWater and Steam 257</p> <p>B Thermodynamic Properties of Fuels and Combustion Products 263</p> <p>Bibliography 265</p> <p>Index 267</p>
<p><b>NEIL PACKER</b> is a Chartered engineer and Senior lecturer in Mechanical Engineering at Staffordshire University, UK. He has been teaching thermo-fluid and environmental engineering for over 20 years and has acted as an energy consultant in the UK, mainland Europe, and North Africa. <p><b>TARIK AL-SHEMMERI, P<small>H</small>D,</b> is Professor of Renewable Energy Technology at Staffordshire University, UK. He has lectured and researched extensively in the area of thermo-fluids, renewable energy, and power generation.
<p><b>A MUCH-NEEDED, UP-TO-DATE GUIDE ON CONVENTIONAL AND ALTERNATIVE POWER GENERATION</b> <p>This book goes beyond the traditional methods of power generation. It introduces the many recent innovations on the production of electricity and the way they play a major role in combating global warming and improving the efficiency of generation. It contains a strong analytical approach to underpin the theory of power plants—for those using conventional fuels, as well as those using renewable fuels—and looks at the problems from a unique environmental engineering perspective. The book also includes numerous worked examples and case studies to demonstrate the working principles of these systems. <p><i>Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability</i> is divided into eight chapters that comprehensively cover: thermodynamic systems; vapor power cycles; gas power cycles; combustion; control of particulates; carbon capture and storage; air pollution dispersal; and renewable energy and power plants. <ul> <li>Features an abundance of worked examples and tutorials</li> <li>Examines the problems of generating power from an environmental engineering perspective</li> <li>Includes all of the latest information, technology, theories, and principles on power generation</li> </ul> <p><i>Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability</i> is an ideal text for courses on mechanical, chemical, and electrical engineering.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €