Details

Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering


Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering


1. Aufl.

von: Laurent Simon

88,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.11.2012
ISBN/EAN: 9781118396483
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Enables readers to apply process dynamics and control theory to solve bioprocess and drug delivery problems</b></p> <p>The control of biological and drug delivery systems is critical to the health of millions of people worldwide. As a result, researchers in systems biology and drug delivery rely on process dynamics and control theory to build our knowledge of cell behavior and to develop more effective therapeutics, controlled release devices, and drug administration protocols to manage disease.</p> <p>Written by a leading expert and educator in the field, this text helps readers develop a deep understanding of process dynamics and control theory in order to analyze and solve a broad range of problems in bioprocess and drug delivery systems. For example, readers will learn how stability criteria can be used to gain new insights into the regulation of biological pathways and lung mechanics. They'll also learn how the concept of a time constant is used to capture the dynamics of diffusive processes. Readers will also master such topics as external disturbances, transfer functions, and input/output models with the support of the author's clear explanations, as well as:</p> <ul> <li>Detailed examples from the biological sciences and novel drug delivery technologies</li> <li>160 end-of-chapter problems with step-by-step solutions</li> <li>Demonstrations of how computational software such as MATLAB and Mathematica solve complex drug delivery problems</li> </ul> <p><i>Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering</i> is written primarily for undergraduate chemical and biomedical engineering students; however, it is also recommended for students and researchers in pharmaceutical engineering, process control, and systems biology. All readers will gain a new perspective on process dynamics and control theory that will enable them to develop new and better technologies and therapeutics to treat human disease.</p>
<p>Preface xi</p> <p>Acknowledgments xv</p> <p><b>1 Introduction 1</b></p> <p>1.1 The Role of Process Dynamics and Control in Branches of Biology 1</p> <p>1.2 The Role of Process Dynamics and Control in Drug-Delivery Systems 10</p> <p>1.3 Instrumentation 12</p> <p>1.4 Summary 18</p> <p>Problems 18</p> <p>References 19</p> <p><b>2 Mathematical Models 21</b></p> <p>2.1 Background 22</p> <p>2.2 Dynamics of Bioreactors 27</p> <p>2.3 One- and Two-Compartment Models 34</p> <p>2.4 Enzyme Kinetics 37</p> <p>2.5 Summary 39</p> <p>Problems 39</p> <p>References 41</p> <p><b>3 Linearization and Deviation Variables 43</b></p> <p>3.1 Computer Simulations 43</p> <p>3.2 Linearization of Systems 44</p> <p>3.3 Glycolytic Oscillation 55</p> <p>3.4 Hodgkin–Huxley Model 57</p> <p>3.5 Summary 60</p> <p>Problems 61</p> <p>References 63</p> <p><b>4 Stability Considerations 65</b></p> <p>4.1 Definition of Stability 65</p> <p>4.2 Steady-State Conditions and Equilibrium Points 79</p> <p>4.3 Phase-Plane Diagrams 80</p> <p>4.4 Population Kinetics 80</p> <p>4.5 Dynamics of Bioreactors 83</p> <p>4.6 Glycolytic Oscillation 85</p> <p>4.7 Hodgkin–Huxley Model 87</p> <p>4.8 Summary 88</p> <p>Problems 88</p> <p>References 91</p> <p><b>5 Laplace Transforms 93</b></p> <p>5.1 Definition of Laplace Transforms 93</p> <p>5.2 Properties of Laplace Transforms 95</p> <p>5.3 Laplace Transforms of Functions, Derivatives, and Integrals 96</p> <p>5.4 Laplace Transforms of Linear Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE) 104</p> <p>5.5 Continuous Fermentation 108</p> <p>5.6 Two-Compartment Models 110</p> <p>5.7 Gene Regulation 111</p> <p>5.8 Summary 113</p> <p>Problems 113</p> <p>Reference 115</p> <p><b>6 Inverse Laplace Transforms 117</b></p> <p>6.1 Heaviside Expansions 117</p> <p>6.2 Residue Theorem 126</p> <p>6.3 Continuous Fermentation 134</p> <p>6.4 Degradation of Plasmid DNA 136</p> <p>6.5 Constant-Rate Intravenous Infusion 138</p> <p>6.6 Transdermal Drug-Delivery Systems 139</p> <p>6.7 Summary 146</p> <p>Problems 146</p> <p>References 148</p> <p><b>7 Transfer Functions 149</b></p> <p>7.1 Input–Output Models 149</p> <p>7.2 Derivation of Transfer Functions 150</p> <p>7.3 One- and Two-Compartment Models: Michaelis–Menten Kinetics 154</p> <p>7.4 Controlled-Release Systems 157</p> <p>7.5 Summary 158</p> <p>Problems 158</p> <p><b>8 Dynamic Behaviors of Typical Plants 163</b></p> <p>8.1 First-, Second- and Higher-Order Systems 163</p> <p>8.2 Reduced-Order Models 167</p> <p>8.3 Transcendental Transfer Functions 169</p> <p>8.4 Time Responses of Systems with Rational Transfer Functions 171</p> <p>8.5 Time Responses of Systems with Transcendental Transfer Functions 190</p> <p>8.6 Bone Regeneration 192</p> <p>8.7 Nitric Oxide Transport to Pulmonary Arterioles 193</p> <p>8.8 Transdermal Drug Delivery 194</p> <p>8.9 Summary 194</p> <p>Problems 195</p> <p>References 197</p> <p><b>9 Closed-loop Responses with P, Pi, and Pid Controllers 199</b></p> <p>9.1 Block Diagram of Closed-Loop Systems 200</p> <p>9.2 Proportional Control 203</p> <p>9.3 PI Control 204</p> <p>9.4 PID Control 206</p> <p>9.5 Total Sugar Concentration in a Glutamic Acid Production 207</p> <p>9.6 Temperature Control of Fermentations 209</p> <p>9.7 DO Concentration 213</p> <p>9.8 Summary 214</p> <p>Problems 215</p> <p>References 217</p> <p><b>10 Frequency Response Analysis 219</b></p> <p>10.1 Frequency Response for Linear Systems 219</p> <p>10.2 Bode Diagrams 227</p> <p>10.3 Nyquist Plots 229</p> <p>10.4 Transdermal Drug Delivery 232</p> <p>10.5 Compartmental Models 236</p> <p>10.6 Summary 239</p> <p>Problems 239</p> <p>References 240</p> <p><b>11 Stability Analysis of Feedback Systems 243</b></p> <p>11.1 Routh–Hurwitz Stability Criterion 243</p> <p>11.2 Root Locus Analysis 248</p> <p>11.3 Bode Stability Criterion 249</p> <p>11.4 Nyquist Stability Criterion 254</p> <p>11.5 Cheyne–Stokes Respiration 257</p> <p>11.6 Regulation of Biological Pathways 262</p> <p>11.7 Pupillary Light Reflex 264</p> <p>11.8 Summary 265</p> <p>Problems 265</p> <p>References 267</p> <p><b>12 Design of Feedback Controllers 269</b></p> <p>12.1 Tuning Methods for Feedback Controllers 269</p> <p>12.2 Regulation of Glycemia 279</p> <p>12.3 Dissolved Oxygen Concentration 282</p> <p>12.4 Control of Biomass in a Chemostat 284</p> <p>12.5 Controlled Infusion of Vasoactive Drugs 285</p> <p>12.6 Bone Regeneration 286</p> <p>12.7 Fed-Batch Biochemical Processes 288</p> <p>12.8 Summary 289</p> <p>Problems 289</p> <p>References 291</p> <p><b>13 Feedback Control of Dead-time Systems 293</b></p> <p>13.1 Smith Predictor-Based Methods 294</p> <p>13.2 Control of Biomass 300</p> <p>13.3 Zymomonas mobilis Fermentation for Ethanol Production 302</p> <p>13.4 Fed-Batch Cultivation of Acinetobacter calcoaceticus Rag-1 304</p> <p>13.5 Regulation of Glycemia 304</p> <p>13.6 Summary 306</p> <p>Problems 306</p> <p>References 309</p> <p><b>14 Cascade and Feedforward Control Strategies 311</b></p> <p>14.1 Cascade Control 311</p> <p>14.2 Feedforward Control 317</p> <p>14.3 Insulin Infusion 321</p> <p>14.4 A Gaze Control System 323</p> <p>14.5 Control of pH 326</p> <p>14.6 Summary 330</p> <p>Problems 331</p> <p>References 333</p> <p><b>15 Effective Time Constant 335</b></p> <p>15.1 Linear Second-Order ODEs 335</p> <p>15.2 Sturm–Liouville (SL) Eigenvalue Problems 337</p> <p>15.3 Relaxation Time Constant 340</p> <p>15.4 Implementation in Mathematica ® 342</p> <p>15.5 Controlled-Release Devices 342</p> <p>15.6 Summary 343</p> <p>Problems 344</p> <p>References 345</p> <p><b>16 Optimum Control and Design 347</b></p> <p>16.1 Orthogonal Collocation Techniques 348</p> <p>16.2 Dynamic Programming 350</p> <p>16.3 Optimal Control of Drug-Delivery Rates 350</p> <p>16.4 Optimal Design of Controlled-Release Devices 351</p> <p>16.5 Implementation in Mathematica ® 352</p> <p>16.6 Summary 358</p> <p>Problems 359</p> <p>References 360</p> <p>Index 361</p> <p>Preface xi</p> <p>Acknowledgments xv</p> <p><b>1 Introduction 1</b></p> <p>1.1 The Role of Process Dynamics and Control in Branches of Biology 1</p> <p>1.2 The Role of Process Dynamics and Control in Drug-Delivery Systems 10</p> <p>1.3 Instrumentation 12</p> <p>1.4 Summary 18</p> <p>Problems 18</p> <p>References 19</p> <p><b>2 Mathematical Models 21</b></p> <p>2.1 Background 22</p> <p>2.2 Dynamics of Bioreactors 27</p> <p>2.3 One- and Two-Compartment Models 34</p> <p>2.4 Enzyme Kinetics 37</p> <p>2.5 Summary 39</p> <p>Problems 39</p> <p>References 41</p> <p><b>3 Linearization and Deviation Variables 43</b></p> <p>3.1 Computer Simulations 43</p> <p>3.2 Linearization of Systems 44</p> <p>3.3 Glycolytic Oscillation 55</p> <p>3.4 Hodgkin–Huxley Model 57</p> <p>3.5 Summary 60</p> <p>Problems 61</p> <p>References 63</p> <p><b>4 Stability Considerations 65</b></p> <p>4.1 Definition of Stability 65</p> <p>4.2 Steady-State Conditions and Equilibrium Points 79</p> <p>4.3 Phase-Plane Diagrams 80</p> <p>4.4 Population Kinetics 80</p> <p>4.5 Dynamics of Bioreactors 83</p> <p>4.6 Glycolytic Oscillation 85</p> <p>4.7 Hodgkin–Huxley Model 87</p> <p>4.8 Summary 88</p> <p>Problems 88</p> <p>References 91</p> <p><b>5 Laplace Transforms 93</b></p> <p>5.1 Definition of Laplace Transforms 93</p> <p>5.2 Properties of Laplace Transforms 95</p> <p>5.3 Laplace Transforms of Functions, Derivatives, and Integrals 96</p> <p>5.4 Laplace Transforms of Linear Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE) 104</p> <p>5.5 Continuous Fermentation 108</p> <p>5.6 Two-Compartment Models 110</p> <p>5.7 Gene Regulation 111</p> <p>5.8 Summary 113</p> <p>Problems 113</p> <p>Reference 115</p> <p><b>6 Inverse Laplace Transforms 117</b></p> <p>6.1 Heaviside Expansions 117</p> <p>6.2 Residue Theorem 126</p> <p>6.3 Continuous Fermentation 134</p> <p>6.4 Degradation of Plasmid DNA 136</p> <p>6.5 Constant-Rate Intravenous Infusion 138</p> <p>6.6 Transdermal Drug-Delivery Systems 139</p> <p>6.7 Summary 146</p> <p>Problems 146</p> <p>References 148</p> <p><b>7 Transfer Functions 149</b></p> <p>7.1 Input–Output Models 149</p> <p>7.2 Derivation of Transfer Functions 150</p> <p>7.3 One- and Two-Compartment Models: Michaelis–Menten Kinetics 154</p> <p>7.4 Controlled-Release Systems 157</p> <p>7.5 Summary 158</p> <p>Problems 158</p> <p><b>8 Dynamic Behaviors of Typical Plants 163</b></p> <p>8.1 First-, Second- and Higher-Order Systems 163</p> <p>8.2 Reduced-Order Models 167</p> <p>8.3 Transcendental Transfer Functions 169</p> <p>8.4 Time Responses of Systems with Rational Transfer Functions 171</p> <p>8.5 Time Responses of Systems with Transcendental Transfer Functions 190</p> <p>8.6 Bone Regeneration 192</p> <p>8.7 Nitric Oxide Transport to Pulmonary Arterioles 193</p> <p>8.8 Transdermal Drug Delivery 194</p> <p>8.9 Summary 194</p> <p>Problems 195</p> <p>References 197</p> <p><b>9 Closed-loop Responses with P, Pi, and Pid Controllers 199</b></p> <p>9.1 Block Diagram of Closed-Loop Systems 200</p> <p>9.2 Proportional Control 203</p> <p>9.3 PI Control 204</p> <p>9.4 PID Control 206</p> <p>9.5 Total Sugar Concentration in a Glutamic Acid Production 207</p> <p>9.6 Temperature Control of Fermentations 209</p> <p>9.7 DO Concentration 213</p> <p>9.8 Summary 214</p> <p>Problems 215</p> <p>References 217</p> <p><b>10 Frequency Response Analysis 219</b></p> <p>10.1 Frequency Response for Linear Systems 219</p> <p>10.2 Bode Diagrams 227</p> <p>10.3 Nyquist Plots 229</p> <p>10.4 Transdermal Drug Delivery 232</p> <p>10.5 Compartmental Models 236</p> <p>10.6 Summary 239</p> <p>Problems 239</p> <p>References 240</p> <p><b>11 Stability Analysis of Feedback Systems 243</b></p> <p>11.1 Routh–Hurwitz Stability Criterion 243</p> <p>11.2 Root Locus Analysis 248</p> <p>11.3 Bode Stability Criterion 249</p> <p>11.4 Nyquist Stability Criterion 254</p> <p>11.5 Cheyne–Stokes Respiration 257</p> <p>11.6 Regulation of Biological Pathways 262</p> <p>11.7 Pupillary Light Reflex 264</p> <p>11.8 Summary 265</p> <p>Problems 265</p> <p>References 267</p> <p><b>12 Design of Feedback Controllers 269</b></p> <p>12.1 Tuning Methods for Feedback Controllers 269</p> <p>12.2 Regulation of Glycemia 279</p> <p>12.3 Dissolved Oxygen Concentration 282</p> <p>12.4 Control of Biomass in a Chemostat 284</p> <p>12.5 Controlled Infusion of Vasoactive Drugs 285</p> <p>12.6 Bone Regeneration 286</p> <p>12.7 Fed-Batch Biochemical Processes 288</p> <p>12.8 Summary 289</p> <p>Problems 289</p> <p>References 291</p> <p><b>13 Feedback Control of Dead-time Systems 293</b></p> <p>13.1 Smith Predictor-Based Methods 294</p> <p>13.2 Control of Biomass 300</p> <p>13.3 Zymomonas mobilis Fermentation for Ethanol Production 302</p> <p>13.4 Fed-Batch Cultivation of Acinetobacter calcoaceticus Rag-1 304</p> <p>13.5 Regulation of Glycemia 304</p> <p>13.6 Summary 306</p> <p>Problems 306</p> <p>References 309</p> <p><b>14 Cascade and Feedforward Control Strategies 311</b></p> <p>14.1 Cascade Control 311</p> <p>14.2 Feedforward Control 317</p> <p>14.3 Insulin Infusion 321</p> <p>14.4 A Gaze Control System 323</p> <p>14.5 Control of pH 326</p> <p>14.6 Summary 330</p> <p>Problems 331</p> <p>References 333</p> <p><b>15 Effective Time Constant 335</b></p> <p>15.1 Linear Second-Order ODEs 335</p> <p>15.2 Sturm–Liouville (SL) Eigenvalue Problems 337</p> <p>15.3 Relaxation Time Constant 340</p> <p>15.4 Implementation in Mathematica ® 342</p> <p>15.5 Controlled-Release Devices 342</p> <p>15.6 Summary 343</p> <p>Problems 344</p> <p>References 345</p> <p><b>16 Optimum Control and Design 347</b></p> <p>16.1 Orthogonal Collocation Techniques 348</p> <p>16.2 Dynamic Programming 350</p> <p>16.3 Optimal Control of Drug-Delivery Rates 350</p> <p>16.4 Optimal Design of Controlled-Release Devices 351</p> <p>16.5 Implementation in Mathematica ® 352</p> <p>16.6 Summary 358</p> <p>Problems 359</p> <p>References 360</p> <p>Index 361</p>
"This text — featuring examples from the biological sciences, including novel drug-delivery systems — will help students and pharmaceutical researchers to develop a better understanding of process dynamics and control theory, so that they can analyze and solve a variety of problems in bioprocess and drug-delivery systems." (<i>Chemical Engineering Progress</i>, 21 May 2013)
<p><b>LAURENT SIMON, PhD,</b> is Associate Professor of Chemical Engineering and Associate Director of the Pharmaceutical Engineering Program at New Jersey Institute of Technology. His research and teaching interests focus on modeling, analysis, and control of drug delivery systems. Dr. Simon is the author of <i>Laboratory Online,</i> a series of educational and interactive modules that help engineers build a strong understanding of drug delivery technologies and their underlying engineering principles. During his time at NJIT, Dr. Simon has received the Excellence in Teaching Award, Master Teacher Designation, and Newark College of Engineering Saul K. Fenster Innovation in Engineering Education Award.</p>
<p><b>Enables readers to apply process dynamics and control theory to solve bioprocess and drug delivery problems</b></p> <p>The control of biological and drug delivery systems is critical to the health of millions of people worldwide. As a result, researchers in systems biology and drug delivery rely on process dynamics and control theory to build our knowledge of cell behavior and to develop more effective therapeutics, controlled release devices, and drug administration protocols to manage disease.</p> <p>Written by a leading expert and educator in the field, this text helps readers develop a deep understanding of process dynamics and control theory in order to analyze and solve a broad range of problems in bioprocess and drug delivery systems. For example, readers will learn how stability criteria can be used to gain new insights into the regulation of biological pathways and lung mechanics. They'll also learn how the concept of a time constant is used to capture the dynamics of diffusive processes. Readers will also master such topics as external disturbances, transfer functions, and input/output models with the support of the author's clear explanations, as well as:</p> <ul> <li>Detailed examples from the biological sciences and novel drug delivery technologies</li> <li>160 end-of-chapter problems with step-by-step solutions</li> <li>Demonstrations of how computational software such as MATLAB and Mathematica solve complex drug delivery problems</li> </ul> <p><i>Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and Pharmaceutical Engineering</i> is written primarily for undergraduate chemical and biomedical engineering students; however, it is also recommended for students and researchers in pharmaceutical engineering, process control, and systems biology. All readers will gain a new perspective on process dynamics and control theory that will enable them to develop new and better technologies and therapeutics to treat human disease.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €