Details

Convection Heat Transfer


Convection Heat Transfer


4. Aufl.

von: Adrian Bejan

131,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.03.2013
ISBN/EAN: 9781118332825
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A new edition of the bestseller on convection heat transfer</b></p> <p>A revised edition of the industry classic, <i>Convection Heat Transfer, Fourth Edition,</i> chronicles how the field of heat transfer has grown and prospered over the last two decades. This new edition is more accessible, while not sacrificing its thorough treatment of the most up-to-date information on current research and applications in the field.</p> <p>One of the foremost leaders in the field, Adrian Bejan has pioneered and taught many of the methods and practices commonly used in the industry today. He continues this book's long-standing role as an inspiring, optimal study tool by providing:</p> <ul> <li>Coverage of how convection affects performance, and how convective flows can be configured so that performance is enhanced</li> <li>How convective configurations have been evolving, from the flat plates, smooth pipes, and single-dimension fins of the earlier editions to new populations of configurations: tapered ducts, plates with multiscale features, dendritic fins, duct and plate assemblies (packages) for heat transfer density and compactness, etc.</li> <li>New, updated, and enhanced examples and problems that reflect the author's research and advances in the field since the last edition</li> <li>A solutions manual</li> </ul> <p>Complete with hundreds of informative and original illustrations, <i>Convection Heat Transfer, Fourth Edition</i> is the most comprehensive and approachable text for students in schools of mechanical engineering.</p>
Preface xv <p>Preface to the Third Edition xvii</p> <p>Preface to the Second Edition xxi</p> <p>Preface to the First Edition xxiii</p> <p>List of Symbols xxv</p> <p><b>1 Fundamental Principles 1</b></p> <p>1.1 Mass Conservation / 2</p> <p>1.2 Force Balances (Momentum Equations) / 4</p> <p>1.3 First Law of Thermodynamics / 8</p> <p>1.4 Second Law of Thermodynamics / 15</p> <p>1.5 Rules of Scale Analysis / 17</p> <p>1.6 Heatlines for Visualizing Convection / 21</p> <p>References / 22</p> <p>Problems / 25</p> <p><b>2 Laminar Boundary Layer Flow 30</b></p> <p>2.1 Fundamental Problem in Convective Heat Transfer / 31</p> <p>2.2 Concept of Boundary Layer / 34</p> <p>2.3 Scale Analysis / 37</p> <p>2.4 Integral Solutions / 42</p> <p>2.5 Similarity Solutions / 48</p> <p>2.5.1 Method / 48</p> <p>2.5.2 Flow Solution / 51</p> <p>2.5.3 Heat Transfer Solution / 53</p> <p>2.6 Other Wall Heating Conditions / 56</p> <p>2.6.1 Unheated Starting Length / 57</p> <p>2.6.2 Arbitrary Wall Temperature / 58</p> <p>2.6.3 Uniform Heat Flux / 60</p> <p>2.6.4 Film Temperature / 61</p> <p>2.7 Longitudinal Pressure Gradient: Flow Past a Wedge and Stagnation Flow / 61</p> <p>2.8 Flow Through the Wall: Blowing and Suction / 64</p> <p>2.9 Conduction Across a Solid Coating Deposited on a Wall / 68</p> <p>2.10 Entropy Generation Minimization in Laminar Boundary Layer Flow / 71</p> <p>2.11 Heatlines in Laminar Boundary Layer Flow / 74</p> <p>2.12 Distribution of Heat Sources on a Wall Cooled by Forced Convection / 77</p> <p>2.13 The Flow of Stresses / 79</p> <p>References / 80</p> <p>Problems / 82</p> <p><b>3 Laminar Duct Flow 96</b></p> <p>3.1 Hydrodynamic Entrance Length / 97</p> <p>3.2 Fully Developed Flow / 100</p> <p>3.3 Hydraulic Diameter and Pressure Drop / 103</p> <p>3.4 Heat Transfer To Fully Developed Duct Flow / 110</p> <p>3.4.1 Mean Temperature / 110</p> <p>3.4.2 Fully Developed Temperature Profile / 112</p> <p>3.4.3 Uniform Wall Heat Flux / 114</p> <p>3.4.4 Uniform Wall Temperature / 117</p> <p>3.5 Heat Transfer to Developing Flow / 120</p> <p>3.5.1 Scale Analysis / 121</p> <p>3.5.2 Thermally Developing Hagen–Poiseuille Flow / 122</p> <p>3.5.3 Thermally and Hydraulically Developing Flow / 128</p> <p>3.6 Stack of Heat-Generating Plates / 129</p> <p>3.7 Heatlines in Fully Developed Duct Flow / 134</p> <p>3.8 Duct Shape for Minimum Flow Resistance / 137</p> <p>3.9 Tree-Shaped Flow / 139</p> <p>References / 147</p> <p>Problems / 153</p> <p><b>4 External Natural Convection 168</b></p> <p>4.1 Natural Convection as a Heat Engine in Motion / 169</p> <p>4.2 Laminar Boundary Layer Equations / 173</p> <p>4.3 Scale Analysis / 176</p> <p>4.3.1 High-Pr Fluids / 177</p> <p>4.3.2 Low-Pr Fluids / 179</p> <p>4.3.3 Observations / 180</p> <p>4.4 Integral Solution / 182</p> <p>4.4.1 High-Pr Fluids / 183</p> <p>4.4.2 Low-Pr Fluids / 184</p> <p>4.5 Similarity Solution / 186</p> <p>4.6 Uniform Wall Heat Flux / 189</p> <p>4.7 Effect of Thermal Stratification / 192</p> <p>4.8 Conjugate Boundary Layers / 195</p> <p>4.9 Vertical Channel Flow / 197</p> <p>4.10 Combined Natural and Forced Convection (Mixed Convection) / 200</p> <p>4.11 Heat Transfer Results Including the Effect of Turbulence / 203</p> <p>4.11.1 Vertical Walls / 203</p> <p>4.11.2 Inclined Walls / 205</p> <p>4.11.3 Horizontal Walls / 207</p> <p>4.11.4 Horizontal Cylinder / 209</p> <p>4.11.5 Sphere / 209</p> <p>4.11.6 Vertical Cylinder / 210</p> <p>4.11.7 Other Immersed Bodies / 211</p> <p>4.12 Stack of Vertical Heat-Generating Plates / 213</p> <p>4.13 Distribution of Heat Sources on a Vertical Wall / 216</p> <p>References / 218</p> <p>Problems / 221</p> <p><b>5 Internal Natural Convection 233</b></p> <p>5.1 Transient Heating from the Side / 233</p> <p>5.1.1 Scale Analysis / 233</p> <p>5.1.2 Criterion for Distinct Vertical Layers / 237</p> <p>5.1.3 Criterion for Distinct Horizontal Jets / 238</p> <p>5.2 Boundary Layer Regime / 241</p> <p>5.3 Shallow Enclosure Limit / 248</p> <p>5.4 Summary of Results for Heating from the Side / 255</p> <p>5.4.1 Isothermal Sidewalls / 255</p> <p>5.4.2 Sidewalls with Uniform Heat Flux / 259</p> <p>5.4.3 Partially Divided Enclosures / 259</p> <p>5.4.4 Triangular Enclosures / 262</p> <p>5.5 Enclosures Heated from Below / 262</p> <p>5.5.1 Heat Transfer Results / 263</p> <p>5.5.2 Scale Theory of the Turbulent Regime / 265</p> <p>5.5.3 Constructal Theory of B´enard Convection / 267</p> <p>5.6 Inclined Enclosures / 274</p> <p>5.7 Annular Space Between Horizontal Cylinders / 276</p> <p>5.8 Annular Space Between Concentric Spheres / 278</p> <p>5.9 Enclosures for Thermal Insulation and Mechanical</p> <p>Strength / 278</p> <p>References / 284</p> <p>Problems / 289</p> <p><b>6 Transition to Turbulence 295</b></p> <p>6.1 Empirical Transition Data / 295</p> <p>6.2 Scaling Laws of Transition / 297</p> <p>6.3 Buckling of Inviscid Streams / 300</p> <p>6.4 Local Reynolds Number Criterion for Transition / 304</p> <p>6.5 Instability of Inviscid Flow / 307</p> <p>6.6 Transition in Natural Convection on a Vertical Wall / 313</p> <p>References / 315</p> <p>Problems / 318</p> <p><b>7 Turbulent Boundary Layer Flow 320</b></p> <p>7.1 Large-Scale Structure / 320</p> <p>7.2 Time-Averaged Equations / 322</p> <p>7.3 Boundary Layer Equations / 325</p> <p>7.4 Mixing Length Model / 328</p> <p>7.5 Velocity Distribution / 329</p> <p>7.6 Wall Friction in Boundary Layer Flow / 336</p> <p>7.7 Heat Transfer in Boundary Layer Flow / 338</p> <p>7.8 Theory of Heat Transfer in Turbulent Boundary Layer Flow / 342</p> <p>7.9 Other External Flows / 347</p> <p>7.9.1 Single Cylinder in Cross Flow / 347</p> <p>7.9.2 Sphere / 349</p> <p>7.9.3 Other Body Shapes / 350</p> <p>7.9.4 Arrays of Cylinders in Cross Flow / 351</p> <p>7.10 Natural Convection Along Vertical Walls / 356</p> <p>References / 359</p> <p>Problems / 361</p> <p><b>8 Turbulent Duct Flow 369</b></p> <p>8.1 Velocity Distribution / 369</p> <p>8.2 Friction Factor and Pressure Drop / 371</p> <p>8.3 Heat Transfer Coefficient / 376</p> <p>8.4 Total Heat Transfer Rate / 380</p> <p>8.4.1 Isothermal Wall / 380</p> <p>8.4.2 Uniform Wall Heating / 382</p> <p>8.4.3 Time-Dependent Heat Transfer / 382</p> <p>8.5 More Refined Turbulence Models / 383</p> <p>8.6 Heatlines in Turbulent Flow Near a Wall / 387</p> <p>8.7 Channel Spacings for Turbulent Flow / 389</p> <p>References / 390</p> <p>Problems / 392</p> <p><b>9 Free Turbulent Flows 398</b></p> <p>9.1 Free Shear Layers / 398</p> <p>9.1.1 Free Turbulent Flow Model / 398</p> <p>9.1.2 Velocity Distribution / 401</p> <p>9.1.3 Structure of Free Turbulent Flows / 402</p> <p>9.1.4 Temperature Distribution / 404</p> <p>9.2 Jets / 405</p> <p>9.2.1 Two-Dimensional Jets / 406</p> <p>9.2.2 Round Jets / 409</p> <p>9.2.3 Jet in Density-Stratified Reservoir / 411</p> <p>9.3 Plumes / 413</p> <p>9.3.1 Round Plume and the Entrainment Hypothesis / 413</p> <p>9.3.2 Pulsating Frequency of Pool Fires / 418</p> <p>9.3.3 Geometric Similarity of Free Turbulent Flows / 421</p> <p>9.4 Thermal Wakes Behind Concentrated Sources / 422</p> <p>References / 425</p> <p>Problems / 426</p> <p><b>10 Convection with Change of Phase 428</b></p> <p>10.1 Condensation / 428</p> <p>10.1.1 Laminar Film on a Vertical Surface / 428</p> <p>10.1.2 Turbulent Film on a Vertical Surface / 435</p> <p>10.1.3 Film Condensation in Other Configurations / 438</p> <p>10.1.4 Drop Condensation / 445</p> <p>10.2 Boiling / 447</p> <p>10.2.1 Pool Boiling Regimes / 447</p> <p>10.2.2 Nucleate Boiling and Peak Heat Flux / 451</p> <p>10.2.3 Film Boiling and Minimum Heat Flux / 454</p> <p>10.2.4 Flow Boiling / 457</p> <p>10.3 Contact Melting and Lubrication / 457</p> <p>10.3.1 Plane Surfaces with Relative Motion / 458</p> <p>10.3.2 Other Contact Melting Configurations / 462</p> <p>10.3.3 Scale Analysis and Correlation / 464</p> <p>10.3.4 Melting Due to Viscous Heating in the Liquid Film / 466</p> <p>10.4 Melting By Natural Convection / 469</p> <p>10.4.1 Transition from the Conduction Regime to the Convection Regime / 469</p> <p>10.4.2 Quasisteady Convection Regime / 472</p> <p>10.4.3 Horizontal Spreading of the Melt Layer / 474</p> <p>References / 478</p> <p>Problems / 482</p> <p><b>11 Mass Transfer 489</b></p> <p>11.1 Properties of Mixtures / 489</p> <p>11.2 Mass Conservation / 492</p> <p>11.3 Mass Diffusivities / 497</p> <p>11.4 Boundary Conditions / 499</p> <p>11.5 Laminar Forced Convection / 501</p> <p>11.6 Impermeable Surface Model / 504</p> <p>11.7 Other External Forced Convection Configurations / 506</p> <p>11.8 Internal Forced Convection / 509</p> <p>11.9 Natural Convection / 511</p> <p>11.9.1 Mass-Transfer-Driven Flow / 512</p> <p>11.9.2 Heat-Transfer-Driven Flow / 513</p> <p>11.10 Turbulent Flow / 516</p> <p>11.10.1 Time-Averaged Concentration Equation / 516</p> <p>11.10.2 Forced Convection Results / 517</p> <p>11.10.3 Contaminant Removal from a Ventilated Enclosure / 520</p> <p>11.11 Massfunction and Masslines / 527</p> <p>11.12 Effect of Chemical Reaction / 527</p> <p>References / 531</p> <p>Problems / 532</p> <p><b>12 Convection in Porous Media 537</b></p> <p>12.1 Mass Conservation / 537</p> <p>12.2 Darcy Flow Model and the Forchheimer Modification / 540</p> <p>12.3 First Law of Thermodynamics / 542</p> <p>12.4 Second Law of Thermodynamics / 546</p> <p>12.5 Forced Convection / 547</p> <p>12.5.1 Boundary Layers / 547</p> <p>12.5.2 Concentrated Heat Sources / 552</p> <p>12.5.3 Sphere and Cylinder in Cross Flow / 553</p> <p>12.5.4 Channel Filled with Porous Medium / 554</p> <p>12.6 Natural Convection Boundary Layers / 555</p> <p>12.6.1 Boundary Layer Equations: Vertical Wall / 555</p> <p>12.6.2 Uniform Wall Temperature / 556</p> <p>12.6.3 Uniform Wall Heat Flux / 558</p> <p>12.6.4 Spacings for Channels Filled with Porous Structures / 559</p> <p>12.6.5 Conjugate Boundary Layers / 562</p> <p>12.6.6 Thermal Stratification / 563</p> <p>12.6.7 Sphere and Horizontal Cylinder / 566</p> <p>12.6.8 Horizontal Walls / 567</p> <p>12.6.9 Concentrated Heat Sources / 567</p> <p>12.7 Enclosed Porous Media Heated from the Side / 571</p> <p>12.7.1 Four Heat Transfer Regimes / 571</p> <p>12.7.2 Convection Results / 575</p> <p>12.8 Penetrative Convection / 577</p> <p>12.8.1 Lateral Penetration / 577</p> <p>12.8.2 Vertical Penetration / 578</p> <p>12.9 Enclosed Porous Media Heated from Below / 579</p> <p>12.9.1 Onset of Convection / 579</p> <p>12.9.2 Darcy Flow / 583</p> <p>12.9.3 Forchheimer Flow / 585</p> <p>12.10 Multiple Flow Scales Distributed Nonuniformly / 587</p> <p>12.10.1 Heat Transfer / 590</p> <p>12.10.2 Fluid Friction / 591</p> <p>12.10.3 Heat Transfer Rate Density: The Smallest Scale for Convection / 591</p> <p>12.11 Natural Porous Media: Alternating Trees / 592</p> <p>References / 595</p> <p>Problems / 598</p> <p><b>Appendixes 607</b></p> <p>A Constants and Conversion Factors / 609</p> <p>B Properties of Solids / 615</p> <p>C Properties of Liquids / 625</p> <p>D Properties of Gases / 633</p> <p>E Mathematical Formulas / 639</p> <p>Author Index 641</p> <p>Subject Index 653</p>
<p><b>ADRIAN BEJAN, PhD</b>, is the J. A. Jones Professor of Mechanical Engineering at Duke University. An internationally recognized authority on heat transfer and thermodynamics, Bejan has pioneered the methods of entropy generation minimization, scale analysis, heatlines and masslines, intersection of asymptotes, dendritic architectures, and the constructal law of design in nature. He is the recipient of numerous awards, including the Max Jakob Memorial Award (ASME & AICHE), the Worcester Reed Warner Medal (ASME), and the Ralph Coats Roe Award (ASEE). He is the author of twenty-five books and 550 journal articles, and is listed among the 100 most-cited engineering researchers (all disciplines, all countries). He has been awarded sixteen honorary doctorates by universities in eleven foreign countries.</p>
<p><b>A new edition of the bestseller on convection heat transfer</b></p> <p>A revised edition of the industry classic, <i>Convection Heat Transfer, Fourth Edition,</i> chronicles how the field of heat transfer has grown and prospered over the last two decades. This new edition is more accessible, while not sacrificing its thorough treatment of the most up-to-date information on current research and applications in the field.</p> <p>One of the foremost leaders in the field, Adrian Bejan has pioneered and taught many of the methods and practices commonly used in the industry today. He continues this book's long-standing role as an inspiring, optimal study tool by providing:</p> <ul> <li>Coverage of how convection affects performance, and how convective flows can be configured so that performance is enhanced</li> <li>How convective configurations have been evolving, from the flat plates, smooth pipes, and single-dimension fins of the earlier editions to new populations of configurations: tapered ducts, plates with multiscale features, dendritic fins, duct and plate assemblies (packages) for heat transfer density and compactness, etc.</li> <li>New, updated, and enhanced examples and problems that reflect the author's research and advances in the field since the last edition</li> <li>A solutions manual</li> </ul> <p>Complete with hundreds of informative and original illustrations, <i>Convection Heat Transfer, Fourth Edition</i> is the most comprehensive and approachable text for students in schools of mechanical engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
PDF ebook
139,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €