Details

Cellulosic Energy Cropping Systems


Cellulosic Energy Cropping Systems


Wiley Series in Renewable Resource 1. Aufl.

von: Douglas L. Karlen

114,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.02.2014
ISBN/EAN: 9781118676349
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Cellulosic Energy Cropping Systems</i> presents a comprehensive overview of how cellulosic energy crops can be sustainably produced and converted to affordable energy through liquid fuels, heat and electricity.</p> <p>The book begins with an introduction to cellulosic feedstocks, discussing their potential as a large-scale sustainable energy source, and technologies for the production of liquid fuels, heat and electricity. Subsequent chapters examine miscanthus, switchgrass, sugarcane and energy cane, sorghums and crop residues, reviewing their phylogeny, cultural practices, and opportunities for genetic improvement. This is followed by a detailed focus on woody crops, including eucalyptus, pine, poplar and willow. Critical logistical issues associated with both herbaceous and woody feedstocks are reviewed, and alternate strategies for harvesting, transporting, and storing cellulosic materials are also examined. The final sectionof the booktackles the challenge of achieving long-term sustainability, addressing economic, environmental and social factors.</p> <p><i>Cellulosic Energy Cropping Systems</i> is a valuable resource for academics, students and industry professionals working in the field of biomass cultivation and conversion, bioenergy, crop science and agriculture.</p> <p>Topics covered include:</p> <ul> <li>Identifying suitable cellulosic energy crops that are adapted to a wide range of climates and soils</li> <li>Best management practices for sustainably growing, harvesting, storing, transporting and pre-processing these crops</li> <li>The development of integrated cellulosic energy cropping systems for supplying commercial processing plants</li> <li>Challenges and opportunities for the long-term sustainability of cellulosic energy crops</li> </ul> <p> <i>This book was conceived and initiated by David I. Bransby, Professor of Energy and Forage Crops in the Department of Crop, Soil and Environmental Sciences at Auburn University, USA.</i></p> <p><b> </b>For more information on the Wiley Series in Renewable Resources, visit <a href="http://www.wiley.com/go/rrs">www.wiley.com/go/rrs</a></p>
<p>Foreword xvii</p> <p>Series Preface xix</p> <p>Preface xxi</p> <p>List of Contributors xxiii</p> <p><b>1 Introduction to Cellulosic Energy Crops 1</b><br /> <i>Mark Laser and Lee Lynd</i></p> <p>1.1 Cellulosic Biomass: Definition, Photosynthesis, and Composition 1</p> <p>1.2 Cellulosic Biomass Properties and Their Relevance to Downstream Processing 4</p> <p>1.3 Desirable Traits and Potential Supply of Cellulosic Energy Crops 7</p> <p>1.4 The Case for Cellulosic Energy Crops 8</p> <p><b>2 Conversion Technologies for the Production of Liquid Fuels and Biochemicals 15</b><br /> <i>Sofie Dobbelaere, Tom Anthonis, and Wim Soetaert</i></p> <p>2.1 Introduction 15</p> <p>2.2 Biomass Conversion Technologies 16</p> <p>2.3 (Bio)Chemical Conversion Route 17</p> <p>2.4 Thermochemical Conversion Route 23</p> <p>2.5 Summary and Conclusions 27</p> <p><b>3 Technologies for Production of Heat and Electricity 31</b><br /> <i>Jacob J. Jacobson and Kara G. Cafferty</i></p> <p>3.1 Introduction 31</p> <p>3.2 Combustion 33</p> <p>3.3 Repowering 35</p> <p>3.4 Gasification 35</p> <p>3.5 Pyrolysis 35</p> <p>3.6 Direct Hydrothermal Liquefaction 37</p> <p>3.7 Anaerobic Digestion 37</p> <p>3.8 Integrated Biorefineries 38</p> <p>3.9 Summary 39</p> <p><b>4 Miscanthus Genetics and Agronomy for Bioenergy Feedstock 43</b><br /> <i>Maryse Brancourt-Hulmel, Charlotte Demay, Emeline Rosiau, Fabien Ferchaud, Linda Bethencourt, Stephanie Arnoult, Camille Dauchy, Nicolas Beaudoin, and Hubert Boizard</i></p> <p>4.1 Introduction 43</p> <p>4.2 Phylogeny, Growth, Yield and Chemical Composition 44</p> <p>4.3 Cultural Practices 50</p> <p>4.4 Genetic Improvement 57</p> <p>4.5 Conclusion 65</p> <p><b>5 Switchgrass 75</b><br /> <i>Rob Mitchell, D.K. Lee, and Michael Casler</i></p> <p>5.1 Overview 75</p> <p>5.2 Phylogeny, Growth, Yield and Chemical Composition 75</p> <p>5.3 Cultural Practices 78</p> <p>5.4 Genetic Improvement 82</p> <p>5.5 Summary 85</p> <p><b>6 Sugarcane, Energy Cane and Napier Grass 91</b><br /> <i>Edward P. Richard, Jr. and William F. Anderson</i></p> <p>6.1 Sugar and Energy Cane 91</p> <p>6.2 Napier grass 99</p> <p><b>7 Sorghum 109</b><br /> <i>William L. Rooney</i></p> <p>7.1 Introduction 109</p> <p>7.2 Sorghum Phenology, Genetic Structure and Types 110</p> <p>7.3 Cultural Practices 114</p> <p>7.4 Genetic Improvement 118</p> <p>7.5 Summary and Conclusions 123</p> <p><b>8 Crop Residues 131</b><br /> <i>Douglas L. Karlen and David R. Huggins</i></p> <p>8.1 Overview 131</p> <p>8.2 Corn Stover 133</p> <p>8.3 Wheat Straw 139</p> <p>8.4 Future Opportunities 143</p> <p><b>9 Eucalyptus 149</b><br /> <i>Michael W. Cunningham and Bijay Tamang</i></p> <p>9.1 Phylogeny, Growth, Yield and Chemical Composition 149</p> <p>9.2 Cultural Practices 153</p> <p>9.3 Genetic Improvement 155</p> <p><b>10 Pine 161</b><br /> <i>David B. South and Mathew Smidt</i></p> <p>10.1 Introduction 161</p> <p>10.2 Cultural Practices 165</p> <p>10.3 Harvesting 173</p> <p>10.4 Genetic Improvement 176</p> <p>10.5 Economics 177</p> <p>10.6 Government Regulations 179</p> <p>10.7 Final Comments 180</p> <p><b>11 Poplar 183</b><br /> <i>Andrzej Klasa and Doug Karlen</i></p> <p>11.1 Introduction 183</p> <p>11.2 Cultural Practices 184</p> <p>11.3 Genetic Improvement 193</p> <p>11.4 Utilization 193</p> <p>11.5 Carbon Sequestration and Soil Response 194</p> <p><b>12 Development and Deployment of Willow Biomass Crops 201</b><br /> <i>Timothy A. Volk, L.P. Abrahamson, T. Buchholz, J. Caputo, and M. Eisenbies</i></p> <p>12.1 Introduction 201</p> <p>12.2 Shrub Willow Characteristics 202</p> <p>12.3 Production Systems for Willow Biomass Crops 204</p> <p>12.4 Willow Biomass Crop Economics 208</p> <p>12.5 Environmental and Rural Development Benefits 211</p> <p>12.6 Commercial Development 212</p> <p>12.7 Conclusions 214</p> <p><b>13 Herbaceous Biomass Logistics 219</b><br /> <i>John S. Cundiff</i></p> <p>13.1 Introduction 219</p> <p>13.2 Typical Biomass Logistics Constraints 220</p> <p>13.3 Linkage in Logistics Chain 221</p> <p>13.4 Plant Size 225</p> <p>13.5 Harvesting 226</p> <p>13.6 Highway Hauling 229</p> <p>13.7 Development of Concept for Multibale Handling Unit 232</p> <p>13.8 Functionality Analysis for Rack System Concept 236</p> <p>13.9 Cost Analysis for 24-h Hauling Using Rack System Concept 240</p> <p>13.10 Summary 242</p> <p><b>Appendix 13.A</b> Cost to Operate Workhorse Forklift (Example for Equipment Cost Calculations) 244</p> <p><b>Appendix 13.B</b> Operational Plan for "Rack System" Example 245</p> <p>B.1 Operation Plan for SSL Loading 245</p> <p>B.2 Influence of SSL Size on Rack Loading Operations 246</p> <p>B.3 Total Trucks Required – 24-h Hauling 247</p> <p>B.4 Total Racks Required – 24-h Hauling 248</p> <p><b>14 Woody Biomass Logistics 251</b><br /> <i>Robert Keefe, Nathaniel Anderson, John Hogland, and Ken Muhlenfeld</i></p> <p>14.1 Introduction 251</p> <p>14.2 Overview of the Woody Biomass Supply Chain 252</p> <p>14.3 Woody Biomass from Dedicated Energy Crops 254</p> <p>14.4 Woody Biomass from Stand Thinning 255</p> <p>14.5 Logging Residues 256</p> <p>14.6 Harvesting and Processing Systems and Equipment 260</p> <p>14.7 Woody Biomass Transportation 266</p> <p>14.8 Pretreatment 269</p> <p>14.9 Handling and Storage 271</p> <p>14.10 Logistics Management 273</p> <p><b>15 Economic Sustainability of Cellulosic Energy Cropping Systems 281</b><br /> <i>Kelly D. Zering</i></p> <p>15.1 Introduction 281</p> <p>15.2 Economics of Crop Production 282</p> <p>15.3 Risk and Uncertainty 287</p> <p>15.4 Risk Mitigation and Management 291</p> <p>15.5 Supply, Demand and Prices 293</p> <p>15.6 The Start-Up Barrier 295</p> <p>15.7 Elements of Sustainability 296</p> <p>15.8 Policy 296</p> <p>15.9 Summary 297</p> <p><b>16 Environmental Sustainability of Cellulosic Energy Cropping Systems 299</b><br /> <i>Richard Lowrance and Adam Davis</i></p> <p>16.1 Introduction 299</p> <p>16.2 Greenhouse Gas Effects 301</p> <p>16.3 Soil Properties 302</p> <p>16.4 Water Quantity and Quality 303</p> <p>16.5 Invasive Species Effects/Mitigation/Enhancement 305</p> <p>16.6 Wildlife and Biodiversity 307</p> <p>16.7 Conclusions 308</p> <p><b>17 Social Sustainability of Cellulosic Energy Cropping Systems 315</b><br /> <i>Cornelia Butler Flora and Charles F. Curtiss</i></p> <p>17.1 Introduction 315</p> <p>17.2 Standards for Social Sustainability 316</p> <p>17.3 Forest-Based Biofuels 317</p> <p>17.4 Biofuel Social Sustainability Standards 318</p> <p>17.5 Summary and Conclusions 331</p> <p><b>18 Commercialization of Cellulosic Energy Cropping Systems 335</b><br /> <i>Sam W. Jackson</i></p> <p>18.1 Overview 335</p> <p>18.2 Introduction 335</p> <p>18.3 Land Availability 336</p> <p>18.4 Crop Selection and Contracting 337</p> <p>18.5 Financing Establishment 339</p> <p>18.6 Agronomic Efficiencies and Management 339</p> <p>18.7 Identifying and Addressing Risks 341</p> <p>18.8 Conclusion 343</p> <p><b>19 Selected Global Examples of Cellulosic Cropping System Trends 345</b><br /> <i>Douglas L. Karlen, Marcelo Valadares Galdos, Sarita Candida Rabelo, Henrique Continho Junqueira Franco, Antonio Bonomi, Jihong Li, Shi-Zhong Li, Jaya Shankar Tumuluru, and Leslie Ovard</i></p> <p>19.1 Overview 345</p> <p>19.2 Cellulosic Ethanol in Brazil 346</p> <p>19.3 Cellulosic Bioenergy in China 350</p> <p>19.4 Bioenergy in India 355</p> <p>19.5 Summary 360</p> <p>Acknowledgements 360</p> <p>References 361</p> <p>Index 365</p>
<p><strong>Dr Douglas L. Karlen, USDA, Agricultural Research Service, National Laboratory for Agriculture and the Environment</strong><br />Dr Karlen is an experienced research scientist in the Soil, Water, and Air Resources Research Unit at the USDA, Agricultural Research Service. His soil and crop management research program uses a systems approach involving research scientists and engineers, producers, action agencies, non-government organizations, agribusiness, and other state and federal partners to quantify physical, chemical, and biological effects of conventional and organic farming practices. His current focus is on sustaining or improving soil quality while striving to produce sustainable feedstock supplies for lignocellulosic biofuel production.
<p><i>Cellulosic Energy Cropping Systems</i> presents a comprehensive overview of how cellulosic energy crops can be sustainably produced and converted to affordable energy through liquid fuels, heat and electricity.<br /> <br /> The book begins with an introduction to cellulosic feedstocks, discussing their potential as a large-scale<br /> sustainable energy source, and technologies for the production of liquid fuels, heat and electricity. Subsequent chapters examine miscanthus, switchgrass, sugarcane and energy cane, sorghums and crop residues, reviewing their phylogeny, cultural practices and opportunities for genetic improvement. This is followed by a detailed focus on woody crops, including eucalyptus, pine, poplar and willow. Critical logistical issues associated with both herbaceous and woody feedstocks are reviewed and alternate strategies for harvesting, transporting and storing cellulosic materials are also examined. The final section of the book tackles the challenge of achieving long-term sustainability, addressing economic, environmental and social factors.</p> <p><i>Cellulosic Energy Cropping Systems</i> is a valuable resource for academics, students and industry professionals working in the field of biomass cultivation and conversion, bioenergy, crop science and agriculture.</p> <p>Topics covered include:<br /> <br /> • Identifying suitable cellulosic energy crops that are adapted to a wide range of climates and soils<br /> <br /> • Best management practices for sustainably growing, harvesting, storing, transporting and pre-processing these crops<br /> <br /> • The development of integrated cellulosic energy cropping systems for supplying commercial processing plants<br /> <br /> • Challenges and opportunities for the long-term sustainability of cellulosic energy crops</p> <p>This book was conceived and initiated by David I. Bransby, Professor of Energy and Forage Crops in the Department of Crop, Soil and Environmental Sciences at Auburn University, USA.</p> <p>For more information on the Wiley Series in Renewable Resources, visit <a href="http://www.wiley.com/go/rrs">www.wiley.com/go/rrs</a></p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €