Details

Bioinspired Materials Science and Engineering


Bioinspired Materials Science and Engineering


1. Aufl.

von: Guang Yang, Lin Xiao, Lallepak Lamboni

164,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.07.2018
ISBN/EAN: 9781119390343
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An authoritative introduction to the science and engineering of bioinspired materials</b></p> <p><i>Bioinspired Materials Science and Engineering</i> offers a comprehensive view of the science and engineering of bioinspired materials and includes a discussion of biofabrication approaches and applications of bioinspired materials as they are fed back to nature in the guise of biomaterials. The authors also review some biological compounds and shows how they can be useful in the engineering of bioinspired materials.</p> <p>With contributions from noted experts in the field, this comprehensive resource considers biofabrication, biomacromolecules, and biomaterials. The authors illustrate the bioinspiration process from materials design and conception to application of bioinspired materials. In addition, the text presents the multidisciplinary aspect of the concept, and contains a typical example of how knowledge is acquired from nature, and how in turn this information contributes to biological sciences, with an accent on biomedical applications. This important resource:</p> <ul> <li>Offers an introduction to the science and engineering principles for the development of bioinspired materials</li> <li>Includes a summary of recent developments on biotemplated formation of inorganic materials using natural templates</li> <li>Illustrates the fabrication of 3D-tumor invasion models and their potential application in drug assessments</li> <li>Explores electroactive hydrogels based on natural polymers</li> <li>Contains information on turning mechanical properties of protein hydrogels for biomedical applications</li> </ul> <p>Written for chemists, biologists, physicists, and engineers, <i>Bioinspired Materials Science and Engineering</i> contains an indispensible resource for an understanding of bioinspired materials science and engineering. </p>
<p>List of Contributors xiii</p> <p>Foreword xvii</p> <p>Preface xix</p> <p>Introduction to Science and Engineering Principles for the Development of Bioinspired Materials 1<br /><i>Muhammad Wajid Ullah, Zhijun Shi, Sehrish Manan, and Guang Yang</i></p> <p>I.1 Bioinspiration 1</p> <p>I.2 Bioinspired Materials 1</p> <p>I.3 Biofabrication 2</p> <p>I.3.1 Summary of Part I Biofabrication 2</p> <p>I.4 Biofabrication Strategies 3</p> <p>I.4.1 Conventional Biofabrication Strategies 3</p> <p>I.4.2 Advanced Biofabrication Strategies 3</p> <p>I.5 Part II Biomacromolecules 5</p> <p>I.5.1 Summary of Part II Biomacromolecules 5</p> <p>I.5.2 Carbohydrates 5</p> <p>I.5.3 Proteins 8</p> <p>I.5.4 Nucleic Acids 9</p> <p>I.6 Part III Biomaterials 11</p> <p>I.6.1 Summary of Part III Biomaterials 11</p> <p>I.6.2 Features of Biomaterials 12</p> <p>I.6.3 Current Advances in Biomaterials Science 13</p> <p>I.7 Scope of the Book 13</p> <p>Acknowledgments 14</p> <p>References 14</p> <p><b>Part I Biofabrication 17</b></p> <p><b>1 Biotemplating Principles 19<br /></b><i>Cordt Zollfrank and Daniel Van Opdenbosch</i></p> <p>1.1 Introduction 19</p> <p>1.2 Mineralization in Nature 20</p> <p>1.2.1 Biomineralization 20</p> <p>1.2.2 Geological Mineralization 21</p> <p>1.3 Petrified Wood in Construction and Technology 23</p> <p>1.4 Structural Description and Emulation 24</p> <p>1.4.1 Antiquity 24</p> <p>1.4.2 Modern Age: Advent of the Light Microscope 24</p> <p>1.4.3 Aqueous Silicon Dioxide, Prime Mineralization Agent 25</p> <p>1.4.4 Artificial Petrifaction of Wood 25</p> <p>1.5 Characteristic Parameters 28</p> <p>1.5.1 Hierarchical Structuring 28</p> <p>1.5.2 Specific Surface Areas 32</p> <p>1.5.3 Pore Structures 32</p> <p>1.6 Applications 34</p> <p>1.6.1 Mechanoceramics 34</p> <p>1.6.2 Nanoparticle Substrates 35</p> <p>1.6.3 Filter and Burner Assemblies 35</p> <p>1.6.4 Photovoltaic and Sensing Materials 36</p> <p>1.6.5 Wettability Control 37</p> <p>1.6.6 Image Plates 38</p> <p>1.7 Limitations and Challenges 38</p> <p>1.7.1 Particle Growth 38</p> <p>1.7.2 Comparison with Alternating Processing Principles 40</p> <p>1.7.3 Availability 40</p> <p>1.8 Conclusion and Future Topics 42</p> <p>Acknowledgments 42</p> <p>Notes 42</p> <p>References 43</p> <p><b>2 Tubular Tissue Engineering Based on Microfluidics 53<br /></b><i>Lixue Tang, Wenfu Zheng, and Xingyu Jiang</i></p> <p>2.1 Introduction 53</p> <p>2.2 Natural Tubular Structures 53</p> <p>2.2.1 Blood Vessels 53</p> <p>2.2.2 Lymphatic Vessels 53</p> <p>2.2.3 Vessels in the Digestive System 54</p> <p>2.2.4 Vessels in the Respiratory System 54</p> <p>2.2.5 The Features of the Natural Tubular Structures 54</p> <p>2.3 Microfluidics 54</p> <p>2.3.1 An Introduction to Microfluidics 54</p> <p>2.3.2 Microfluidics to Manipulate Cells 55</p> <p>2.4 Fabrication of Tubular Structures by Microfluidics 58</p> <p>2.4.1 Angiogenesis 58</p> <p>2.4.2 Tissue Engineering of Natural Tubes 58</p> <p>2.4.3 Tissue Engineering of Other Tubular Structures 62</p> <p>2.5 Conclusion 64</p> <p>Acknowledgments 64</p> <p>References 64</p> <p><b>3 Construction of Three‐Dimensional Tissues with Capillary Networks by Coating of Nanometer‐ or Micrometer‐Sized Film on Cell Surfaces 67<br /></b><i>Michiya Matsusaki, Akihiro Nishiguchi, Chun‐Yen Liu, and Mitsuru Akashi</i></p> <p>3.1 Introduction 67</p> <p>3.2 Fabrication of Nanometer‐ and Micrometer‐Sized ECM Layers on Cell Surfaces 68</p> <p>3.2.1 Control of Cell Surface by FN Nanofilms 68</p> <p>3.2.2 Control of Cell Surface by Collagen Microfilms 72</p> <p>3.3 3D‐ Tissue with Various Thicknesses and Cell Densities 75</p> <p>3.4 Fabrication of Vascularized 3D‐Tissues and Their Applications 77</p> <p>3.5 Conclusion 80</p> <p>Acknowledgments 80</p> <p>References 80</p> <p><b>4 Three‐dimensional Biofabrication on Nematic Ordered Cellulose Templates 83<br /></b><i>Tetsuo Kondo</i></p> <p>4.1 Introduction 83</p> <p>4.2 What Is Nematic Ordered Cellulose (NOC)? 84</p> <p>4.2.1 Nematic Ordered Cellulose 84</p> <p>4.2.2 Various Nematic Ordered Templates and Modified Nematic Ordered Cellulose 87</p> <p>4.3 Exclusive Surface Properties of NOC and Its Unique Applications 89</p> <p>4.3.1 Bio‐Directed Epitaxial Nano‐Deposition on Molecular Tracks of the NOC Template 89</p> <p>4.3.2 Critical Factors in Bio‐Directed Epitaxial Nano‐Deposition on Molecular Tracks 90</p> <p>4.3.3 Regulated Patterns of Bacterial Movements Based on Their Secreted Cellulose Nanofibers Interacting Interfacially with Ordered Chitin and Honeycomb Cellulose Templates 93</p> <p>4.3.4 NOC Templates Mediating Order‐Patterned Deposition Accompanied by Synthesis of Calcium Phosphates as Biomimic Mineralization 97</p> <p>4.3.5 Three‐Dimensional Culture of Epidermal Cells on NOC Scaffolds 98</p> <p>4.4 Conclusion 100</p> <p>References 101                                                                                                                                                                                </p> <p><b>5 Preparation and Application of Biomimetic Materials Inspired by Mussel Adhesive Proteins 103<br /></b><i>Heng Shen, Zhenchao Qian, Ning Zhao, and Jian Xu</i></p> <p>5.1 Introduction 103</p> <p>5.2 Various Research Studies 104</p> <p>5.3 Conclusion 116</p> <p>References 116</p> <p><b>6 Self‐assembly of Polylactic Acid‐based Amphiphilic Block Copolymers and Their Application in the Biomedical Field 119<br /></b><i>Lin Xiao, Lixia Huang, Li Liu, and Guang Yang</i></p> <p>6.1 Introduction 119</p> <p>6.2 Micellar Structures from PLA‐based Amphiphilic Block Copolymers 119</p> <p>6.2.1 Preparation and Mechanism of Micellar Structures 120</p> <p>6.2.2 Stability and Stimuli‐Responsive Properties: Molecular Design and Biomedical Applications 122</p> <p>6.3 Hydrogels from PLA‐based Amphiphilic Block Copolymers 125</p> <p>6.3.1 Mechanism of Hydrogel Formation from PLA‐based Amphiphilic Block Copolymers 125</p> <p>6.3.2 Properties and Biomedical Applications of Hydrogel from PLA‐based Amphiphilic Block Copolymers 126</p> <p>6.4 Conclusion 127</p> <p>Acknowledgments 127</p> <p>References 127</p> <p><b>Part II Biomacromolecules 131</b></p> <p><b>7 Electroconductive Bioscaffolds for 2D and 3D Cell Culture 133<br /></b><i>Zhijun Shi, Lin Mao, Muhammad Wajid Ullah, Sixiang Li, Li Wang, Sanming Hu, and Guang Yang</i></p> <p>7.1 Introduction 133</p> <p>7.2 Electrical Stimulation 133</p> <p>7.3 Electroconductive Bioscaffolds 135</p> <p>7.3.1 Conductive Polymers‐based Electroconductive Bioscaffolds 135</p> <p>7.3.2 Carbon Nanotubes‐based Electroconductive Bioscaffolds 137</p> <p>7.3.3 Graphene‐based Electroconductive Bioscaffolds 140</p> <p>7.4 Conclusion 145</p> <p>Acknowledgments 145</p> <p>References 145</p> <p><b>8 Starch and Plant Storage Polysaccharides 149<br /></b><i>Francisco Vilaplana, Wei Zou, and Robert G. Gilbert</i></p> <p>8.1 Starch and Other Seed Polysaccharides: Availability, Molecular Structure, and Heterogeneity 149</p> <p>8.1.1 Molecular Structure and Composition of Seeds and Cereal Grains 149</p> <p>8.1.2 Starch Hierarchical Structure from Bonds to the Granule 149</p> <p>8.1.3 Crystalline Structure 149</p> <p>8.1.4 Granular Structure 150</p> <p>8.1.5 Mannans, Galactomannans, and Glucomannans 150</p> <p>8.1.6 Xyloglucans 151</p> <p>8.1.7 Xylans. Arabinoxylans, Glucuronoxylans, and Glucuronoarabinoxylans 153</p> <p>8.2 Effect of the Molecular Structure of Starch and Seed Polysaccharides on the Macroscopic Properties of Derived Carbohydrate‐based Materials 154</p> <p>8.2.1 Factors Affecting Starch Digestibility 154</p> <p>8.2.2 Structural Aspects of Seed Polysaccharides Affecting Configuration and Macroscopic Properties 158</p> <p>8.3 Chemo‐ enzymatic Modification Routes for Starch and Seed Polysaccharides 160</p> <p>8.4 Conclusion 161</p> <p>References 162</p> <p><b>9 Conformational Properties of Polysaccharide Derivatives 167<br /></b><i>Ken Terao and Takahiro Sato</i></p> <p>9.1 Introduction 167</p> <p>9.2 Theoretical Backbone to Determine the Chain Conformation of Linear and Cyclic Polymers from Dilute Solution Properties 169</p> <p>9.3 Chain Conformation of Linear Polysaccharides Carbamate Derivatives in Dilute Solution 171</p> <p>9.3.1 Effects of the Main Chain Linkage of the Polysaccharides Phenylcarbamate Derivatives 171</p> <p>9.3.2 Effects of Hydrogen Bonds to Stabilize the Helical Structure 172</p> <p>9.3.3 Enantiomeric Composition Dependent Chain Dimensions: ATBC and ATEC in d‐, dl‐, l-ethyl lactates 175</p> <p>9.3.4 Solvent‐Dependent Helical Structure and the Chain Stiffness of Amylose Phenylcarbamates in Polar Solvents 176</p> <p>9.4 Lyotropic Liquid Crystallinity of Polysaccharide Carbamate Derivatives 177</p> <p>9.5 Cyclic Amylose Carbamate Derivatives: An Application to Rigid Cyclic Polymers 178</p> <p>9.6 Conclusion 180</p> <p>Appendix: Wormlike Chain Parameters for Polysaccharide Carbamate Derivatives 181</p> <p>References 182</p> <p><b>10 Silk Proteins: A Natural Resource for Biomaterials 185<br /></b><i>Lallepak Lamboni, Tiatou Souho, Amarachi Rosemary Osi, and Guang Yang</i></p> <p>10.1 Introduction 185</p> <p>10.2 Bio‐ synthesis of Silk Proteins 186</p> <p>10.2.1 Silkworm Silk Glands 186</p> <p>10.2.2 Regulation of Silk Proteins Synthesis 186</p> <p>10.2.3 Synthesis of Fibroin 187</p> <p>10.2.4 Synthesis of Sericin 187</p> <p>10.2.5 Silk Filament Assembly 187</p> <p>10.3 Extraction of Silk Proteins 188</p> <p>10.3.1 Silk Degumming 188</p> <p>10.3.2 Fibroin Regeneration 188</p> <p>10.3.3 Sericin Recovery 189</p> <p>10.4 Structure and Physical Properties of Silk Proteins 189</p> <p>10.4.1 Silk Fibroin 189</p> <p>10.4.2 Silk Sericin 189</p> <p>10.5 Properties of Silk Proteins in Biomedical Applications 190</p> <p>10.5.1 Silk Fibroin 190</p> <p>10.5.2 Biomedical Uses of Silk Sericin 190</p> <p>10.6 Processing Silk Fibroin for the Preparation of Biomaterials 192</p> <p>10.6.1 Fabrication of 3D Matrices 193</p> <p>10.6.2 Fabrication of SF‐based Films 193</p> <p>10.6.3 Preparation of SF‐based Particulate Materials 194</p> <p>10.7 Processing Silk Sericin for Biomaterials Applications 194</p> <p>10.8 Conclusion 194</p> <p>Acknowledgments 195</p> <p>Abbreviations 195</p> <p>References 195</p> <p><b>11 Polypeptides Synthesized by Ring‐opening Polymerization of N‐Carboxyanhydrides: Preparation, Assembly, and Applications 201<br /></b><i>Yuan Yao, Yongfeng Zhou, and Deyue Yan</i></p> <p>11.1 Introduction 201</p> <p>11.2 Living Polymerization of NCAs 201</p> <p>11.2.1 Transition Metal Complexes 201</p> <p>11.2.2 Active Initiators Based on Amines 203</p> <p>11.2.3 Recent Advances in Living NCA ROP Polymerization, 2013‐2016 204</p> <p>11.3 Synthesis of Traditional Copolypeptides and Hybrids 204</p> <p>11.3.1 Random Copolypeptides 205</p> <p>11.3.2 Hybrid Block Polypeptides 205</p> <p>11.3.3 Block Copolypeptides 206</p> <p>11.3.4 Non‐linear Polypeptides and Copolypeptides 206</p> <p>11.4 New Monomers and Side‐Chain Functionalized Polypeptides 208</p> <p>11.4.1 New NCA Monomers 208</p> <p>11.4.2 Glycopolypeptides 208</p> <p>11.4.3 Water‐soluble Polypeptides with Stable Helical Conformation 209</p> <p>11.4.4 Stimuli‐responsive Polypeptides 210</p> <p>11.5 The Self‐assembly of Polypeptides 212</p> <p>11.5.1 Chiral Self‐assembly 212</p> <p>11.5.2 Self‐assembly with Inorganic Sources 213</p> <p>11.5.3 Microphase Separation of Polypeptides 214</p> <p>11.5.4 Self‐assembly in Solution 214</p> <p>11.5.5 Polypeptide Gels 215</p> <p>11.6 Novel Bio‐related Applications of Polypeptides 216</p> <p>11.6.1 Drug Delivery 216</p> <p>11.6.2 Gene Delivery 216</p> <p>11.6.3 Membrane Active and Antimicrobial Polypeptides 217</p> <p>11.6.4 Tissue Engineering 217</p> <p>11.7 Conclusion 219</p> <p>References 219</p> <p><b>12 Preparation of Gradient Polymeric Structures and Their Biological Applications 225<br /></b><i>Tao Du, Feng Zhou, and Shutao Wang</i></p> <p>12.1 Introduction 225</p> <p>12.2 Gradient Polymeric Structures 225</p> <p>12.2.1 Gradient Hydrogels 225</p> <p>12.2.2 Gradient Polymer Brushes 230</p> <p>12.3 Gradient Polymeric Structures Regulated Cell Behavior 241</p> <p>12.3.1 Gradient Cell Adhesion 241</p> <p>12.3.2 Cell Migration 244</p> <p>12.4 Conclusion 247</p> <p>References 247</p> <p><b>Part III Biomaterials 251</b></p> <p><b>13 Bioinspired Materials and Structures: A Case Study Based on Selected Examples 253<br /></b><i>Tom Masselter, Georg Bold, Marc Thielen, Olga Speck, and Thomas Speck</i></p> <p>13.1 Introduction 253</p> <p>13.2 Fiber‐ reinforced Structures Inspired by Unbranched and Branched Plant Stems 253</p> <p>13.2.1 Technical Plant Stem 254</p> <p>13.2.2 Branched Fiber‐reinforced Structures 254</p> <p>13.3 Pomelo Peel as Inspiration for Biomimetic Impact Protectors 255</p> <p>13.3.1 Hierarchical Structuring and its Influence on the Mechanical Properties 256</p> <p>13.3.2 Functional Principles for Biomimetic Impact Protectors 258</p> <p>13.4 Self‐ repair in Technical Materials Inspired by Plants’ Solutions 258</p> <p>13.4.1 Plant Latex: Self‐Sealing, Self‐Healing and More 258</p> <p>13.4.2 Wound Sealing in the Dutchmen’s Pipe: Concept Generator for Self‐Sealing Pneumatic Systems 259</p> <p>13.5 Elastic Architecture: Lessons Learnt from Plant Movements 261</p> <p>13.5.1 Plant Movements: A Treasure Trove for Basic and Applied Research 261</p> <p>13.5.2 Flectofin®: a Biomimetic Facade‐Shading System Inspired by the Deformation Principle of the “Perch” of the Bird of Paradise Flower 262</p> <p>13.6 Conclusions 264</p> <p>Acknowledgments 264</p> <p>References 264</p> <p><b>14 Thermal‐ and Photo‐deformable Liquid Crystal Polymers and Bioinspired Movements 267<br /></b><i>Yuyun Liu, Jiu‐an Lv, and Yanlei Yu</i></p> <p>14.1 Introduction 267</p> <p>14.2 Thermal‐ responsive CLCPs 267</p> <p>14.2.1 Thermal‐responsive Deformation of CLCPs 267</p> <p>14.2.2 Bioinspired Thermal‐responsive Nanostructure CLCP Surfaces 271</p> <p>14.3 Photothermal‐ responsive CLCPs 276</p> <p>14.4 Light‐ responsive CLCPs 278</p> <p>14.4.1 Light‐responsive Deformation of CLCPs 278</p> <p>14.4.2 Bioinspired Soft Actuators 282</p> <p>14.4.3 Bioinspired Light‐responsive Microstructured CLCP Surfaces 285</p> <p>14.4 Conclusion 290</p> <p>References 291</p> <p><b>15 Tuning Mechanical Properties of Protein Hydrogels: Inspirations from Nature and Lessons from Synthetic Polymers 295<br /></b><i>Xiao‐Wei Wang, Dong Liu, Guang‐Zhong Yin, and Wen‐Bin Zhang</i></p> <p>15.1 Introduction 295</p> <p>15.2 What Are Different about Proteins? 296</p> <p>15.2.1 Protein Structure and Function 296</p> <p>15.2.2 Protein Synthesis 297</p> <p>15.3 Protein Cross‐linking 298</p> <p>15.3.1 Chemical Cross‐linking of Proteins 298</p> <p>15.3.2 Physical Cross‐linking of Proteins 299</p> <p>15.4 Strategies for Mechanical Reinforcement 300</p> <p>15.4.1 Lessons from Synthetic Polymers 302</p> <p>15.4.2 Inspirations from Nature 305</p> <p>15.5 Conclusion 306</p> <p>References 307</p> <p><b>16 Dendritic Polymer Micelles for Drug Delivery 311<br /></b><i>Mosa Alsehli and Mario Gauthier</i></p> <p>16.1 Introduction 311</p> <p>16.2 Dendrimers 312</p> <p>16.2.1 Dendrimer Synthesis: Divergent and Convergent Methods 312</p> <p>16.3 Hyperbranched Polymers 319</p> <p>16.4 Dendrigraft Polymers 323</p> <p>16.4.1 Divergent Grafting Onto Strategy 323</p> <p>16.4.2 Divergent Grafting from Strategy 328</p> <p>16.4.3 Convergent Grafting Through Strategy 332</p> <p>16.5 Conclusion 333</p> <p>References 334</p> <p><b>17 Bone‐inspired Biomaterials 337<br /></b><i>Frank A. Müller</i></p> <p>17.1 Introduction 337</p> <p>17.2 Bone 337</p> <p>17.3 Bone‐ like Materials 340</p> <p>17.3.1 Biomimetic Apatite 340</p> <p>17.3.2 Bone‐inspired Hybrids 343</p> <p>17.4 Bone‐ like Scaffolds 344</p> <p>17.4.1 Additive Manufacturing 344</p> <p>17.4.2 Ice Templating 346</p> <p>17.5 Conclusion 349</p> <p>References 349</p> <p><b>18 Research Progress in Biomimetic Materials for Human Dental Caries Restoration 351<br /></b><i>Yazi Wang, Fengwei Liu, Eric Habib, Ruili Wang, Xiaoze Jiang, X.X. Zhu, and Meifang Zhu</i></p> <p>18.1 Introduction 351</p> <p>18.2 Tooth Structure 351</p> <p>18.3 The Formation Mechanism of Dental Caries 352</p> <p>18.4 HA‐ filled Biomimetic Resin Composites 352</p> <p>18.4.1 Particulate HA as Filler in Dental Restorative Resin Composites 352</p> <p>18.4.2 Novel Shapes of HA as Fillers in Dental Restorative Resin Composites 354</p> <p>18.4.3 Challenges and Future Developments 355</p> <p>18.5 Biomimetic Synthesis of Enamel Microstructure 356</p> <p>18.5.1 Amelogenins‐containing Systems 356</p> <p>18.5.2 Peptides‐containing Systems 357</p> <p>18.5.3 Biopolymer Gel Systems 359</p> <p>18.5.4 Dendrimers‐containing Systems 360</p> <p>18.5.5 Surfactants/Chelators‐containing Systems 360</p> <p>18.5.6 Challenges and Future Developments 360</p> <p>Acknowledgments 362</p> <p>References 362</p> <p>Index 365</p> <p> </p>
<p><b>GUANG YANG, P<small>H</small>D</b> is a professor in the College of Life Science and Technology at Huazhong University of Science and Technology in China. Her research involves biomaterial, biomanufacture and nanomedicine. She co-chaired the 2014 Sino-German Symposium on Bioinspired Materials Science and Engineering (BMSE3-Bio). Dr. Yang has published over 90 peer-reviewed papers and numerous book chapters. She also has over 10 issued and pending Chinese patents and serves as a reviewer for several academic journals. <p><b>LIN XIAO, P<small>H</small>D</b> is a researcher in the College of Life Science and Technology at Huazhong University of Science and Technology in China. <p><b>LALLEPAK LAMBONI, P<small>H</small>D</b> is a researcher in the College of Life Science and Technology at Huazhong University of Science and Technology in China.
<p><b>AN AUTHORITATIVE INTRODUCTION TO THE SCIENCE AND ENGINEERING OF BIOINSPIRED MATERIALS</b> <p><i>Bioinspired Materials Science and Engineering</i> offers a comprehensive view of the science and engineering of bioinspired materials and includes a discussion of biofabrication approaches and applications of bioinspired materials as they are fed back to nature in the guise of biomaterials. The authors also review some biological compounds and show how they can be useful in the engineering of bioinspired materials. <p>With contributions from noted experts in the field, this comprehensive resource considers biofabrication, biomacromolecules, and biomaterials. The authors illustrate the bioinspiration process from materials design and conception to application of bioinspired materials. In addition, the text presents the multidisciplinary aspect of the concept, and contains a typical example of how knowledge is acquired from nature, and how in turn this information contributes to biological sciences, with an accent on biomedical applications. This important resource: <ul> <li>Offers an introduction to the science and engineering principles for the development of bioinspired materials</li> <li>Includes a summary of recent developments on biotemplated formation of inorganic materials using natural templates</li> <li>Illustrates the fabrication of 3D-tumor invasion models and their potential application in drug assessments</li> <li>Explores electroactive hydrogels based on natural polymers</li> <li>Contains information on tuning mechanical properties of protein hydrogels for biomedical applications</li> </ul> <p>Written for chemists, biologists, physicists, and engineers,<i> Bioinspired Materials Science and Engineering</i> contains an indispensible resource for an understanding of bioinspired materials science and engineering.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €