Details

Biomedical Applications and Toxicology of Carbon Nanomaterials


Biomedical Applications and Toxicology of Carbon Nanomaterials


1. Aufl.

von: Chunying Chen, Haifang Wang

160,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 01.04.2016
ISBN/EAN: 9783527692873
Sprache: englisch
Anzahl Seiten: 543

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

An overview of biomedical applications and the toxicity properties of carbon nanomaterials aimed at helping to avoid detrimental health effects while laying the groundwork for further research in this highly relevant field. <br> Summarizing recent research, the book starts with the synthesis and functionalization of carbon nanomaterials, as well as identification and detection in biosystems. It then moves on to the interaction between carbon nanoparticles and biocomponents, focusing on the toxicity and mechanisms to various organs and systems and potential biomedical applications as well. Each section highlights the challenges, outlines unanswered questions, and suggests directions for further research and development efforts.<br>
<p>List of Contributors XIX</p> <p>Preface XXV</p> <p><b>1 Synthesis, Functionalization, and Characterization 1</b><br /><i>Jianxun Xu, Xing Lu, and Baowen Li</i></p> <p>1.1 Introduction 1</p> <p>1.2 Fullerenes and Metallofullerenes 1</p> <p>1.2.1 Synthesis and Purification 2</p> <p>1.2.1.1 Synthesis 2</p> <p>1.2.1.2 Purification 2</p> <p>1.2.2 Chemical Functionalization 3</p> <p>1.2.2.1 Carbene Reaction 3</p> <p>1.2.2.2 Bingel–Hirsch Reaction 4</p> <p>1.2.2.3 Prato Reaction 5</p> <p>1.2.2.4 Bis-Silylation 5</p> <p>1.2.2.5 Diels–Alder Reaction and Benzyne Reaction 5</p> <p>1.2.2.6 Singly Bonded Addition 6</p> <p>1.2.2.7 Supramolecular Complexes of EMFs 6</p> <p>1.2.3 Characterization 6</p> <p>1.2.3.1 Synchrotron Radiation Powder Diffraction (SRPD)/Rietveld/MEM 6</p> <p>1.2.3.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 7</p> <p>1.2.3.3 Theoretical Calculation 7</p> <p>1.2.3.4 Single-Crystal X-ray Diffraction Crystallography 7</p> <p>1.2.3.5 Others 8</p> <p>1.2.4 Questions and Future Directions 8</p> <p>1.3 Carbon Nanotubes 8</p> <p>1.3.1 Synthesis 9</p> <p>1.3.1.1 Arc Discharge Method 9</p> <p>1.3.1.2 Laser Ablation Method 10</p> <p>1.3.1.3 CVD Method 10</p> <p>1.3.1.4 Synthesis of CNTs with a Defined Structure 10</p> <p>1.3.2 Functionalization 11</p> <p>1.3.2.1 Covalent Chemical Reactions 11</p> <p>1.3.2.2 Noncovalent Modifications 11</p> <p>1.3.3 Characterization 12</p> <p>1.3.3.1 Microscopic Characterizations 12</p> <p>1.3.3.2 Spectroscopic Characterizations 13</p> <p>1.3.4 Questions and Future Directions 13</p> <p>1.4 Graphene 14</p> <p>1.4.1 Synthesis and Characterization 14</p> <p>1.4.2 Functionalization of Graphene and Graphene Oxide 17</p> <p>1.4.3 Prospects and Challenges 18</p> <p>1.5 Summary and Outlook 20</p> <p>References 21</p> <p><b>2 Identification and Detection of Carbon Nanomaterials in Biological Systems 29</b><br /><i>Haifang Wang, Zheng-Mei Song, Yi-Fan Yang, Aoneng Cao, and Yuanfang Liu</i></p> <p>2.1 Introduction 29</p> <p>2.2 Available Techniques for Qualitative and Quantitative Determination 30</p> <p>2.2.1 Optical Microscopic Observation 30</p> <p>2.2.2 Electron Microscopic (EM) Observation 31</p> <p>2.2.3 Raman Spectroscopic Measurement 33</p> <p>2.2.4 Fluorescence Analysis 36</p> <p>2.2.4.1 Intrinsic Fluorescence Analysis 36</p> <p>2.2.4.2 Labeled Fluorescence Analysis 39</p> <p>2.2.5 Isotope Labeling Method 39</p> <p>2.2.5.1 Radioisotope Labeling 40</p> <p>2.2.5.2 Stable Isotope Labeling 43</p> <p>2.2.5.3 Tips for Isotopic Labeling 43</p> <p>2.2.6 Chromatographic Technique 45</p> <p>2.2.7 Flow Cytometry Method 45</p> <p>2.2.8 Other Methods 46</p> <p>2.3 Summary and Outlook 47</p> <p>Acknowledgments 48</p> <p>References 48</p> <p><b>3 Biodistribution and Pharmacokinetics of Carbon Nanomaterials In Vivo 55</b><br /><i>Sheng-Tao Yang, Xiaoyang Liu, and Jingru Xie</i></p> <p>3.1 Introduction 55</p> <p>3.2 Amorphous Carbon Nanoparticles 55</p> <p>3.2.1 Ultrafine Carbon Particles 56</p> <p>3.2.2 Carbon Nanoparticles 58</p> <p>3.2.3 Carbon Dots 59</p> <p>3.3 sp2 Carbon Nanomaterials 62</p> <p>3.3.1 Fullerene 62</p> <p>3.3.2 Carbon Nanotubes 69</p> <p>3.3.3 Carbon Nanohorns 77</p> <p>3.3.4 Graphene 80</p> <p>3.3.5 Graphene Quantum Dots 85</p> <p>3.4 Nanodiamonds 87</p> <p>3.5 Summary and Outlook 89</p> <p>Acknowledgments 90</p> <p>References 90</p> <p><b>4 Interaction of Carbon Nanomaterials and Components in Biological Systems 97</b><br /><i>Jian Tian and Cuicui Ge</i></p> <p>4.1 Introduction 97</p> <p>4.2 Factors Affecting Interaction 99</p> <p>4.2.1 Characteristics of Carbon Nanomaterials 99</p> <p>4.2.1.1 Size and Layer 99</p> <p>4.2.1.2 Surface Modification and Functionalization 100</p> <p>4.2.2 Biological Microenvironment 102</p> <p>4.2.2.1 pH 103</p> <p>4.2.2.2 Ionic Strength 104</p> <p>4.2.2.3 Weak Interactions 104</p> <p>4.2.2.4 Cell Selectivity 105</p> <p>4.3 Interaction of Carbon Nanomaterials with Various Components in Biological Systems 107</p> <p>4.3.1 Characterization and Methodology of Interaction of Carbon Nanomaterials with Components in the Biological System 107</p> <p>4.3.2 Carbon Nanomaterial–Phospholipid Interaction 108</p> <p>4.3.3 Carbon Nanomaterial–Protein Interaction 111</p> <p>4.3.4 Carbon Nanomaterial–DNA Interaction 115</p> <p>4.3.5 Carbon Nanomaterial–Cell Interaction 119</p> <p>4.4 Conclusion and Perspectives 120</p> <p>References 122</p> <p><b>5 Biomedical Applications of Carbon Nanomaterials 131</b><br /><i>Liangzhu Feng and Zhuang Liu</i></p> <p>5.1 Introduction 131</p> <p>5.2 Biomedical Applications of Fullerenes 132</p> <p>5.2.1 Fullerenes as Antioxidants and Neuroprotective Agents 132</p> <p>5.2.2 Fullerenes as Antitumor Agents 134</p> <p>5.2.3 Metallofullerenes as MRI Contrast Agent 136</p> <p>5.2.4 Fullerenes for Other Applications 136</p> <p>5.3 Biomedical Applications of Carbon Nanotubes 137</p> <p>5.3.1 Carbon Nanotubes for Drug Delivery 138</p> <p>5.3.1.1 Carbon Nanotubes for the Delivery of Small Drug Molecules 139</p> <p>5.3.1.2 Carbon Nanotubes for the Delivery of Biomacromolecules 141</p> <p>5.3.2 Carbon Nanotubes for Photothermal and Combined Therapies of Tumors 142</p> <p>5.3.2.1 Carbon Nanotubes for PhotothermalTherapy of Tumors 142</p> <p>5.3.2.2 Carbon Nanotubes for CombinedTherapies of Tumors 143</p> <p>5.3.3 Carbon Nanotubes for Bioimaging 144</p> <p>5.3.3.1 Carbon Nanotubes for Fluorescence Imaging 144</p> <p>5.3.3.2 Carbon Nanotubes for Raman Imaging 145</p> <p>5.3.3.3 Carbon Nanotubes for Photoacoustic Imaging 145</p> <p>5.3.3.4 Carbon Nanotubes for Other Bioimaging Modalities 145</p> <p>5.3.4 Carbon Nanotubes for Other Biomedical Applications 146</p> <p>5.4 Biomedical Applications of Graphene 146</p> <p>5.4.1 Graphene for Drug Delivery 147</p> <p>5.4.1.1 Graphene for the Delivery of Small Drug Molecules 148</p> <p>5.4.1.2 Graphene for the Delivery of Biomacromolecules 148</p> <p>5.4.2 Graphene for Photothermal and CombinedTherapies of Tumors 151</p> <p>5.4.3 Graphene for Bioimaging 152</p> <p>5.4.4 Graphene for Other Biomedical Applications 153</p> <p>5.5 Conclusion and Perspectives 153</p> <p>Acknowledgments 154</p> <p>References 155</p> <p><b>6 Pulmonary Effects of Carbon Nanomaterials 163</b><br /><i>Liying Wang, Donna C. Davidson, Vincent Castranova, and Yon Rojanasakul</i></p> <p>6.1 Introduction 163</p> <p>6.2 Physicochemical Properties of Carbon Nanomaterials 164</p> <p>6.2.1 Types of Carbon Nanomaterials 165</p> <p>6.2.2 Effects of Size 165</p> <p>6.2.3 Effects of Agglomeration State 166</p> <p>6.2.4 Aspect Ratio Considerations 168</p> <p>6.2.5 Surface Modifications 168</p> <p>6.3 Fate of Pulmonary Exposed Carbon Nanoparticles (Deposition, Distribution, Translocation, and Clearance) 169</p> <p>6.3.1 Deposition and Distribution of Carbon Nanoparticles in the Lung 169</p> <p>6.3.2 Translocation of Carbon Nanoparticles 172</p> <p>6.3.3 Clearance of Carbon Nanomaterials from the Lungs 175</p> <p>6.4 Carbon Nanomaterial–Induced Lung Responses 176</p> <p>6.4.1 Key/Specific Target Lung Cell Types of Pulmonary-Exposed Carbon Nanoparticles 176</p> <p>6.4.2 Lung Inflammation 178</p> <p>6.4.3 Immune Response 179</p> <p>6.4.4 Fibrosis 180</p> <p>6.4.5 Genotoxicity 181</p> <p>6.4.6 Cancer 182</p> <p>6.4.7 Cardiovascular Effects Following Pulmonary Exposure of Carbon Nanomaterials 184</p> <p>6.5 Summary 184</p> <p>Disclaimer 184</p> <p>References 189</p> <p><b>7 Cardiovascular and Hemostatic Effects of Carbon Nanomaterials 195</b><br /><i>Xiaoyong Deng, Cheng Li, Jiajun Wang, and Pan Chen</i></p> <p>7.1 Background 195</p> <p>7.2 Carbon Nanotubes 195</p> <p>7.2.1 Hemotoxicity of CNTs 196</p> <p>7.2.1.1 What Is Hemotoxicity 196</p> <p>7.2.1.2 Complement System 197</p> <p>7.2.1.3 Red Blood Cells 199</p> <p>7.2.1.4 Hemostatic System and Coagulation/Thrombosis/Atheroma 200</p> <p>7.2.2 Effects on Cardiovascular System 201</p> <p>7.3 Fullerenes 203</p> <p>7.3.1 Fullerenes’ Escape from Lungs into Circulation 203</p> <p>7.3.2 Toxicity of Fullerenes on the Cardiovascular System 204</p> <p>7.4 Graphene-Related Nanomaterials 205</p> <p>7.5 Conclusions and Outlook 208</p> <p>Acknowledgments 208</p> <p>References 208</p> <p><b>8 Modulation of the Immune System by Fullerene and Graphene Derivatives 213</b><br /><i>Ligeng Xu and Chunying Chen</i></p> <p>8.1 Introduction 213</p> <p>8.2 The Immunological Effects of Fullerene and Its Derivatives 213</p> <p>8.2.1 Fullerene Derivatives Can Inhibit Inflammation via Blocking ROS Generation 213</p> <p>8.2.2 Fullerene Derivatives Promote Immune Responses via Modulating Macrophages and/or Antigen Presenting Cells (APCs) 215</p> <p>8.3 Immunological Effects of Graphene and Its Derivatives 222</p> <p>8.3.1 Immunological Effect of Pristine Graphene 225</p> <p>8.3.2 Immunological Effects of Graphene Oxide and Its Derivatives 227</p> <p>8.4 Perspectives and Outlook 231</p> <p>References 234</p> <p><b>9 Neuro-, Hepato-, and Nephrotoxicity of Carbon-based Nanomaterials 239</b><br /><i>Jia Yao and Yongbin Zhang</i></p> <p>9.1 Carbon-based Nanomaterials: Introduction 239</p> <p>9.2 Neurotoxicity of Carbon-based Nanomaterials 240</p> <p>9.2.1 Blood–Brain Barrier and BBB Penetration by Carbon-based Nanomaterials 240</p> <p>9.2.2 Neurotoxicity of Carbon Nanotubes 241</p> <p>9.2.3 Strategies to Reduce Neurotoxicity of Carbon Nanotubes 243</p> <p>9.2.4 Neurotoxicity of Other Carbon-based Nanomaterials 244</p> <p>9.3 Hepato and Nephrotoxicity of Carbon-based Nanomaterials 245</p> <p>9.3.1 Carbon Nanotube Biodistribution in the Liver and Kidney 245</p> <p>9.3.2 Biodistribution of Other Carbon Nanomaterials 248</p> <p>9.3.3 Hepatotoxicity of Carbon Nanotubes 251</p> <p>9.3.4 Carbon Nanotube Nephrotoxicity/Renal Toxicity 254</p> <p>9.3.5 Hepatotoxicity and Nephrotoxicity of Other Types of Carbon-based Nanomaterials 254</p> <p>9.4 Points of Consideration for Toxicity Evaluation of Carbon-based Nanomaterials 257</p> <p>9.5 Summary 259</p> <p>Acknowledgments 259</p> <p>References 259</p> <p><b>10 Genotoxicity and Carcinogenic Potential of Carbon Nanomaterials 267</b><br /><i>Todd A. Stueckle, Linda Sargent, Yon Rojanasakul, and Liying Wang</i></p> <p>10.1 Introduction 267</p> <p>10.1.1 Engineered Nanomaterials and Long-Term Disease Risk: An Introduction 269</p> <p>10.1.2 Carcinogenesis: A Multistep Process 270</p> <p>10.1.2.1 Genotoxicity and Initiation 271</p> <p>10.1.2.2 Promotion 272</p> <p>10.1.2.3 Progression 274</p> <p>10.1.3 Current Knowledge and Challenges in Carcinogenesis Studies 274</p> <p>10.2 Carbon Nanomaterials: Genotoxicity and Carcinogenic Potential 275</p> <p>10.2.1 Physicochemical Properties of ECNMs 275</p> <p>10.2.2 Ultrafine Carbon Black 276</p> <p>10.2.2.1 In Vivo Studies 277</p> <p>10.2.2.2 In Vitro Studies 278</p> <p>10.2.3 Carbon Nanotubes 278</p> <p>10.2.3.1 In Vivo Studies 279</p> <p>10.2.3.2 In Vitro Studies 291</p> <p>10.2.4 Fullerenes and Derivatives 296</p> <p>10.2.4.1 In Vivo Studies 297</p> <p>10.2.4.2 In Vitro Studies 299</p> <p>10.2.5 Graphene and Graphene Oxide 300</p> <p>10.2.5.1 In Vivo Studies 302</p> <p>10.2.5.2 In Vitro Studies 304</p> <p>10.2.6 Carbon Nanofibers and Other Particles 307</p> <p>10.2.6.1 In Vivo Studies 307</p> <p>10.2.6.2 In Vitro Studies 308</p> <p>10.3 Future Challenges in Carbon Nanomaterial Carcinogenesis Risk Assessment 308</p> <p>10.3.1 Exposure Characterization and Fate 308</p> <p>10.3.2 Dosimetry 309</p> <p>10.3.3 Model Choice 310</p> <p>10.3.4 Systematic Evaluation of Genotoxicity 311</p> <p>10.3.5 Role of ROS and Inflammation 311</p> <p>10.4 Assessment of ECNM-Induced Genotoxicity and Carcinogenesis 312</p> <p>10.4.1 Recommendations for Screening ENMs for Carcinogenic Potential 312</p> <p>10.4.2 Systematic Screening Paradigm and Workflow for ENM Carcinogenicity Risk Assessment 314</p> <p>10.5 Concluding Remarks 316</p> <p>Acknowledgments 316</p> <p>Disclaimer 316</p> <p>References 317</p> <p><b>11 Effect on Reproductive System of Carbon Nanomaterials 333</b><br /><i>Ying Liu and Chunying Chen</i></p> <p>11.1 Introduction 333</p> <p>11.2 Effects of Carbon Nanomaterials on the Reproductive System 334</p> <p>11.2.1 Carbon Nanotubes 335</p> <p>11.2.2 Fullerene Derivatives 340</p> <p>11.2.3 Carbon Black Nanoparticles 340</p> <p>11.3 Insights into the Molecular Mechanisms 342</p> <p>11.3.1 Potential Toxicity to the Female Reproductive System 342</p> <p>11.3.2 Potential Toxicity to Male Reproduction of Carbon Nanomaterials 343</p> <p>11.3.3 Potential Toxicity to Offspring of Carbon Nanomaterials 345</p> <p>11.3.4 Impact on the Endocrine Organs and Hormone Biosynthesis/Metabolism 346</p> <p>11.3.5 Others 348</p> <p>11.4 Conclusion and Perspectives 348</p> <p>Acknowledgments 352</p> <p>References 352</p> <p><b>12 Immunological Responses Induced by Carbon Nanotubes Exposed to Skin and Gastric and Intestinal System 357</b><br /><i>Haiyan Xu, JieMeng, Qiang Ma, and Xiaojin Li</i></p> <p>12.1 Introduction 357</p> <p>12.2 Biological Effects of CNTs by Dermal Exposure 358</p> <p>12.2.1 In Vitro Assessment in Dermal-Related Cell Lines 358</p> <p>12.2.2 In Vivo Studies on the Responses Elicited by Skin Exposed with CNTs 361</p> <p>12.3 Immunological Reactions Elicited by Subcutaneous Administration of MWCNTs 362</p> <p>12.3.1 Preparation and Characterization of Multiwalled Carbon Nanotubes for Uses in Studies 362</p> <p>12.3.2 Distribution of Subcutaneously Injected Carbon Nanotubes 363</p> <p>12.3.3 Immunological Responses Induced by Subcutaneously Injected MWCNTs 369</p> <p>12.3.3.1 Macrophages Responses Exerted by MWCNTs 370</p> <p>12.3.3.2 MWCNTs Attract Naïve Monocyte Macrophages Through Activating Macrophages in the Subcutis 373</p> <p>12.3.3.3 Subcutaneously Injected MWCNTs Induce Complement Activation 375</p> <p>12.3.3.4 Subcutaneously Injected MWCNTs Elevate Pro-inflammatory Cytokines in the Blood 376</p> <p>12.4 Immunological Responses Induced by Subcutaneous Administration of MWCNTs in Tumor-Bearing Mice 377</p> <p>12.4.1 MWCNTs Induce Systematic Immune Responses in Tumor-Bearing Mice 378</p> <p>12.4.2 MWCNTs Upregulate Multiple Pro-inflammatory Cytokines in the Blood 378</p> <p>12.4.3 MWCMTs Mediate Cytotoxicity of Lymphocytes 379</p> <p>12.4.4 MWCNTs Induce Complement Activation 380</p> <p>12.4.5 MWCNTs Attract Monocyte-Macrophages to Affect the Microenvironment of Tumor Mass 380</p> <p>12.5 CNTs as Antigen Delivery System to Enhance Immune Responses Against Tumors 383</p> <p>12.6 Immunological Responses of Gastric and Intestinal Systems Exposed to Carbon Nanotubes 386</p> <p>References 389</p> <p><b>13 Modulation of Immune System by Carbon Nanotubes 397</b><br /><i>Marit Ilves and Harri Alenius</i></p> <p>13.1 Immune System 397</p> <p>13.1.1 Innate Immunity Cells and Their Main Functions 398</p> <p>13.1.2 Adaptive Immunity Cells andTheir Main Functions 399</p> <p>13.2 Carbon Nanotubes (CNTs) and Innate Immunity 400</p> <p>13.2.1 Complement Activation 401</p> <p>13.2.2 Macrophages 402</p> <p>13.2.3 Activation of Inflammasome Complex and IL-1β Secretion 405</p> <p>13.2.4 Neutrophils 406</p> <p>13.2.5 Innate Lymphoid Cells (ILCs) 408</p> <p>13.2.6 Dendritic Cells 408</p> <p>13.3 CNTs and Adaptive Immunity 409</p> <p>13.3.1 The Effects of CNTs on Vaccine Delivery and Immunotherapy 409</p> <p>13.3.2 Utilization of CNT Scaffolds in the Expanding and Modulation of Immune Cells 411</p> <p>13.3.3 Immunosuppressive Effects of CNTs 413</p> <p>13.4 The Effect of CNTs in Allergy and Asthma 414</p> <p>13.4.1 Allergic Reactions and Their Immunological Mechanisms 414</p> <p>13.4.2 Asthma 415</p> <p>13.4.3 Allergic Pulmonary Inflammation Induced by Airway Exposure to CNTs 417</p> <p>13.4.4 Modulation of Allergen-Induced Airway Inflammation by Exposure to CNTs 418</p> <p>13.4.5 CNT in the Context of Mast Cells and Eosinophils 420</p> <p>13.4.6 Role of IL-33 Pathway in CNT-Induced Allergic Responses 420</p> <p>13.5 Conclusions and Future Prospects 422</p> <p>References 424</p> <p><b>14 Carbon Dots: Synthesis, Bioimaging, and Biosafety Assessment 429</b><br /><i>Jie Wang and Yao He</i></p> <p>14.1 Introduction 429</p> <p>14.1.1 Synthesis and Fabrication of C-dots 429</p> <p>14.1.2 Bioimaging of C-dots 431</p> <p>14.1.3 Biosafety Assessment of C-dots 432</p> <p>14.2 Synthetic Strategies 433</p> <p>14.2.1 Microwave-Assisted Methods 433</p> <p>14.2.2 Hydrothermal Carbonization 434</p> <p>14.2.3 Electrochemical Synthesis 437</p> <p>14.2.4 Chemical Oxidation 439</p> <p>14.2.5 Ultrosonication 442</p> <p>14.2.6 Plasma Treatment 444</p> <p>14.2.7 Laser Ablation Methods 445</p> <p>14.2.8 Supported Methods 446</p> <p>14.2.9 Thermal Routes 448</p> <p>14.3 C-Dots-based Fluorescent Probes for Bioimaging Applications 450</p> <p>14.3.1 Fluorescent Probes for Bioimaging Applications 450</p> <p>14.3.2 In Vitro Imaging 451</p> <p>14.3.3 In Vivo Imaging 456</p> <p>14.3.4 Conclusion 462</p> <p>14.4 Toxicity Assessment 462</p> <p>14.4.1 In Vitro Toxicity Assessment 463</p> <p>14.4.2 In Vivo Toxicity Assessment 469</p> <p>14.4.3 Conclusion 475</p> <p>14.5 Perspectives 477</p> <p>14.5.1 Unequivocal PL Mechanism 477</p> <p>14.5.2 Expanding the Spectral Coverage 478</p> <p>14.5.3 QY Improvement 478</p> <p>14.5.4 Bioimaging 478</p> <p>14.5.5 Toxicity Assessment 479</p> <p>References 479</p> <p><b>15 Transport in the Environment and Ecotoxicity of Carbon Nanomaterials 487</b><br /><i>Yingying Xu and Chunying Chen</i></p> <p>15.1 Introduction 487</p> <p>15.2 Transport of Carbon Nanomaterials in the Environment 488</p> <p>15.2.1 Entry of Carbon Nanomaterials into the Environment 488</p> <p>15.2.2 Fate and Transformation in the Environment 488</p> <p>15.2.2.1 Oxidation 488</p> <p>15.2.2.2 Photochemical Transformation 490</p> <p>15.2.2.3 Dissolution and Precipitation 491</p> <p>15.2.2.4 Adsorption 492</p> <p>15.2.2.5 Biodegradation 493</p> <p>15.3 Ecotoxicity of Fullerene 494</p> <p>15.3.1 Effect of Fullerene on Microorganisms 494</p> <p>15.3.2 Effect of Fullerene on Animals 495</p> <p>15.3.2.1 Effect of Fullerene on Invertebrates 495</p> <p>15.3.2.2 Effect of Fullerene on Vertebrates 496</p> <p>15.3.3 Effect of Fullerene on Plants 496</p> <p>15.3.3.1 Effect of Fullerene on Algae 496</p> <p>15.3.3.2 Effect of Fullerene on Higher Plants 497</p> <p>15.4 Ecotoxicity of Carbon Nanotubes (CNTs) 498</p> <p>15.4.1 Effect of CNTs on Microorganisms 498</p> <p>15.4.2 Effect of CNTs on Animals 499</p> <p>15.4.2.1 Effect of CNTs on Invertebrates 499</p> <p>15.4.2.2 Effect of CNTs on Vertebrates 501</p> <p>15.4.3 Effect of CNTs on Plants 502</p> <p>15.4.3.1 Effect of CNTs on Algae 502</p> <p>15.4.3.2 Effect of CNTs on Higher Plants 503</p> <p>15.5 Ecotoxicity of Graphene 504</p> <p>15.6 Conclusion and Perspectives 506</p> <p>Acknowledgments 506</p> <p>References 506</p> <p><b>16 Exposure Scenarios in the Workplace and Risk Assessment of Carbon Nanomaterials 515</b><br /><i>Rui Chen and Chunying Chen</i></p> <p>16.1 Introduction 515</p> <p>16.1.1 Background 515</p> <p>16.1.2 Exposure Routes and Exposure Scenarios 515</p> <p>16.1.3 Exposure Metrics 516</p> <p>16.1.4 Occupation Exposure Limit for Carbon Nanomaterials 516</p> <p>16.1.5 Strategy for Exposure Assessment of Carbon Nanomaterials 517</p> <p>16.2 Potential Exposure in theWorkplace 519</p> <p>16.2.1 Carbon Nanotubes 519</p> <p>16.2.2 Fullerenes, Metallofullerenes, and Graphenes 525</p> <p>16.3 Exposure Risk Assessment and Engineering Control 527</p> <p>16.3.1 Risk Assessment Strategy on Carbon Nanomaterials 527</p> <p>16.3.2 Inhalation Exposure Assessment Method 529</p> <p>16.3.3 Exposure Controls 530</p> <p>16.4 Summary and Outlook 531</p> <p>Acknowledgments 531</p> <p>References 531</p> <p>Index 535</p>
Chunying Chen is principal investigator in the Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety at the National Center for Nanoscience and Technology of China. She obtained her PhD degree in biomedical engineering from Huazhong University of Science and Technology of China. Chunying Chen has authored and co-authored more than 150 peer-reviewed papers, 3 books and 6 book chapters, has 12 issued patents and one international standard. She has been awarded the National Award for Innovation and Outstanding Service to the Standard authorized by Standardization Administration of the People's Republic of China in 2011, the Second Prize of Beijing Science and Technology in 2008, the Second Prize of the National Natural Science Award in 2012, the National Science Fund for Distinguished Young Scholars, and China Outstanding Young Female Scientists Awards in 2014. <br> Haifang Wang is professor in the Institute of Nanochemistry and Nanobiology at the Shanghai University. She received her BSc and MSc degrees in chemistry from Fudan University and PhD degree in chemistry from Peking University. From 1994 to 2008, she was a faculty at Peking University. As a visiting scholar, she spent one year at the Institute of Physical and Chemical Research (RIKEN), Japan and one year at Clemson University, USA. In 2009, she moved to Shanghai University. She is the editorial board member of Nanomedicine (Lond.) and the standing committee member of Nanotoxicology Committee, Chinese Society of Toxicology. She has published over 120 scientific papers and book chapters, and was awarded the Second Prize of the National Natural Science Award in 2012 (third place).<br> <br>

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €