Details

Beyond-CMOS Nanodevices 1


Beyond-CMOS Nanodevices 1


1. Aufl.

von: Francis Balestra

168,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 02.06.2014
ISBN/EAN: 9781118984857
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students.  It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.
<p>ACKNOWLEDGMENTS xiii</p> <p>GENERAL INTRODUCTION xv<br /> <i>Francis BALESTRA</i></p> <p><b>PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1</b></p> <p>PART 1. INTRODUCTION 3<br /> <i>Per-Erik HELLSTRÖM and Mikael ÖSTLING</i></p> <p><b>CHAPTER 1. FABRICATION OF NANOWIRES   5</b><br /> <i>Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline SERRE</i></p> <p>1.1. Introduction 5</p> <p>1.2. Silicon nanowire fabrication with electron beam lithography 6</p> <p>1.2.1. Key requirements 6</p> <p>1.2.2. Why electron beam lithography?   7</p> <p>1.2.3. Lithographic requirements 8</p> <p>1.2.4. Tools, resist materials and development processes  9</p> <p>1.2.5. Exposure strategies and proximity effect correction 10</p> <p>1.2.6. Technology limitations and how to circumvent them  11</p> <p>1.3. Silicon nanowire fabrication with sidewall transfer lithography   14</p> <p>1.4. Si nanonet fabrication 17</p> <p>1.4.1. Si NWs fabrication  18</p> <p>1.4.2. Si nanonet assembling 19</p> <p>1.4.3. Si nanonet morphology and properties 19</p> <p>1.5. Acknowledgments 21</p> <p>1.6. Bibliography 21</p> <p><b>CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION  25</b><br /> <i>Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL</i></p> <p>2.1. Introduction 25</p> <p>2.2. Functionalization process 27</p> <p>2.3. Functionalization of Si nanonets for DNA biosensing   28</p> <p>2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy  31</p> <p>2.3.2. Preliminary electrical characterizations of NW networks 33</p> <p>2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing35</p> <p>2.4.1. SiC nanowire-based sensor functionalization process  35</p> <p>2.4.2. DNA electrical detection from SiC nanowire-based sensor 38</p> <p>2.5. Acknowledgments 39</p> <p>2.6. Bibliography 40</p> <p><b>CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS  43</b><br /> <i>Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico PITTINO, Denis FLANDRE and Gérard GHIBAUDO</i></p> <p>3.1. Introduction 43</p> <p>3.1.1. Definitions 43</p> <p>3.1.2. Main parameters affecting the sensitivity 47</p> <p>3.2. Sensitivity and noise  47</p> <p>3.3. Modeling the sensitivity of Si NW biosensors 50</p> <p>3.3.1. Modeling the electrolyte 52</p> <p>3.4. Sensitivity of random arrays of 1D nanostructures    54</p> <p>3.4.1. Electrical characterization 55</p> <p>3.4.2. Low-frequency noise characterization 56</p> <p>3.4.3. Simulation of electron conduction in random networks of 1D nanostructures 56</p> <p>3.4.4. Discussion  59</p> <p>3.5. Conclusions 59</p> <p>3.6. Acknowledgments 60</p> <p>3.7. Bibliography 60</p> <p><b>CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65</b><br /> <i>Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING</i></p> <p>4.1. Introduction 65</p> <p>4.2. Overview of CMOS process technology 66</p> <p>4.3. Integration of silicon nanowire after BEOL 66</p> <p>4.4. Integration of silicon nanowires in FEOL  67</p> <p>4.5. Sensor architecture design 69</p> <p>4.6. Conclusions 71</p> <p>4.7. Bibliography 72</p> <p><b>CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73</b><br /> <i>Michele ROSSI and Marco TARTAGNI</i></p> <p>5.1. Introduction 73</p> <p>5.2. Portable stand-alone system 74</p> <p>5.3. Integrated impedimetric interface 76</p> <p>5.4. Impedimetric measurements on nanowire sensors  78</p> <p>5.5. Bibliography 81</p> <p><b>PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83</b></p> <p>PART 2. INTRODUCTION 85<br /> <i>Enrico SANGIORGI</i></p> <p><b>CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89</b><br /> <i>Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan HINCHET, Julien KERAUDY and Gustavo ARDILA</i></p> <p>6.1. Introduction 89</p> <p>6.2. Piezoelectric energy transducer 91</p> <p>6.2.1. Introduction 91</p> <p>6.2.2. State-of-the-art devices and materials  92</p> <p>6.2.3. MEMS piezoelectric vibration energy harvesting transducers   95</p> <p>6.2.4. RMEMS prototypes characterization and discussions of experimental results 102</p> <p>6.2.5. Near field characterization techniques 104</p> <p>6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 106</p> <p>6.3. Electromagnetic energy transducers   109</p> <p>6.3.1. Introduction 109</p> <p>6.3.2. State-of-the-art devices and materials  109</p> <p>6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 122</p> <p>6.3.4. Device design 125</p> <p>6.4. Bibliography 128</p> <p><b>CHAPTER 7. THERMAL ENERGY HARVESTING   135</b><br /> <i>Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI, Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV, Andrey SHCHEPETOV and Jouni AHOPELTO</i></p> <p>7.1. Introduction 135</p> <p>7.1.1. Basics of thermoelectric conversion 136</p> <p>7.1.2. Strategies to increase ZT 137</p> <p>7.1.3. Heavy-metal-free TE generation  140</p> <p>7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 141</p> <p>7.2. Thermal transport at nanoscale 142</p> <p>7.2.1. Brief review of nanoscale thermal conductivity  143</p> <p>7.2.2. The effect of phonon confinement  146</p> <p>7.2.3. Fabrication of ultrathin free-standing silicon membranes 153</p> <p>7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity    156</p> <p>7.3. Porous silicon for thermal insulation on silicon wafers  172</p> <p>7.3.1. Introduction 172</p> <p>7.3.2. Thermal conductivity of nanostructured porous Si  172</p> <p>7.3.3. Thermal isolation using thick porous Si layers    176</p> <p>7.3.4. Thermoelectric generator using porous Si thermal isolation 177</p> <p>7.4. Spin dependent thermoelectric effects   185</p> <p>7.4.1. Physical principle and interest for thermal energy harvesting    186</p> <p>7.4.2. Demonstration of the magnon drag effect 188</p> <p>7.5. Composites of thermal shape memory alloy and piezoelectric materials   192</p> <p>7.5.1. Introduction 192</p> <p>7.5.2. Physical principle and interest for thermal energy harvesting    193</p> <p>7.5.3. Novelty and realizations 194</p> <p>7.5.4. Theoretical considerations 195</p> <p>7.5.5. Examples of use  196</p> <p>7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 204</p> <p>7.6. Conclusions 204</p> <p>7.7. Bibliography 205</p> <p><b>CHAPTER 8. NANOWIRE BASED SOLAR CELLS   221</b><br /> <i>Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI, Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN, Christine MORIN and Claudio FIEGNA</i></p> <p>8.1 Introduction   221</p> <p>8.2. Design of NW-based solar cells    223</p> <p>8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations  223</p> <p>8.2.2. TCAD simulation of NW-based solar cells 230</p> <p>8.3. Fabrication and opto-electrical characterization of NW-based solar cells 235</p> <p>8.3.1. Elaboration of NW-based solar cells  235</p> <p>8.3.2. Opto-electrical characterization of NW-based solar cells 236</p> <p>8.4 Conclusion   243</p> <p>8.5 Acknowledgments 243</p> <p>8.6 Bibliography 243</p> <p><b>CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249</b><br /> <i>Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE</i></p> <p>9.1. Introduction 249</p> <p>9.2. Power management solutions for energy harvesting devices 251</p> <p>9.2.1. Ultra-low voltage thermoelectric energy harvesting 251</p> <p>9.2.2. Sub-1mW photovoltaic energy harvesting 256</p> <p>9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260</p> <p>9.2.4. DC/DC power management for future micro-generator 262</p> <p>9.3. Sub-mW energy storage solutions    266</p> <p>9.4. Conclusions 270</p> <p>9.5. Bibliography 271</p> <p><b>PART 3. ON-CHIP ELECTRONIC COOLING    277</b></p> <p><b>CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS    279</b><br /> <i>Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David LEADLEY</i></p> <p>10.1. Introduction and motivation 279</p> <p>10.1.1. Existing cryogenic technology   280</p> <p>10.2. Tunneling junctions as coolers    281</p> <p>10.2.1. The NIS junction  281</p> <p>10.2.2. Cooling power 284</p> <p>10.2.3. Thermometry 286</p> <p>10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure  287</p> <p>10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 288</p> <p>10.3. Limitations to cooling  289</p> <p>10.3.1. States within the superconductor gap 290</p> <p>10.3.2. Joule heating 291</p> <p>10.3.3. Series resistance 291</p> <p>10.3.4. Quasi-particle-related heating   293</p> <p>10.3.5. Andreev reflection 295</p> <p>10.4. Heavy fermion-based coolers 297</p> <p>10.5. Summary   299</p> <p>10.6. Bibliography  300</p> <p><b>CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303</b><br /> <i>David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON, Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai ZHAO</i></p> <p>11.1. Introduction to semiconductor-superconductor tunnel junction coolers   303</p> <p>11.2. Silicon-based Schottky barrier junctions  304</p> <p>11.3. Carrier-phonon coupling in strained silicon 308</p> <p>11.3.1. Measurement of electron-phonon coupling constant  312</p> <p>11.4. Strained silicon Schottky barrier mK coolers 315</p> <p>11.5. Silicon mK coolers with an oxide barrier [GUN 13]   318</p> <p>11.5.1. Reduction of sub-gap leakage   318</p> <p>11.5.2. Effects of strain 319</p> <p>11.6. The silicon cold electron bolometer   321</p> <p>11.7. Integration of detector and electronics  324</p> <p>11.8. Summary and future prospects    325</p> <p>11.9. Acknowledgments 327</p> <p>11.10 Bibliography  327</p> <p><b>CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331</b><br /> <i>David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina VALALAKI and Terry WHALL</i></p> <p>12.1. Introduction 331</p> <p>12.2. Lattice cooling by physical nanostructuring 331</p> <p>12.3. Porous Si membranes as cryogenic thermal isolation platforms 337</p> <p>12.3.1. Porous Si micro-coldplates    337</p> <p>12.3.2. Porous Si thermal conductivity  339</p> <p>12.4. Crystalline membrane platforms    343</p> <p>12.4.1. Strained germanium membranes   343</p> <p>12.4.2. Thermal conductance measurements in Si and Ge membranes    350</p> <p>12.4.3. Epitaxy-compatible thermal isolation platform  355</p> <p>12.5. Summary of thermal conductance measurements    355</p> <p>12.6. Acknowledgments. 358</p> <p>12.7. Bibliography  358</p> <p><b>PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS  365</b></p> <p>PART 4. INTRODUCTION 367<br /> <i>Androula G. NASSIOPOULOU</i></p> <p><b>CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES  373</b><br /> <i>Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza ISSA, Philippe FERRARI</i></p> <p>13.1. Introduction 373</p> <p>13.2. High-resistivity Si substrate for RF   374</p> <p>13.2.1. Losses along coplanar waveguide transmission lines 375</p> <p>13.2.2. Crosstalk  380</p> <p>13.2.3. Nonlinearities along CPW lines   384</p> <p>13.3. Porous Si substrate technology    385</p> <p>13.3.1. General properties of porous Si   386</p> <p>13.3.2. Dielectric properties of porous Si  389</p> <p>13.3.3. Broadband electrical characterization of CPWT Lines on porous Si 393</p> <p>13.3.4. Inductors on porous Si397</p> <p>13.3.5. Antennas on porous Si399</p> <p>13.4. Comparison between HR Si and local porous Si substrate technologies 400</p> <p>13.4.1. Comparison of similar CPW TLines on different substrates    400</p> <p>13.4.2. Comparison of inductors on different RF substrates  404</p> <p>13.5. Design of slow-wave CPWs and filters on porous silicon 404</p> <p>13.5.1. Slow-wave CPW TLines on porous Si 405</p> <p>13.5.2. Simulation results for S-CPW TLines 406</p> <p>13.5.3. Stepped impedance low-pass filter on porous silicon 408</p> <p>13.5.4. Simulation results for filters    409</p> <p>13.6. Conclusion 411</p> <p>13.7. Acknowledgments 411</p> <p>13.8. Bibliography  411</p> <p><b>CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419</b><br /> <i>Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and Androula G. NASSIOPOULOU</i></p> <p>14.1. Introduction 419</p> <p>14.2. Metal nanowires (nanolines) 420</p> <p>14.2.1. General properties  420</p> <p>14.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 426</p> <p>14.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 430</p> <p>14.2.4. Characterization up to 200 GHz   440</p> <p>14.3. Antennas   441</p> <p>14.3.1. On-chip antennas: general    441</p> <p>14.3.2. On-chip antenna characterization method 443</p> <p>14.3.3. Measurement results 444</p> <p>14.3.4. Discussion on antenna results   451</p> <p>14.4. Conclusion 451</p> <p>14.5. Acknowledgments 452</p> <p>14.6. Bibliography  452</p> <p><b>CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457</b><br /> <i>Saibal ROY, Jeffrey GODSELL and Tuhin MAITY</i></p> <p>15.1. Introduction 457</p> <p>15.2. Power conversion and integration   457</p> <p>15.3. Materials and integration 459</p> <p>15.4. Controlling the magnetic properties   463</p> <p>15.5. Magnetic properties of nanocomposite materials    467</p> <p>15.6. Magnetic properties of nanomodulated continuous films  470</p> <p>15.7. Conclusion 478</p> <p>15.8. Bibliography  479</p> <p>LIST OF AUTHORS  485</p> <p>INDEX 493</p>
<p><b>Francis Balestra</b> received the M.S. and Ph.D. degrees in electronics from the Institut Polytechnique, Grenoble, France, in 1982 and 1985, respectively. He is a member of the European Academy of Sciences, of the Advisory Committee of the <i>Chinese Journal of Semiconductors</i> and <i>Chinese Physics B</i> and received the Blondel Medal (French SEE) in 2001. He is also member of the European ENIAC Scientific Community Council and several ENIAC/AENEAS Working Groups. F. Balestra has coauthored over 130 publications in international scientific journals, 240 communications at international conferences (more than 70 invited papers and review articles), and 20 books or chapters.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €