Details

Chemically Reacting Flow


Chemically Reacting Flow

Theory, Modeling, and Simulation
2. Aufl.

von: Robert J. Kee, Michael E. Coltrin, Peter Glarborg, Huayang Zhu

155,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.09.2017
ISBN/EAN: 9781119186298
Sprache: englisch
Anzahl Seiten: 800

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to the theoretical underpinnings and practical applications of chemically reacting flow</b></p> <p><i>Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition</i> combines fundamental concepts in fluid mechanics and physical chemistry while helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this <i>Second Edition</i> are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid-flow simulation approaches and transport within porous-media electrochemical systems.</p> <p>The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, allowing a great deal of flexibility in course curriculum design.</p> <p>•       Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB</p> <p>•       Provides the theoretical underpinnings and practical applications of chemically reacting flow</p> <p>•       Emphasizes fundamentals, allowing the analyst to understand fundamental theory underlying reacting-flow simulations</p> <p>•       Helps readers to acquire greater facility in the derivation and solution of conservation equations in new or unusual circumstances</p> <p>•       Reorganized to facilitate use as a class text and now including a solutions manual for academic adopters</p> <p>Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. <i>Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition</i> helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields take utmost advantage of that powerful capability.</p>
<p>Preface xxi</p> <p>Acknowledgments xxv</p> <p><b>1 Introduction 1</b></p> <p>1.1 Foregoing Texts 2</p> <p>1.2 Objectives and Approach 3</p> <p>1.3 What is a Fluid? 3</p> <p>1.4 Chemically Reacting Fluid Flow 8</p> <p>1.5 Physical Chemistry 9</p> <p>1.6 Illustrative Examples 10</p> <p>References 17</p> <p><b>2 Fluid Properties 21</b></p> <p>2.1 Equations of State 21</p> <p>2.2 Thermodynamics 25</p> <p>2.3 Transport Properties 31</p> <p>References 42</p> <p><b>3 Fluid Kinematics 45</b></p> <p>3.1 Path to Conservation Equations 46</p> <p>3.2 System and Control Volume 48</p> <p>3.3 Stress and Strain Rate 58</p> <p>3.4 Fluid Strain Rate 59</p> <p>3.5 Vorticity 68</p> <p>3.6 Dilatation 69</p> <p>3.7 Stress Tensor 70</p> <p>3.8 Stokes Postulates 79</p> <p>3.9 Transformation from Principal Coordinates 83</p> <p>3.10 Stokes Hypothesis 88</p> <p>3.11 Summary 88</p> <p><b>4 Conservation Equations 91</b></p> <p>4.1 Mass Continuity 93</p> <p>4.2 Navier–Stokes Equations 97</p> <p>4.3 Species Diffusion 104</p> <p>4.4 Species Conservation 108</p> <p>4.5 Conservation of Energy 114</p> <p>4.6 Mechanical Energy 123</p> <p>4.7 Thermal Energy 124</p> <p>4.8 Ideal Gas and Incompressible Fluid 130</p> <p>4.9 Conservation Equation Summary 130</p> <p>4.10 Pressure Filtering 132</p> <p>4.11 Helmholtz Decomposition 135</p> <p>4.12 Potential Flow 136</p> <p>4.13 Vorticity Transport 137</p> <p>4.14 Mathematical Characteristics 142</p> <p>4.15 Summary 148</p> <p>References 148</p> <p><b>5 Parallel Flows 151</b></p> <p>5.1 Nondimensionalization 152</p> <p>5.2 Couette and Poiseuille Flows 154</p> <p>5.3 Hagen–Poiseuille Flow in a Circular Duct 167</p> <p>5.4 Ducts of Noncircular Cross Section 170</p> <p>5.5 Hydrodynamic Entry Length 174</p> <p>5.6 Transient Flow in a Duct 175</p> <p>5.7 Richardson Annular Overshoot 175</p> <p>5.8 Stokes Problems 178</p> <p>5.9 Rotating Shaft in Infinite Media 188</p> <p>5.10 Graetz Problem 189</p> <p>References 193</p> <p><b>6 Similarity and Local Similarity 195</b></p> <p>6.1 Jeffery–Hamel Flow 196</p> <p>6.2 Planar Wedge Channel 196</p> <p>6.3 Radial-Flow Reactors 205</p> <p>6.4 Spherical Flow between Inclined Disks 206</p> <p>6.5 Radial Flow between Parallel Disks 209</p> <p>6.6 Flow between Plates with Wall Injection 214</p> <p>References 224</p> <p><b>7 Stagnation Flows 225</b></p> <p>7.1 Similarity in Axisymmetric Stagnation Flow 226</p> <p>7.2 Generalized Steady Axisymmetric Stagnation Flow 228</p> <p>7.3 Semi-Infinite Domain 232</p> <p>7.4 Finite-Gap Stagnation Flow 242</p> <p>7.5 Finite-Gap Numerical Solution 252</p> <p>7.6 Rotating Disk 255</p> <p>7.7 Rotating Disk in a Finite Gap 260</p> <p>7.8 Unified View of Axisymmetric Stagnation Flow 265</p> <p>7.9 Planar Stagnation Flows 270</p> <p>7.10 Opposed Flow 273</p> <p>7.11 Tubular Flows 274</p> <p>7.12 Stagnation-Flow Chemical Vapor Deposition 280</p> <p>7.13 Boundary-Layer Bypass 285</p> <p>References 287</p> <p><b>8 Boundary-layer Channel Flow 291</b></p> <p>8.1 Scaling Arguments for Boundary Layers 292</p> <p>8.2 General Setting Boundary-Layer Equations 298</p> <p>8.3 Boundary Conditions 299</p> <p>8.4 Computational Solution 300</p> <p>8.5 Introduction to the Method of Lines 302</p> <p>8.6 Method-of-Lines Boundary-Layer Algorithm 304</p> <p>8.7 Von Mises Transformation 308</p> <p>8.8 Von Mises Formulation as DAEs 311</p> <p>8.9 Hydrodynamic Entry Length 314</p> <p>8.10 Physical and von Mises Coordinates 314</p> <p>8.11 General von Mises Boundary Layer 315</p> <p>8.12 Limitations 317</p> <p>8.13 Chemically Reacting Channel Flow 318</p> <p>References 319</p> <p><b>9 Low-dimensional Reactors 323</b></p> <p>9.1 Batch Reactors (Homogeneous Mass-Action Kinetics) 324</p> <p>9.2 Plug-Flow Reactor 327</p> <p>9.3 Plug Flow with Porous Walls 331</p> <p>9.4 Plug Flow with Variable Area and Surface Chemistry 333</p> <p>9.5 Perfectly Stirred Reactors 338</p> <p>9.6 Transient Stirred Reactors 341</p> <p>9.7 Stagnation-Flow Catalytic Reactor 345</p> <p>References 346</p> <p><b>10 Thermochemical Properties 347</b></p> <p>10.1 Kinetic Theory of Gases 348</p> <p>10.2 Molecular Energy Levels 349</p> <p>10.3 Partition Function 353</p> <p>10.4 Statistical Thermodynamics 359</p> <p>10.5 Example Calculations 366</p> <p>References 369</p> <p><b>11 Molecular Transport 371</b></p> <p>11.1 Introduction to Transport Coefficients 372</p> <p>11.2 Molecular Interactions 375</p> <p>11.3 Kinetic Gas Theory of Transport Properties 384</p> <p>11.4 Rigorous Theory of Transport Properties 391</p> <p>11.5 Evaluation of Transport Coefficients 399</p> <p>11.6 Momentum and Energy Fluxes 406</p> <p>11.7 Species Fluxes 406</p> <p>11.8 Diffusive Transport Example 413</p> <p>References 415</p> <p><b>12 Mass-action Kinetics 417</b></p> <p>12.1 Gibbs Free Energy 418</p> <p>12.2 Equilibrium Constant 422</p> <p>12.3 Mass-Action Kinetics 427</p> <p>12.4 Pressure-Dependent Unimolecular Reactions 433</p> <p>12.5 Bimolecular Chemical Activation Reactions 438</p> <p>References 443</p> <p><b>13 Reaction Rate Theories 445</b></p> <p>13.1 Molecular Collisions 446</p> <p>13.2 Collision Theory Reaction Rate Expression 453</p> <p>13.3 Transition-State Theory 457</p> <p>13.4 Unimolecular Reactions 461</p> <p>13.5 Bimolecular Chemical Activation Reactions 474</p> <p>References 480</p> <p><b>14 Reaction Mechanisms 481</b></p> <p>14.1 Models for Chemistry 482</p> <p>14.2 Characteristics of Complex Reactions 486</p> <p>14.3 Mechanism Development 493</p> <p>14.4 Combustion Chemistry 503</p> <p>References 518</p> <p><b>15 Laminar Flames 521</b></p> <p>15.1 Premixed Flat Flame 521</p> <p>15.2 Premixed Flame Structure 530</p> <p>15.3 Methane-Air Premixed Flame 534</p> <p>15.4 Stagnation Flames 534</p> <p>15.5 Opposed-Flow Diffusion Flames 536</p> <p>15.6 Premixed Counterflow Flames 539</p> <p>15.7 Arc-Length Continuation 543</p> <p>References 545</p> <p><b>16 Heterogeneous Chemistry 549</b></p> <p>16.1 Taxonomy 550</p> <p>16.2 Surface Species Naming Conventions 553</p> <p>16.3 Concentrations within Phases 555</p> <p>16.4 Surface Reaction Rate Expressions 557</p> <p>16.5 Thermodynamic Considerations 565</p> <p>16.6 General Surface Kinetics Formalism 571</p> <p>16.7 Surface-Coverage Modification of the Rate Expression 573</p> <p>16.8 Sticking Coefficients 574</p> <p>16.9 Flux-Matching Conditions at a Surface 576</p> <p>16.10 Surface Species Governing Equations 577</p> <p>16.11 Developing Surface Reaction Mechanisms 578</p> <p>References 587</p> <p><b>17 Reactive Porous Media 589</b></p> <p>17.1 Introduction 589</p> <p>17.2 Pore Characterization 591</p> <p>17.3 Multicomponent Transport 593</p> <p>17.4 Mass Conservation Equations 597</p> <p>17.5 Energy Conservation Equations 598</p> <p>17.6 Tubular Packed-Bed Reactor 600</p> <p>17.7 Reconstructed Microstructures 603</p> <p>17.8 Intra-Particle Pore Diffusion 607</p> <p>References 609</p> <p><b>18 Electrochemistry 613</b></p> <p>18.1 Electrochemical Reactions 615</p> <p>18.2 Electrochemical Potentials 618</p> <p>18.3 Electrochemical Thermodynamics and Reversible Potentials 618</p> <p>18.4 Electrochemical Kinetics 621</p> <p>18.5 Electronic and Ionic Species Transport 632</p> <p>18.6 Modeling Electrochemical Unit Cells 633</p> <p>18.7 Principles of Composite SOFC Electrodes 641</p> <p>18.8 SOFC Button-Cell Example 643</p> <p>18.9 Chemistry and Model Development 647</p> <p>References 649</p> <p><b>A Vector and Tensor Operations 651</b></p> <p>A. 1 Vector Algebra 651</p> <p>A. 2 Unit Vector Algebra 652</p> <p>A. 3 Unit Vector Derivatives 653</p> <p>A. 4 Scalar Product 653</p> <p>A. 5 Vector Product 654</p> <p>A. 6 Vector Differentiation 654</p> <p>A. 7 Gradient 654</p> <p>A. 8 Gradient of a Vector 655</p> <p>A. 9 Curl of a Vector 656</p> <p>A. 10 Divergence of a Vector 656</p> <p>A. 11 Divergence of a Tensor 657</p> <p>A. 12 Laplacian 658</p> <p>A. 13 Laplacian of a Vector 658</p> <p>A. 14 Vector Derivative Identities 660</p> <p>A. 15 Gauss Divergence Theorem 661</p> <p>A. 16 Substantial Derivative 661</p> <p>A.6. 1 Substantial Derivative of a Vector 662</p> <p>A. 17 Symmetric Tensors 662</p> <p>A. 18 Stress Tensor and Stress Vector 663</p> <p>A. 19 Direction Cosines 664</p> <p>A. 20 Coordinate Transformations 665</p> <p>A. 21 Principal Axes 667</p> <p>A. 22 Tensor Invariants 669</p> <p>A. 23 Matrix Diagonalization 670</p> <p><b>B Navier–stokes Equations 671</b></p> <p>B. 1 General Vector Form 671</p> <p>B. 2 Stress Components 672</p> <p>B. 3 Cartesian Navier–Stokes Equations 674</p> <p>B. 4 Cartesian Navier–Stokes, Constant Viscosity 675</p> <p>B. 5 Cylindrical Navier–Stokes Equations 675</p> <p>B. 6 Cylindrical Navier–Stokes, Constant Viscosity 676</p> <p>B. 7 Spherical Navier–Stokes Equations 676</p> <p>B. 8 Spherical Navier–Stokes, Constant viscosity 677</p> <p>B. 9 Orthogonal Curvilinear Navier–Stokes 678</p> <p><b>C Example in General curvilinear coordinates 681</b></p> <p>C.1 Governing Equations 681</p> <p>C.1.1 Limiting Cases 685</p> <p>d Small Parameter Expansion 687</p> <p>E Boundary-layer Asymptotic Behavior 691</p> <p>E. 1 Boundary-Layer Approximation 692</p> <p>E. 2 A Prototype for Boundary-Layer Behavior 693</p> <p><b>F Computational Algorithms 697</b></p> <p>F. 1 Differential Equations from Chemical Kinetics 698</p> <p>F. 2 Stiff Model Problem 698</p> <p>F. 3 Solution Methods 700</p> <p>F.3. 1 Explicit Methods 701</p> <p>F.3. 2 Implicit Methods 704</p> <p>F. 3 Stiff ODE Software 707</p> <p>F. 4 Differential-Algebraic Equations 707</p> <p>F. 5 Solution of Nonlinear Algebraic Equations 708</p> <p>F.5. 1 Scalar Newton Algorithm 708</p> <p>F.5. 2 Newton’s Algorithm for Algebraic Systems 709</p> <p>F.5. 3 Illustration of the Hybrid Method 712</p> <p>F.5. 4 Steady-State Sensitivity Analysis 713</p> <p>F. 6 Continuation Procedures 715</p> <p>F.6. 1 Multiple Steady States 715</p> <p>F.6. 2 Illustration of Spurious Solutions 715</p> <p>F. 7 Transient Sensitivity Analysis 717</p> <p>F. 8 Transient Ignition Example 719</p> <p>References 719</p> <p><b>G MATLAB Examples 721</b></p> <p>G. 1 Steady-State Couette–Poiseuille Flow 721</p> <p>G. 2 Steady Semi-Infinite Stagnation Flow 723</p> <p>G. 3 Steady Finite-Gap Stagnation Flow 725</p> <p>G. 4 Transient Stokes Problem 728</p> <p>G. 5 Graetz Problem 729</p> <p>G. 6 Channel Boundary Layer Entrance 731</p> <p>G. 7 Rectangular Channel Friction Factor 735</p> <p>Index 739</p>
</p> <p><b>Robert J. Kee, PhD,</b> is the George R. Brown Distinguished Professor of Engineering at the Colorado School of Mines in Golden, Colorado. <p><b>Michael E. Coltrin, PhD,</b> is a Distinguished Member of the Technical Staff at Sandia National Laboratories, Albuquerque, New Mexico. <p><b>Peter Glarborg, PhD,</b> is a Professor of Chemical Engineering at the Technical University of Denmark in Lyngby, Denmark. <p><b>Huayang Zhu, PhD,</b> is a Research Professor of Mechanical Engineering at the Colorado School of Mines, Golden, Colorado. <p>
<p><b>A guide to the theoretical underpinnings and practical applications of chemically reacting flow</b> <p><i>Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition</i> develops fundamental concepts in fluid mechanics and physical chemistry while also helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this <i>Second Edition</i> are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid mechanics and reactive transport within electrochemical systems such as fuel cells. <p class="p1">The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, enabling a great deal of flexibility in course curriculum design. <ul> <li>Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB</li> <li>Provides the theoretical underpinnings and practical applications of chemically reacting flow</li> <li>Emphasizes fundamentals, assisting analysts to understand theoretical concepts underlying reacting-flow simulations</li> <li>Helps readers to acquire greater facility in the derivation and solution of conservation equations in new or unusual circumstances</li> <li>Reorganized to facilitate use as a graduate-level text for academic adopters</li> <li>Homework exercises are removed from the printed text and will be available electronically</li> </ul> <p>Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. <i>Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition</i> helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields to take utmost advantage of increasingly powerful computing capabilities. <p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €