Details

Concise Encyclopedia of High Performance Silicones


Concise Encyclopedia of High Performance Silicones


1. Aufl.

von: Atul Tiwari, Mark D. Soucek

225,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.04.2014
ISBN/EAN: 9781118938454
Sprache: englisch
Anzahl Seiten: 434

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The encyclopedia will be an invaluable source of information for researchers and students from diverse backgrounds including physics, chemistry, materials science and surface engineering, biotechnology, pharmacy, medical science, and biomedical engineering.</p>
<p><b>1 Room Temperature Vulcanized Silicone Rubber Coatings: Application in High Voltage Substations 3<br /> </b><i>Kiriakos Siderakis and Dionisios Pylarinos<br /> <br /> </i>1.1 Introduction 3<br /> <br /> 1.2 Pollution of High Voltage Insulators 4<br /> <br /> 1.3 Silicone Coatings for High Voltage Ceramic Insulators 5<br /> <br /> 1.4 RTV SIR Coatings Formulation 6<br /> <br /> 1.5 Hydrophobicity in RTV SIR 10<br /> <br /> 1.6 Electrical Performance of RTV SIR Coatings 13<br /> <br /> 1.7 Conclusions 13<br /> <br /> References 13<br /> <br /> <b>2 Silicone Copolymers: Enzymatic Synthesis and Properties 19<br /> </b><i>Yadagiri Poojari<br /> <br /> </i>2.1 Introduction 19<br /> <br /> 2.2 Polysiloxanes 20<br /> <br /> 2.3 Silicone Aliphatic Polyesters 20<br /> <br /> 2.4 Silicone Aliphatic Polyesteramides 21<br /> <br /> 2.5 Silicone Fluorinated Aliphatic Polyesteramides 21<br /> <br /> 2.6 Silicone Aromatic Polyesters and Polyamides 21<br /> <br /> 2.7 Silicone Polycaprolactone 22<br /> <br /> 2.8 Silicone Polyethers 23<br /> <br /> 2.9 Silicone Sugar Conjugates 24<br /> <br /> 2.10 Stereo-Selective Esterification of Organosiloxanes 24<br /> <br /> 2.11 Conclusion and Outlook 25<br /> <br /> Acknowledgments 25<br /> <br /> References 25<br /> <br /> <b>3 Phosphorus Containing Siliconized Epoxy Resins 27<br /> </b><i>S. Ananda Kumar, M. Alagar and M. Mandhakini<br /> <br /> </i>3.1 Introduction 27<br /> <br /> 3.2 Preparation of Siliconized Epoxy-Bismaleimide Intercrosslinked Matrices 29<br /> <br /> 3.3 Phosphorus-Containing Siliconized Epoxy Resin as Thermal and Flame Retardant Coatings 31<br /> <br /> 3.4 High Functionality Resins for the Fabrication of Nanocomposites 33<br /> <br /> 3.5 Anticorrosive and Antifouling Coating Performance of Siloxane- and Phosphorus-Modified Epoxy Composites 39<br /> <br /> 3.6 Summary and Conclusion 46<br /> <br /> Acknowledgement  48<br /> <br /> References 49<br /> <br /> <b>4 Nanostructured Silicone Materials 51<br /> </b><i>Joanna Lewandowska-Lañcucka, Mariusz Kepczynski and Maria Nowakowska<br /> <br /> </i>4.1 Introduction 51<br /> <br /> 4.2 Solid Particles 52<br /> <br /> 4.3 Nanocapsules 56<br /> <br /> 4.4 Ultra-Thin Silicone Films 60<br /> <br /> 4.5 Conclusion and Outlook 61<br /> <br /> References 62<br /> <br /> <b>5 High Refractive Index Silicone 65<br /> </b><i>Zulkifli Ahmad<br /> <br /> </i>5.1 Introduction 65<br /> <br /> 5.2 Theory of RI 66<br /> <br /> 5.3 High Refractive Index Silicone 69<br /> <br /> 5.4 Applications 71<br /> <br /> 5.5 Conclusion and Outlook 74<br /> <br /> <b>6 Irradiation Induced Chemical and Physical Effects in Silicones 75<br /> </b><i>R. Huszank</i><br /> <br /> 6.1 Introduction 75<br /> <br /> 6.2 Sources of Irradiation 76<br /> <br /> 6.3 Irradiation-Induced Chemical Effects in Silicones 77<br /> <br /> 6.4 Irradiation-Induced Physical Effects in Silicones 81<br /> <br /> 6.5 Conclusion and Outlook 83<br /> <br /> <b>7 Developments and Properties of Reinforced Silicone Rubber Nanocomposites 85<br /> </b><i>Suneel Kumar Srivastava and Bratati Pradhan<br /> <br /> </i>7.1 Introduction 85<br /> <br /> 7.2 Different Types of Nanofillers Used in Silicone Rubber (SR) 86<br /> <br /> 7.3 Preparation of Silicone Rubber (SR) Nanocomposites 89<br /> <br /> 7.4 Morphology of Silicone Rubber (SR) Nanocomposites 90<br /> <br /> 7.5 Properties of Silicone Rubber Nanocomposites 94<br /> <br /> 7.6 Conclusion and Outlook 105<br /> <br /> References 105<br /> <br /> <b>8 Functionalization of Silicone Rubber Surfaces towards Biomedical Applications 111<br /> </b><i>Lígia R. Rodrigues and Fernando Dourado<br /> <br /> </i>8.1 Introduction 111<br /> <br /> 8.2 Silicone Rubber – Material of Excellence for Biomedical Applications? 111<br /> <br /> 8.3 Surface Modification of Silicone Rubber 113<br /> <br /> 8.4 Conclusion and Outlook 119<br /> <br /> References 120<br /> <br /> <b>9 Functionalization of Colloidal Silica Nanoparticles and Their Use in Paint and Coatings 123<br /> </b><i>Peter Greenwood and Anders Törncrona<br /> <br /> </i>9.1 Introduction to Colloidal Silica 123<br /> <br /> 9.2 Chemistry of Silica Surface Functionalization by Organosilanes 124<br /> <br /> 9.3 Characterization and Product Properties of Silane-Modified Silica Dispersions 125<br /> <br /> 9.4 Applications for Silanized Silica Nanoparticles in Paint and Coatings 130<br /> <br /> 9.5 Conclusion and Outlook 139<br /> <br /> References 139<br /> <br /> <b>10 Surface Modification of PDMS in Microfluidic Devices 141<br /> </b><i>Wenjun Qiu, Chaoqun Wu and Zhigang Wu<br /> <br /> </i>10.1 Introduction 141<br /> <br /> 10.2 PDMS Surface Modification Techniques 142<br /> <br /> 10.3 Characterization Techniques 147<br /> <br /> 10.4 Discussion and Perspectives 148<br /> <br /> <b>Part</b> <b>2: Characterization 151<br /> <br /> 11 The Development and Application of NMR Methodologies for the Study of Degradation in Complex Silicones 153<br /> </b><i>Robert S. Maxwell, James Lewicki, Brian P. Mayer, Amitesh Maiti and Stephen J. Harley</i><br /> <br /> 11.1 Introduction 153<br /> <br /> 11.2 Applications of NMR for Characterizing Silicones 155<br /> <br /> 11.3 Highlights of Recent Advances in NMR Methodology 159<br /> <br /> 11.4 Conclusions and Outlook 173<br /> <br /> Acknowledgements 173<br /> <br /> <b>12 Applications of Some Spectroscopic Techniques on Silicones and Precursor to Silicones 177<br /> </b><i>Atul Tiwari<br /> <br /> </i>12.1 Introduction 177<br /> <br /> 12.2 Fourier Transformation Infrared and Spectroscopy of Silicones 178<br /> <br /> 12.3 Raman Spectroscopy of Silicones 181<br /> <br /> 12.4 FTIR-Assisted Chemical Component Analysis in Thermal Degradation of Silicones 182<br /> <br /> 12.5 X-ray Photoelectron Spectroscopy of Silicones 183<br /> <br /> 12.6 Secondary Ion Mass Spectroscopy 187<br /> <br /> 12.7 Conclusion and Outlook 187<br /> <br /> Acknowledgement 187<br /> <br /> References 188<br /> <br /> <b>13 Degradative Thermal Analysis of Engineering Silicones 191<br /> </b><i>James P. Lewicki and Robert S. Maxwell<br /> <br /> </i>13.1 Degradative Thermal Analysis of Engineering Silicones 191<br /> <br /> 13.2 Conclusions and Outlook 209<br /> <br /> Acknowledgments 209<br /> <br /> References 209<br /> <br /> <b>14 High Frequency Properties and Applications of Elastomeric Silicones 211<br /> </b><i>Charan M. Shah</i><i>, Withawat Withayachumnankul, Madhu Bhaskaran and Sharath Sriram<br /> <br /> </i>14.1 Introduction 211<br /> <br /> 14.2 Silicone Microdevice Fabrication 212<br /> <br /> 14.3 Properties of Silicone at Radio Frequencies (1–20 GHz) 213<br /> <br /> 14.4 Properties of Silicone at Terahertz Frequencies (0.2 THz – 4.0 THz) 220<br /> <br /> 14.5 Conclusion and Outlook 223<br /> <br /> Acknowledgements 223<br /> <br /> References 223<br /> <br /> <b>15 Mathematical Modeling of Drug Delivery from Silicone Devices Used in Bovine Estrus Synchronization 225<br /> </b><i>Ignacio M. Helbling, Juan C.D. Ibarra and Julio A. Luna<br /> <br /> </i>15.1 Introduction 225<br /> <br /> 15.2 Bovine Estrous Cycle 226<br /> <br /> 15.3 Bovine Estrus Synchronization 228<br /> <br /> 15.4 Controlled Release Silicone Devices 230<br /> <br /> 15.5 Mathematical Modeling 232<br /> <br /> 15.6 Conclusion and Outlook 237<br /> <br /> References 238<br /> <br /> <b>16 Safety and Toxicity Aspects of Polysiloxanes (Silicones) Applications 243<br /> </b><i>Krystyna Mojsiewicz-Pieñkowska</i><br /> <br /> 16.1 Introduction 243<br /> <br /> 16.2 Business Strategy for Manufacturing and Sale of Polysiloxanes 243<br /> <br /> 16.3 Chemical Aspects 244<br /> <br /> 16.4 Speciation Analysis 245<br /> <br /> 16.5 Application Areas and Direct Human Contact with Polysiloxanes (Silicones) 246<br /> <br /> 16.6 Toxicological Aspects 247<br /> <br /> 16.7 Conclusion and Outlook 249<br /> <br /> References 249<br /> <br /> <b>17 Structure Properties Interrelations of Silicones for Optimal Design in Biomedical Prostheses 253<br /> </b><i>Petroula A. Tarantili<br /> <br /> </i>17.1 Introduction 253<br /> <br /> 17.2 Materials and Methods 259<br /> <br /> 17.3 Discussion of Results 260<br /> <br /> 17.4 Conclusions and Outlook 267<br /> <br /> References 269<br /> <br /> <b>Part</b> <b>3: Applications 273<br /> <br /> 18 Silicone-Based Soft Electronics 275<br /> </b><i>Shi Cheng<br /> <br /> </i>18.1 Introduction 275<br /> <br /> 18.2 Silicone-Based Passive Soft Electronics 276<br /> <br /> 18.3 Silicone-Based Integrated Active Soft Electronics 284<br /> <br /> 18.4 Conclusion 292<br /> <br /> Acknowledgements 292<br /> <br /> References 292<br /> <br /> <b>19 Silicone Hydrogels Materials for Contact Lens Applications 293<br /> </b><i>José M. González-Meijome, Javier González-Pérez, Paulo R.B. Fernandes, Daniela P. Lopes-Ferreira, Sergio Mollá and Vicente Compañ</i><br /> <br /> 19.1 Introduction 293<br /> <br /> 19.2 Synthesis and Development of Materials 294<br /> <br /> 19.3 Surface Properties 295<br /> <br /> 19.4 Bulk Properties 298<br /> <br /> 19.5 Biological Interactions 301<br /> <br /> 19.6 Load and Release of Products from Contact Lenses 304<br /> <br /> 19.7 Conclusions 305<br /> <br /> Disclosure 306<br /> <br /> References 306<br /> <br /> <b>20 Silicone Membranes for Gas, Vapor and Liquid Phase Separations 309<br /> </b><i>Paola Bernardo, Gabriele Clarizia, Johannes Carolus Jansen<br /> <br /> </i>20.1 Introduction 309<br /> <br /> 20.2 Material 309<br /> <br /> 20.3 Membrane Type and Configuration 310<br /> <br /> 20.4 Membrane Unit Operations Based on Silicones 314<br /> <br /> 20.5 Conclusions and Outlook 318<br /> <br /> References 318  <br /> <br /> <b>21 Polydimethyl</b> <b>S</b><b>ilo</b><b>xane</b> <b>E</b><b>l</b><b>ast</b><b>o</b><b>mers</b> <b>in</b> <b>Maxi</b><b>llof</b><b>acial</b> <b>P</b><b>r</b><b>ostheti</b><b>c</b> <b>U</b><b>se 321<br /> </b><i>H. Serdar Çötert<br /> <br /> </i>21.1 Introduction 321<br /> <br /> 21.2 Facial Prostheses 322<br /> <br /> 21.3 Polydimethyl Siloxane Elastomers 328<br /> <br /> 21.4 Reinforcement 333<br /> <br /> 21.5 Biocompatibility and the Microbiological Features 334<br /> <br /> 21.6 Future Studies 335<br /> <br /> Acknowledgements 335<br /> <br /> References 335<br /> <br /> <b>22 Silicone Films for Fiber-Optic Chemical Sensing</b><br /> <i>Guillermo Orellana, Juan López-Gejo and Bruno Pedras<br /> <br /> </i>22.1 Introduction 339<br /> <br /> 22.2 Silicone Chemistry and Technology Related to Optical Chemical Sensing 340<br /> <br /> 22.3 Gas Permeability and Optical Sensing 342<br /> <br /> 22.4 Optical Properties of Silicone Thin Films 345<br /> <br /> 22.5 Silicone Films for Optical Oxygen Sensing 346<br /> <br /> 22.6 Silicone Films for Optical Sensing of Other Species 349<br /> <br /> 22.7 Conclusion 350<br /> <br /> Acknowledgements 350<br /> <br /> References 350<br /> <br /> <b>23 Surface Design, Fabrication and Properties of Silicone Materials for Use in Tissue Engineering and Regenerative Medicine 355<br /> </b><i>Nisarg Tambe, Jing Cao, Kewei Xu and Julie A. Willoughby<br /> <br /> </i>23.1 Introduction 355<br /> <br /> 23.2 Silicone Biomaterials 357<br /> <br /> 23.3 Silicones in Tissue Engineering 359<br /> <br /> 23.4 Surface Characterization Techniques 366<br /> <br /> 23.5 Conclusion and Outlook 368<br /> <br /> Acknowledgement 368<br /> <br /> References 369<br /> <br /> <b>24 Silicones for Microfluidic Systems 371<br /> </b><i>Anna Kowalewska and Maria Nowacka<br /> <br /> </i>24.1 Introduction 371<br /> <br /> 24.2 Fabrication of Microfluidic Devices 372<br /> <br /> 24.3 Application of PDSM-Based Microfluidic Devices 376<br /> <br /> 24.4 Summary and Outlook 376<br /> <br /> References 376<br /> <br /> <b>25 Silicone Oil in Biopharmaceutical Containers: Applications and Recent Concerns 381<br /> </b><i>Nitin Dixit and Devendra S. Kalonia<br /> <br /> </i>25.1 Introduction 381<br /> <br /> 25.2 Lubrication of Pharmaceutical Containers and Devices 381<br /> <br /> 25.3 Silicone Oil: A Molecular Perspective 382<br /> <br /> 25.4 Silicone Oil Coatings in Pharmaceutical Devices 383<br /> <br /> 25.5 Protein Adsorption to Hydrophobic Interfaces 386<br /> <br /> 25.6 Physical Stability of Biologics in the Presence of Silicone Oil 389<br /> <br /> 25.7 Conclusions and Outlook 392<br /> <br /> List of Abbreviations 392<br /> <br /> References 392<br /> <br /> Index</p> <p> </p>
<p><b>Atul Tiwari</b> received his PhD in Polymer Science from the Macromolecular Research Centre, R.D. University, Jabalpur, India, and his second master degree in mechanical engineering from the University of Hawaii at Manoa, USA. In 2004, Dr. Tiwari was invited as a postdoctoral fellow by the Department of Mechanical Engineering, University of Hawaii at Manoa, where he developed five technologies that were later patented by the university and transferred to companies. He currently works as a Research Faculty Member in the College of Engineering at the university. He has been actively engaged as a consultant to companies working in various fields of polymer science, engineering, and technology. As an academician, Dr. Tiwari has published more than 60 peer-reviewed research articles related to material science and has co-authored and edited 10 books. He has been bestowed with Chartered Chemist and Chartered Scientist status from the Royal Society of Chemistry, UK, and is a member of several other professional bodies in the UK, USA, and India.</p> <p><b>Mark D. Soucek</b> is a Professor in the Department of Polymer Engineering, University of Akron. In 2003, Dr. Soucek was selected as a Gordon Award Finalist for his work in UV-Curable Bio-based polymers. In 2004, Dr. Soucek was awarded the Radtech Innovation Award for his work in UV-curable coatings. In 2004 and 2005, he received an honorable mention for the Gordon Award for Core-Shell latex work, and UV-curing of Unsaturated Polyesters. In 2009, Professor Soucek won his second Roon Award for a developing a new class of alkyd coatings. He presently has more than 100 research papers published all in coating science.</p>
<p><b>A unique and indispensable one-stop encyclopedia for academicians and industrial sector scientists and engineers working on applied silicone technologies</b></p> <p>The <i>Concise Encyclopedia of High Performance Silicones</i> contains critical information on silicones (i.e., polysiloxanes) that are commercially available for high performance applications. Although voluminous literature is available to readers, vital information is hard to find as it remains scattered. This encyclopedia is compiled for a broad readership and contains carefully screened chapters on cutting edge technologies available in the field of silicones.</p> <p>Divided into three sections—Synthesis Methodologies of Silicones; Characterizing the Silicones; and the Applications of Silicones—the book starts by explaining various innovative techniques adopted by chemists for the synthesis of novel silicone materials. The featured examples include the syntheses of biologically safer silicones through the use of enzymes; the use of silicone modified epoxy coatings in controlling the corrosion and biofouling activities on metal alloys; the use of smart silicone nanoparticles in paint and coating systems; the effect of irradiation on silicone chemistry; biocompatible silicones; and the use of polydimethylsiloxane in the preparation of microfluidic devices.</p> <p>The second section of the book helps readers in characterizing the silicones. A comprehensive review on the use of nuclear magnetic resonance (NMR) spectroscopy on silicones will assist in analyzing the synthesized silicones with different types of NMR techniques. The use of FTIR techniques on silicones will help readers in extracting the hard-to-find spectral assignments. Similarly, the chapters on thermal degradation and the behavior of silicones at high frequency are deeply informative. The knowledge of safety and toxicity aspects, mathematical modeling for drug delivery, and structure-property correlation in silicones will help readers select the material for specific applications.</p> <p>The last section explores current application areas of silicones. The use of silicones for soft electronics, contact lenses, membranes for separation technology, maxillofacial prosthetics, fiber optic-based chemical sensing, tissue engineering, and regenerative medicine is detailed in individual chapters. Finally, the use of silicone as microfluidic devices and biopharmaceutical containers is comprehensively described.</p> <p><b>Readership</b></p> <p>The <i>Concise Encyclopedia of High Performance Silicones</i> will be an invaluable source of information for researchers, engineers, and students from diverse backgrounds including physics, chemistry, materials science & engineering, biotechnology, pharmacy, medical science, and biomedical engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €