Details

Arene Chemistry


Arene Chemistry

Reaction Mechanisms and Methods for Aromatic Compounds
1. Aufl.

von: Jacques Mortier

173,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.11.2015
ISBN/EAN: 9781118754986
Sprache: englisch
Anzahl Seiten: 992

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Organized to enable students and synthetic chemists to understand and expand on aromatic reactions covered in foundation courses, the book offers a thorough and accessible mechanistic explanation of aromatic reactions involving arene compounds.<br /><br />•    Surveys methods used for preparing arene compounds and their transformations<br />•    Connects reactivity and methodology with mechanism<br />•    Helps readers apply aromatic reactions in a practical context by designing syntheses<br />•    Provides essential information about techniques used to determine reaction mechanisms
<p>LIST OF CONTRIBUTORS xxi</p> <p>PREFACE xxv</p> <p><b>PART I ELECTROPHILIC AROMATIC SUBSTITUTION 1</b></p> <p><b>1 Electrophilic Aromatic Substitution: Mechanism 3</b><br /><i>Douglas A. Klumpp</i></p> <p>1.1 Introduction, 3</p> <p>1.2 General Aspects, 4</p> <p>1.3 Electrophiles, 4</p> <p>1.4 Arene Nucleophiles, 12</p> <p>1.5 π‐Complex Intermediates, 17</p> <p>1.6 σ‐Complex or Wheland Intermediates, 22</p> <p>1.7 Summary and Outlook, 27</p> <p>Abbreviations, 27</p> <p>References, 28</p> <p><b>2 Friedel–Crafts Alkylation of Arenes in Total Synthesis 33</b><br /><i>Gonzalo Blay, Marc Montesinos‐Magraner, and José R. Pedro</i></p> <p>2.1 Introduction, 33</p> <p>2.2 Total Synthesis Involving Intermolecular FC Alkylations, 34</p> <p>2.2.1 Synthesis of Coenzyme Q10, 34</p> <p>2.2.2 Total Synthesis of (±)‐Brasiliquinone B, 35</p> <p>2.2.3 Synthesis of (−)‐Podophyllotoxin, 35</p> <p>2.2.4 Synthesis of Puupehenol and Related Compounds, 36</p> <p>2.2.5 Synthesis of (−)‐Talaumidin, 36</p> <p>2.2.6 Total Synthesis of (±)‐Schefferine, 37</p> <p>2.3 Total Synthesis Involving Intramolecular FC Alkylations, 37</p> <p>2.3.1 C─C Bond Formation Leading to Homocyclic Rings, 37</p> <p>2.3.2 C─C Bond Formation Leading to Oxygen‐Containing Rings, 43</p> <p>2.3.3 C─C Bond Formation Leading to Nitrogen‐Containing Rings, 44</p> <p>2.4 Total Synthesis Through Tandem and Cascade Processes Involving FC Reactions, 46</p> <p>2.4.1 C─C Bond Formation Leading to Homocyclic Rings, 46</p> <p>2.4.2 C─C Bond Formation Leading to Oxygen‐Containing Rings, 49</p> <p>2.4.3 C─C Bond Formation Leading to Nitrogen‐Containing Rings, 52</p> <p>2.5 Total Synthesis Involving ipso‐FC Reactions, 54</p> <p>2.5.1 Synthesis of (S)‐(−)‐Xylopinine, 54</p> <p>2.5.2 Synthesis of Garcibracteatone, 55</p> <p>2.6 Summary and Outlook, 56</p> <p>2.7 Acknowledgment, 56</p> <p>Abbreviations, 56</p> <p>References, 57</p> <p><b>3 Catalytic Friedel–Crafts Acylation Reactions 59</b><br /><i>Giovanni Sartori, Raimondo Maggi, and Veronica Santacroce</i></p> <p>3.1 Introduction and Historical Background, 59</p> <p>3.2 Catalytic Homogeneous Acylations, 60</p> <p>3.2.1 Metal Halides, 60</p> <p>3.2.2 Perfluoroalkanoic Acids, Perfluorosulfonic Acids, and Their (Metal) Derivatives, 62</p> <p>3.2.3 Miscellaneous, 63</p> <p>3.3 Catalytic Heterogeneous Acylations, 64</p> <p>3.3.1 Zeolites, 64</p> <p>3.3.2 Clays, 69</p> <p>3.3.3 Metal Oxides, 70</p> <p>3.3.4 Acid‐Treated Metal Oxides, 70</p> <p>3.3.5 Heteropoly Acids (HPAs), 71</p> <p>3.3.6 Nafion, 72</p> <p>3.3.7 Miscellaneous, 73</p> <p>3.4 Direct Phenol Acylation, 73</p> <p>3.5 Summary and Outlook, 77</p> <p>Abbreviations, 78</p> <p>References, 78</p> <p><b>4 The Use of Quantum Chemistry for Mechanistic Analyses of SEAr Reactions 83</b><br /><i>Tore Brinck and Magnus Liljenberg</i></p> <p>4.1 Introduction, 83</p> <p>4.1.1 Historical Overview of Early Quantum Chemistry Work, 83</p> <p>4.1.2 Current Mechanistic Understanding Based on Kinetic and Spectroscopic Studies, 85</p> <p>4.2 The SEAr Mechanism: Quantum Chemical Characterization in Gas Phase and Solution, 87</p> <p>4.2.1 Nitration and Nitrosation, 87</p> <p>4.2.2 Halogenation, 93</p> <p>4.2.3 Sulfonation, 96</p> <p>4.2.4 Friedel–Crafts Alkylations and Acylations, 96</p> <p>4.3 Prediction of Relative Reactivity and Regioselectivity Based on Quantum Chemical Descriptors, 97</p> <p>4.4 Quantum Chemical Reactivity Prediction Based on Modeling of Transition States and Intermediates, 100</p> <p>4.4.1 Transition State Modeling, 100</p> <p>4.4.2 The Reaction Intermediate or Sigma‐Complex Approach, 101</p> <p>4.5 Summary and Conclusions, 102</p> <p>Abbreviations, 103</p> <p>References, 103</p> <p><b>5 Catalytic Enantioselective Electrophilic Aromatic Substitutions 107</b><br /><i>Marco Bandini</i></p> <p>5.1 Introduction and Historical Background, 107</p> <p>5.2 Metal‐Catalyzed AFCA of Aromatic Hydrocarbons, 109</p> <p>5.2.1 Introduction, 109</p> <p>5.2.2 Metal‐Catalyzed Condensation of Arenes with Carbonyl Compounds and Their Nitrogen Derivatives, 110</p> <p>5.3 Organocatalyzed AFCA of Aromatic Hydrocarbons, 116</p> <p>5.3.1 Introduction, 116</p> <p>5.3.2 Asymmetric Organocatalyzed Condensation of Arenes with Carbonyl Compounds and Their Nitrogen Derivatives, 117</p> <p>5.3.3 Asymmetric Organocatalyzed Alkylations of Arenes via Michael Additions, 118</p> <p>5.3.4 Organo‐SOMO‐Catalyzed Asymmetric Alkylations of Arenes, 122</p> <p>5.3.5 Miscellaneous in Asymmetric Organocatalyzed Alkylations of Arenes, 124</p> <p>5.4 Merging Asymmetric Metal and Organocatalysis in Friedel–Crafts Alkylations, 125</p> <p>5.5 Summary and Outlook, 126</p> <p>Abbreviations, 127</p> <p>References, 127</p> <p><b>PART II NUCLEOPHILIC AROMATIC SUBSTITUTION 131</b></p> <p><b>6 Nucleophilic Aromatic Substitution: An Update Overview 133</b><br /><i>Michael R. Crampton</i></p> <p>6.1 Introduction, 133</p> <p>6.2 The SNAr Mechanism, 135</p> <p>6.2.1 Effects of Activating Groups, 138</p> <p>6.2.2 Leaving Group Effects, 140</p> <p>6.2.3 The Attacking Nucleophile, 141</p> <p>6.2.4 Solvent Effects, 145</p> <p>6.2.5 Intramolecular Rearrangements, 146</p> <p>6.3 Meisenheimer Adducts, 150</p> <p>6.3.1 Spectroscopic and Crystallographic Studies, 150</p> <p>6.3.2 Range and Variety of Substrates and Nucleophiles, 153</p> <p>6.3.3 Superelectrophilic Systems, 158</p> <p>6.4 The SN1 Mechanism, 159</p> <p>6.4.1 Heterolytic and Homolytic Pathways, 159</p> <p>6.5 Synthetic Applications, 160</p> <p>Abbreviations, 167</p> <p>References, 167</p> <p><b>7 Theoretical and Experimental Methods for the Analysis of Reaction Mechanisms in SNAr Processes: Fugality, Philicity, and Solvent Effects 175</b><br /><i>Renato Contreras, Paola R. Campodónico, and Rodrigo Ormazábal‐Toledo</i></p> <p>7.1 Introduction, 175</p> <p>7.2 Conceptual DFT: Global, Regional, and Nonlocal Reactivity Indices, 176</p> <p>7.3 Practical Applications of Conceptual DFT Descriptors, 179</p> <p>7.3.1 Nucleophilicity and LG Scales, 180</p> <p>7.3.2 Activation Properties: Reactivity Indices Profiles, 181</p> <p>7.4 SNAr Reaction Mechanism, 183</p> <p>7.4.1 Kinetic Measurements, 183</p> <p>7.4.2 Nucleophilicity, LG, and PG Abilities, 185</p> <p>7.5 Integrated Experimental and Theoretical Models, 187</p> <p>7.5.1 Hydrogen Bonding Effects, 187</p> <p>7.6 Solvent Effects in Conventional Solvents and Ionic Liquids, 188</p> <p>7.6.1 Preferential Solvation, 188</p> <p>7.6.2 Ionic Liquids and Catalysis, 189</p> <p>7.7 Summary and Outlook, 189</p> <p>Abbreviations, 190</p> <p>References, 190</p> <p><b>8 Asymmetric Nucleophilic Aromatic Substitution 195</b><br /><i>Anne‐Sophie Castanet, Anne Boussonnière, and Jacques Mortier</i></p> <p>8.1 Introduction, 195</p> <p>8.2 Auxiliary‐ and Substrate‐Controlled Asymmetric Nucleophilic Aromatic Substitution, 198</p> <p>8.2.1 Chiral Electron‐Withdrawing Groups, 198</p> <p>8.2.2 Chiral Leaving Groups, 202</p> <p>8.2.3 Planar Chiral Arenes, 205</p> <p>8.2.4 Chiral Tethered Arenes, 207</p> <p>8.2.5 Chiral Nucleophiles, 209</p> <p>8.3 Chiral Catalyzed Asymmetric Nucleophilic Aromatic Substitution, 210</p> <p>8.3.1 Chiral Ligands, 211</p> <p>8.3.2 Chiral Phase Transfer Catalysts, 211</p> <p>8.4 Absolute Asymmetric Nucleophilic Aromatic Substitution, 213</p> <p>8.5 Summary and Outlook, 214</p> <p>Abbreviations, 214</p> <p>References, 215</p> <p><b>9 Homolytic Aromatic Substitution 219</b><br /><i>Roberto A. Rossi, María E. Budén, and Javier F. Guastavino</i></p> <p>9.1 Introduction: Scope and Limitations, 219</p> <p>9.2 Radicals Generated by Homolytic Cleavage Processes: Thermolysis and Photolysis, 223</p> <p>9.3 Reactions Mediated by Tin and Silicon Hydrides, 225</p> <p>9.4 Radicals Generated by ET: Redox Reactions, 229</p> <p>9.4.1 Reducing Metals, 229</p> <p>9.4.2 Other Reducing Agents, 232</p> <p>9.4.3 Oxidizing Metals, 233</p> <p>9.4.4 Base-Promoted Homolytic Aromatic Substitution (BHAS), 236</p> <p>9.5 Summary and Outlook, 237</p> <p>Abbreviations, 238</p> <p>References, 238</p> <p><b>10 Radical‐Nucleophilic Aromatic Substitution 243</b><br /><i>Roberto A. Rossi, Javier F. Guastavino, and María E. Budén</i></p> <p>10.1 Introduction: Scope and Limitations—Background, 243</p> <p>10.2 Mechanistic Considerations, 245</p> <p>10.2.1 Initiation Step, 245</p> <p>10.2.2 Propagation Steps, 246</p> <p>10.2.3 Termination Steps, 248</p> <p>10.3 Intermolecular SRN1 Reactions, 248</p> <p>10.3.1 Nucleophiles from Group 14: C and Sn, 248</p> <p>10.3.2 Nucleophiles Derived from Group 15: N, P, As, and Sb, 254</p> <p>10.3.3 Nucleophiles Derived from Group 16: O, S, Se, and Te, 256</p> <p>10.4 Intramolecular SRN1 Reactions, 258</p> <p>10.5 Miscellaneous Ring Closure Reactions, 262</p> <p>10.5.1 Exo or Endo Radical Cyclization Followed by an SRN1 Reaction, 262</p> <p>10.5.2 Intermolecular SRN1 Reaction Followed by Intramolecular SRN1 or BHAS Reaction, 263</p> <p>10.6 Summary and Outlook, 264</p> <p>Abbreviations, 265</p> <p>References, 265</p> <p><b>11 Nucleophilic Substitution of Hydrogen in Electron‐Deficient Arenes 269</b><br /><i>Mieczysław Mąkosza</i></p> <p>11.1 Introduction, 269</p> <p>11.2 Oxidative Nucleophilic Substitution of Hydrogen, 270</p> <p>11.3 Conversion of the σH‐Adducts of Nucleophiles to Nitroarenes into Substituted Nitrosoarenes, 276</p> <p>11.4 Vicarious Nucleophilic Substitution of Hydrogen, 278</p> <p>11.4.1 Introduction, 278</p> <p>11.4.2 Mechanism of VNS Reaction, 279</p> <p>11.4.3 Scope and Limitation of VNS, 283</p> <p>11.5 Other Ways of Conversion of the σH‐Adducts, 291</p> <p>11.6 Concluding Remarks, 293</p> <p>Abbreviations, 295</p> <p>References, 295</p> <p><b>PART III ARYNE CHEMISTRY 299</b></p> <p><b>12 The Chemistry of Arynes: An Overview 301</b><br /><i>Roberto Sanz and Anisley Suárez</i></p> <p>12.1 Introduction, 301</p> <p>12.2 Structure and Representative Reactions of Arynes, 301</p> <p>12.3 Aryne Generation, 303</p> <p>12.3.1 Elimination Methods, 303</p> <p>12.3.2 By Hexadehydro‐Diels–Alder Reaction, 306</p> <p>12.4 Pericyclic Reactions, 306</p> <p>12.4.1 Diels–Alder Cycloadditions, 306</p> <p>12.4.2 [3+2] Cycloadditions, 309</p> <p>12.4.3 [2+2] Cycloadditions with Alkenes, 311</p> <p>12.4.4 Ene Reactions, 313</p> <p>12.5 Nucleophilic Addition Reactions to Arynes, 314</p> <p>12.5.1 Regioselectivity Issues for Functionalized Arynes, 314</p> <p>12.5.2 Proton Abstraction: Monosubstitution of the Aryne, 315</p> <p>12.5.3 Three‐Component Reactions, 317</p> <p>12.5.4 Aryne Insertion Reactions into σ‐Bonds, 321</p> <p>12.5.5 Aryne Annulation, 325</p> <p>12.6 Transition Metal–Catalyzed Reactions of Arynes, 327</p> <p>12.6.1 Cyclotrimerization of Arynes, 327</p> <p>12.6.2 Cocyclization of Arynes with Alkynes, 327</p> <p>12.6.3 Cocyclization of Arynes with Alkenes, 327</p> <p>12.6.4 Cocyclization of Arynes, Alkenes, and Alkynes, 329</p> <p>12.6.5 Intermolecular Carbopalladation of Arynes, 329</p> <p>12.6.6 Catalytic Insertion Reactions of Arynes into σ‐Bonds, 330</p> <p>12.7 Conclusion, 332</p> <p>Abbreviations, 332</p> <p>References, 333</p> <p><b>PART IV REDUCTION, OXIDATION, AND DEAROMATIZATION REACTIONS 337</b></p> <p><b>13 Reduction/Hydrogenation of Aromatic Rings 339</b><br /><i>Francisco Foubelo and Miguel Yus</i></p> <p>13.1 Introduction, 339</p> <p>13.2 The Birch Reaction, 339</p> <p>13.2.1 Dissolving Metals, 340</p> <p>13.2.2 Enzymatic Reactions, 344</p> <p>13.3 Metal‐Catalyzed Hydrogenations, 345</p> <p>13.3.1 Homogeneous Conditions, 345</p> <p>13.3.2 Heterogeneous Conditions, 351</p> <p>13.4 Electrochemical Reductions, 357</p> <p>13.5 Other Methodologies, 359</p> <p>13.6 Summary and Outlook, 361</p> <p>Abbreviations, 361</p> <p>References, 362</p> <p><b>14 Selective Oxidation of Aromatic Rings 365</b><br /><i>Oxana A. Kholdeeva</i></p> <p>14.1 Introduction, 365</p> <p>14.2 Mechanistic Principles, 367</p> <p>14.2.1 Autoxidation, 367</p> <p>14.2.2 Spin‐Forbidden Reactions with Triplet Oxygen, 369</p> <p>14.2.3 Radical Hydroxylation (Addition–Elimination), 370</p> <p>14.2.4 Electron Transfer Mechanisms, 371</p> <p>14.2.5 Electrophilic Hydroxylation via Oxygen Atom Transfer, 373</p> <p>14.2.6 Heterolytic Activation of Substrate, 374</p> <p>14.3 Stoichiometric Oxidations, 374</p> <p>14.4 Catalytic Oxidations, 375</p> <p>14.4.1 Benzene, 375</p> <p>14.4.2 Polycyclic Arenes, 379</p> <p>14.4.3 Alkylarenes, 379</p> <p>14.4.4 Electron‐Poor Aromatic Compounds, 382</p> <p>14.4.5 ortho‐Hydroxylation Driven by Arene Functional Group, 382</p> <p>14.4.6 Phenol, 383</p> <p>14.4.7 Alkylphenols and Alkoxyarenes, 384</p> <p>14.5 Photochemical Oxidations, 386</p> <p>14.6 Electrochemical Oxidations, 387</p> <p>14.7 Enzymatic Hydroxylation, 389</p> <p>14.8 Summary and Outlook, 390</p> <p>Acknowledgments, 391</p> <p>Abbreviations, 391</p> <p>References, 392</p> <p><b>15 Dearomatization Reactions: An Overview 399</b><br /><i>F. Christopher Pigge</i></p> <p>15.1 Introduction, 399</p> <p>15.2 Alkylative Dearomatization, 400</p> <p>15.2.1 C‐Alkylation of Phenolate Anions, 400</p> <p>15.2.2 Anionic Dearomatization, 401</p> <p>15.2.3 Radical Dearomatization, 403</p> <p>15.3 Photochemical and Thermal Dearomatization, 405</p> <p>15.3.1 Dearomatization by Photocycloaddition, 405</p> <p>15.3.2 Dearomatization by Thermally Induced Rearrangement, 406</p> <p>15.4 Oxidative Dearomatization, 408</p> <p>15.4.1 Oxidative Dearomatization with Formation of Carbon–Heteroatom Bonds, 408</p> <p>15.4.2 Oxidative Dearomatization with Formation of Carbon–Carbon Bonds, 411</p> <p>15.5 Transition Metal‐Assisted Dearomatization, 413</p> <p>15.5.1 Dearomatization Reactions of Metal Carbenoids, 413</p> <p>15.5.2 Dearomatization Catalyzed by Palladium, Iridium, and Related Complexes, 413</p> <p>15.5.3 Dearomatization of η2‐Arene Metal Complexes, 416</p> <p>15.5.4 Dearomatization of η6‐Arene Metal Complexes, 417</p> <p>15.6 Enzymatic Dearomatization, 418</p> <p>15.7 Conclusions and Future Directions, 419</p> <p>Abbreviations, 419</p> <p>References, 420</p> <p><b>PART V AROMATIC REARRANGEMENTS 425</b></p> <p><b>16 Aromatic Compounds via Pericyclic Reactions 427</b><br /><i>Sethuraman Sankararaman</i></p> <p>16.1 Introduction, 427</p> <p>16.2 Electrocyclic Ring Closure Reaction, 428</p> <p>16.2.1 Application of Electrocyclic Ring Closure in Aromatic Synthesis, 429</p> <p>16.3 Introduction to Cycloaddition Reactions, 433</p> <p>16.3.1 Application of [4+2] Cycloaddition Method for Synthesis of Aromatic Compounds, 434</p> <p>16.4 Conclusions, 448</p> <p>Abbreviations, 448</p> <p>References, 448</p> <p><b>17 Ring‐Closing Metathesis: Synthetic Routes to Carbocyclic Aromatic Compounds using Ring‐Closing Alkene and Enyne Metathesis 451</b><br /><i>Charles B. de Koning and Willem A. L. van Otterlo</i></p> <p>17.1 Introduction, 451</p> <p>17.2 Alkene RCM for the Synthesis of Aromatic Compounds, 454</p> <p>17.2.1 Synthesis of Substituted Benzenes, 454</p> <p>17.2.2 Synthesis of Substituted Naphthalenes, 458</p> <p>17.2.3 Synthesis of Substituted Phenanthrenes, 458</p> <p>17.2.4 Synthesis of Anthraquinones and Benzo‐Fused Anthraquinones, 459</p> <p>17.2.5 Applications in the Synthesis of Polyarenes, 461</p> <p>17.2.6 Applications in the Synthesis of Natural Products, 462</p> <p>17.3 Enyne Metathesis Followed by the Diels–Alder Reaction for the Synthesis of Benzene Rings in Complex Aromatic Compounds, 464</p> <p>17.3.1 Synthesis of Substituted Benzenes, 464</p> <p>17.3.2 Synthesis of Substituted Phenanthrenes, 466</p> <p>17.3.3 Synthesis of Complex Naphthoquinones and Anthraquinones, 466</p> <p>17.3.4 Applications to the Synthesis of Biologically Active Products, 470</p> <p>17.4 Cyclotrimerization for the Synthesis of Aromatic Compounds by Metathetic Processes, 470</p> <p>17.5 Strategies for the Synthesis of Aromatic Carbocycles Fused to Heterocycles by the RCM Reaction, 472</p> <p>17.5.1 Alkene RCM for the Synthesis of Benzene Rings in Indoles, Carbazoles, Benzo‐Fused Pyridines and Pyridones, and Benzo‐Fused Imidazoles, 472</p> <p>17.5.2 Enyne RCM for the Synthesis of Benzene Rings in Tetrahydroisoquinolines, Annulated 1,2‐Oxaza‐ and 1,2‐Bisazacycles, and Indoles, 479</p> <p>17.6 Future Challenges, 481</p> <p>17.7 Conclusions, 481</p> <p>Abbreviations, 482</p> <p>References, 482</p> <p><b>18 Aromatic Rearrangements in which the Migrating Group Migrates to the Aromatic Nucleus: An Overview 485</b><br /><i>Timothy J. Snape</i></p> <p>18.1 Introduction, 485</p> <p>18.2 Mechanisms by Classification, 486</p> <p>18.2.1 Intramolecular Reactions: Nucleophilic Aromatic Substitution, 486</p> <p>18.2.2 Intramolecular: Sigmatropic Rearrangements, 494</p> <p>18.2.3 Intermolecular Rearrangements, 500</p> <p>18.3 Summary and Outlook, 508</p> <p>Abbreviations, 508</p> <p>References, 508</p> <p><b>PART VI TRANSITION METAL‐MEDIATED COUPLING 511</b></p> <p><b>19 Transition Metal‐Catalyzed Carbon–Carbon Cross‐Coupling 513</b><br /><i>Anny Jutand and Guillaume Lefèvre</i></p> <p>19.1 Introduction, 513</p> <p>19.2 The Mizoroki–Heck Reaction, 513</p> <p>19.2.1 General Considerations and Mechanisms, 513</p> <p>19.2.2 Scope of the Reaction, 520</p> <p>19.2.3 Synthetic Application, 523</p> <p>19.3 Cross‐Coupling of Aryl Halides with Anionic C‐Nucleophiles, 523</p> <p>19.3.1 The Kumada Reactions: Nickel‐Catalyzed Cross‐Coupling with Grignard Reagents, 523</p> <p>19.3.2 Palladium‐Catalyzed Cross‐Coupling with Grignard Reagents, 524</p> <p>19.3.3 The Negishi Reaction: Palladium‐Catalyzed Cross‐Coupling with Organozinc Reagents, 525</p> <p>19.3.4 Palladium‐Catalyzed Cross‐Coupling with Organolithium Reagents, 525</p> <p>19.3.5 Mechanism of Palladium‐Catalyzed Cross‐Couplings with Rm (m = Li, MgY, ZnY), 526</p> <p>19.3.6 Nickel‐ and Palladium‐Catalyzed Arylation of Ketone, Ester, and Amide Enolates, 528</p> <p>19.4 The Sonogashira Reaction, 530</p> <p>19.4.1 General Considerations and Mechanism, 530</p> <p>19.4.2 Synthetic Applications, 531</p> <p>19.5 The Stille Reaction, 532</p> <p>19.5.1 General Considerations and Mechanism, 532</p> <p>19.5.2 Synthetic Application, 533</p> <p>19.6 The Suzuki–Miyaura Reaction, 534</p> <p>19.6.1 General Considerations and Mechanism, 534</p> <p>19.6.2 Synthetic Application, 539</p> <p>19.7 The Hiyama Reaction, 539</p> <p>19.7.1 General Considerations and Mechanism, 539</p> <p>19.7.2 Synthetic Applications, 541</p> <p>19.8 Summary and Outlook, 541</p> <p>Abbreviations, 541</p> <p>References, 541</p> <p><b>20 Transition Metal‐Mediated Carbon–Heteroatom Cross‐Coupling (C─N, C─O, C─S, C─Se, C─Te, C─P, C─As, C─Sb, and C─B Bond Forming Reactions): An Overview 547</b><br /><i>Masanam Kannan, Mani Sengoden, and Tharmalingam Punniyamurthy</i></p> <p>20.1 Introduction, 547</p> <p>20.2 C—N Cross‐Coupling, 550</p> <p>20.2.1 Palladium‐Catalyzed Reactions, 550</p> <p>20.2.2 Copper‐Catalyzed Reactions, 555</p> <p>20.2.3 Other Transition Metal‐Catalyzed Reactions, 559</p> <p>20.2.4 Synthetic Applications, 560</p> <p>20.3 C—O Cross‐Coupling, 561</p> <p>20.3.1 Reactions with Aromatic Alcohols, 561</p> <p>20.3.2 Reactions with Aliphatic Alcohols, 563</p> <p>20.3.3 Synthesis of Phenols, 566</p> <p>20.3.4 Synthetic Applications, 567</p> <p>20.4 C—S Cross‐Coupling, 569</p> <p>20.4.1 Palladium‐Catalyzed Reactions, 569</p> <p>20.4.2 Copper‐Catalyzed Reactions, 569</p> <p>20.4.3 Other Transition Metal‐Catalyzed Reactions, 570</p> <p>20.5 C—Se Cross‐Coupling, 571</p> <p>20.6 C—Te Cross‐Coupling, 571</p> <p>20.7 C—P Cross‐Coupling, 572</p> <p>20.7.1 Palladium‐Catalyzed Reactions, 572</p> <p>20.7.2 Copper‐Catalyzed Reactions, 576</p> <p>20.7.3 Nickel‐Catalyzed Reactions, 577</p> <p>20.8 C—As and C—Sb Cross‐Coupling, 578</p> <p>20.9 C—B Cross‐Coupling, 578</p> <p>20.10 Summary and Outlook, 579</p> <p>Abbreviations, 579</p> <p>References, 579</p> <p><b>21 Transition Metal‐Mediated Aromatic Ring Construction 587</b><br /><i>Ken Tanaka</i></p> <p>21.1 Introduction, 587</p> <p>21.2 [2+2+2] Cycloaddition, 587</p> <p>21.2.1 Mechanism, 588</p> <p>21.2.2 [2+2+2] Cycloaddition of Monoynes, 589</p> <p>21.2.3 [2+2+2] Cycloaddition of Diynes with Monoynes, 590</p> <p>21.2.4 [2+2+2] Cycloaddition of Triynes, 598</p> <p>21.3 [3+2+1] Cycloaddition, 601</p> <p>21.4 [4+2] Cycloaddition, 602</p> <p>21.4.1 Diels–Alder Reactions, 602</p> <p>21.4.2 Reactions of Enynes with Alkynes, 603</p> <p>21.4.3 Reactions via Pyrylium Intermediates, 606</p> <p>21.4.4 Reactions via Acylmetallacycles, 607</p> <p>21.5 Intramolecular Cycloaromatization, 608</p> <p>21.5.1 Intramolecular Hydroarylation of Alkynes, 608</p> <p>21.5.2 Cyclization via Transition Metal Vinylidenes, 610</p> <p>21.6 Summary and Outlook, 612</p> <p>References, 612</p> <p><b>22 Ar–C Bond Formation by Aromatic Carbon–Carbon ipso‐Substitution Reaction 615</b><br /><i>Maurizio Fagnoni and Sergio M. Bonesi</i></p> <p>22.1 Introduction, 615</p> <p>22.2 Formation of Ar–C(sp3) Bonds, 616</p> <p>22.2.1 Ni‐Catalyzed Reactions, 616</p> <p>22.2.2 Rh‐Catalyzed Reactions, 617</p> <p>22.2.3 Pd‐Catalyzed Reactions, 619</p> <p>22.3 Formation of Ar–C(sp2) Bonds, 620</p> <p>22.3.1 Synthesis of Aryl Ketones and Amidines, 620</p> <p>22.3.2 Formation of Ar–Vinyl Bonds, 620</p> <p>22.3.3 Formation of Ar–Ar Bonds, 628</p> <p>22.3.4 Formation of Benzocondensed Derivatives, 636</p> <p>22.4 Formation of Ar–C(sp) Bonds, 638</p> <p>22.5 Summary and Outlook, 639</p> <p>Abbreviations, 639</p> <p>References, 640</p> <p><b>PART VII C─H FUNCTIONALIZATION 645</b></p> <p><b>23 Chelate‐Assisted Arene C–H Bond Functionalization 647</b><br /><i>Marion H. Emmert and Christopher J. Legacy</i></p> <p>23.1 Introduction, 647</p> <p>23.1.1 Mechanisms of Chelate‐Assisted C–H Bond Functionalization and Activation, 648</p> <p>23.1.2 Weakly and Strongly Coordinating Directing Groups, 651</p> <p>23.1.3 Common Directing Groups, 651</p> <p>23.1.4 Transformable and In Situ Generated Directing Groups, 652</p> <p>23.2 Carbon–Carbon (C–C) Bond Formations, 654</p> <p>23.2.1 C–CAryl Bond Formations, 654</p> <p>23.2.2 C–CAlkenyl Bond Formations, 655</p> <p>23.2.3 C–CAlkyl Bond Formations, 656</p> <p>23.2.4 C–CAcyl Bond Formations, 657</p> <p>23.2.5 C–CN Bond Formations, 658</p> <p>23.2.6 C–CF3 Bond Formations, 659</p> <p>23.3 Carbon–Heteroatom (C–X) Bond Formations, 660</p> <p>23.3.1 C–B Bond Formations, 660</p> <p>23.3.2 C–Si Bond Formations, 661</p> <p>23.3.3 C–O Bond Formations, 662</p> <p>23.3.4 C–N Bond Formations, 662</p> <p>23.3.5 C–P Bond Formations, 664</p> <p>23.3.6 C–S Bond Formations, 665</p> <p>23.3.7 C–Halogen Bond Formations, 666</p> <p>23.3.8 C–D Bond Formations, 667</p> <p>23.4 Stereoselective C–H Functionalizations, 668</p> <p>Abbreviations, 669</p> <p>References, 669</p> <p><b>24 Reactivity and Selectivity in Transition Metal‐Catalyzed, Nondirected Arene Functionalizations 675</b><br /><i>Dipannita Kalyani and Elodie E. Marlier</i></p> <p>24.1 Introduction, 675</p> <p>24.2 Arylation, 676</p> <p>24.2.1 Direct Arylations, 677</p> <p>24.2.2 Cross‐Dehydrogenative Arylations, 684</p> <p>24.3 Alkenylation, 693</p> <p>24.4 Alkylation, 699</p> <p>24.5 Carboxylation, 701</p> <p>24.6 Oxygenation, 701</p> <p>24.7 Thiolation, 704</p> <p>24.8 Amination, 706</p> <p>24.9 Miscellaneous, 708</p> <p>24.9.1 Halogenation, 708</p> <p>24.9.2 Silylation, 708</p> <p>24.9.3 Borylation, 709</p> <p>24.10 Summary and Outlook, 710</p> <p>Abbreviations, 710</p> <p>References, 710</p> <p><b>25 Functionalization of Arenes via C─H Bond Activation Catalysed by Transition Metal Complexes: Synergy between Experiment and Theory 715</b><br /><i>Amalia Isabel Poblador‐Bahamonde</i></p> <p>25.1 Introduction, 715</p> <p>25.2 Mechanisms of C─H Bond Activation, 716</p> <p>25.3 Development of Stoichiometric C─H Bond Activation, 718</p> <p>25.3.1 Mechanistic Ambiguity: The Power of Theory, 721</p> <p>25.3.2 C─H Activation Assisted by Carboxylate or Carbonate Bases, 723</p> <p>25.4 Catalytic C─H Activation and Functionalization, 730</p> <p>25.4.1 Hydroarylation of Alkenes, 730</p> <p>25.4.2 Arene Functionalization via a Base‐Assisted Mechanism, 735</p> <p>25.5 Summary, 738</p> <p>Abbreviations, 738</p> <p>References, 738</p> <p><b>PART VIII DIRECTED METALATION REACTIONS 741</b></p> <p><b>26 Directed Metalation of Arenes with Organolithiums, Lithium Amides, and Superbases 743</b><br /><i>Frédéric R. Leroux and Jacques Mortier</i></p> <p>26.1 Introduction, 743</p> <p>26.2 Preparation and Reactivity of Organolithium Compounds, 744</p> <p>26.2.1 Bases and Complexing Agents, 744</p> <p>26.2.2 Solvents, 746</p> <p>26.2.3 Electrophiles, 747</p> <p>26.3 Directed ortho-Metalation (DoM), 748</p> <p>26.3.1 Mechanisms: Complex‐Induced Proximity Effect Process, Kinetically Enhanced Metalation, and Overriding Base Mechanism, 748</p> <p>26.3.2 Directing Metalation Groups (DMGs), 750</p> <p>26.3.3 Optional Site Selectivity: Selected Examples, 750</p> <p>26.3.4 External and In Situ Quench Conditions, 754</p> <p>26.3.5 Apparent Anomalies in the Reactivity of Certain Electrophiles, 756</p> <p>26.4 Directed remote Metalation (DreM), 757</p> <p>26.5 Peri Lithiation of Substituted Naphthalenes, 759</p> <p>26.6 Lithiation of Metal Arene Complexes, 760</p> <p>26.7 Lateral Lithiation, 761</p> <p>26.8 Analytical Methods, 762</p> <p>26.8.1 Quantitative Determination of Organolithiums, 762</p> <p>26.8.2 Qualitative Determination of Organolithiums, 763</p> <p>26.8.3 Crystallography, 763</p> <p>26.8.4 NMR Spectroscopy, 765</p> <p>26.9 Synthetic Applications, 765</p> <p>26.9.1 DoM and C─C Cross‐Coupling, 765</p> <p>26.9.2 DoM, DreM, and Anionic Fries Rearrangement, 766</p> <p>26.9.3 Industrial Scale‐Up of Ortho Metalation Reactions, 768</p> <p>26.9.4 Lateral Lithiation, 768</p> <p>26.9.5 Superbase Metalation, 769</p> <p>26.10 Conclusion, 770</p> <p>Abbreviations, 771</p> <p>References, 771</p> <p><b>27 Deprotonative Metalation Using Alkali Metal–Nonalkali Metal Combinations 777</b><br /><i>Floris Chevallier, Florence Mongin, Ryo Takita, and Masanobu Uchiyama</i></p> <p>27.1 Introduction, 777</p> <p>27.2 Preparation of the Bimetallic Combinations and their Structural Features, 778</p> <p>27.2.1 Preparation of Alkali Metal–Nonalkali Metal Basic Combinations, 778</p> <p>27.2.2 Ate Compounds, 778</p> <p>27.2.3 Salt‐Activated Compounds, 779</p> <p>27.2.4 Contacted and Solvent‐Separated Ion Pairs, 779</p> <p>27.3 Behavior of Alkali Metal–Nonalkali Metal Combinations, 779</p> <p>27.3.1 One‐Electron and Two‐Electron Transfers, 779</p> <p>27.3.2 Base and Nucleophile Ligand Transfers, 780</p> <p>27.4 Mechanistic Studies on the Deprotometalation Using Alkali Metal–Nonalkali Metal Combinations, 780</p> <p>27.4.1 Deprotometalation Using Alkali Metal–Amidozincate Complexes, 780</p> <p>27.4.2 Deprotometalation Using Alkali Metal–Amidoaluminate Complexes, 783</p> <p>27.4.3 Deprotometalation Using Alkali Metal–Amidocuprate Complexes, 786</p> <p>27.4.4 Deprotometalation Using Alkali Metal–Amidocadmate Complexes, 789</p> <p>27.5 Scope and Applications of the Deprotometalation, 790</p> <p>27.5.1 Using Lithium– or Sodium–Magnesium Mixed‐Metal Bases, 790</p> <p>27.5.2 Using Lithium–Aluminum Mixed‐Metal Bases, 793</p> <p>27.5.3 Using Lithium–, Sodium–, or Magnesium–Manganese Mixed‐Metal Bases, 795</p> <p>27.5.4 Using Lithium–, Sodium–, or Magnesium–Iron Mixed‐Metal Bases, 798</p> <p>27.5.5 Using Lithium–Cobalt Mixed‐Metal Bases, 799</p> <p>27.5.6 Using Lithium–Copper Mixed‐Metal Bases, 799</p> <p>27.5.7 Using Lithium–, Sodium–, or Magnesium–Zinc Mixed‐Metal Bases, 799</p> <p>27.5.8 Using Lithium– or Magnesium–Zirconium Mixed‐Metal Bases, 804</p> <p>27.5.9 Using Lithium–Cadmium Mixed‐Metal Bases, 804</p> <p>27.5.10 Using Lithium– or Magnesium–Lanthanum Mixed‐Metal Bases, 805</p> <p>27.6 Conclusion and Perspectives, 807</p> <p>Acknowledgments, 807</p> <p>Abbreviations, 807</p> <p>References, 807</p> <p><b>28 The Halogen/Metal Interconversion and Related Processes (M = Li, Mg) 813</b><br /><i>Armen Panossian and Frédéric R. Leroux</i></p> <p>28.1 Introduction, 813</p> <p>28.2 Generalities, 814</p> <p>28.2.1 Monometallic Organolithium Reagents, 814</p> <p>28.2.2 Monometallic Organomagnesium Reagents, 814</p> <p>28.2.3 Bimetallic Organolithium/Magnesium Reagents, 814</p> <p>28.3 Mechanism of the Halogen/Metal Interconversion, 815</p> <p>28.3.1 Reactivity, 815</p> <p>28.3.2 Mechanism, 816</p> <p>28.4 Halogen Migration on Aromatic Compounds, 817</p> <p>28.5 Selective Synthesis via Halogen/Metal Interconversion, 818</p> <p>28.5.1 Chemo and Regioselectivity of Halogen/Metal Interconversions, 818</p> <p>28.5.2 Stereoselectivity of Halogen/Metal Interconversions, 821</p> <p>28.6 The Sulfoxide/Metal and Phosphorus/Metal Interconversions, 822</p> <p>28.6.1 The Sulfoxide/Metal Interconversion, 822</p> <p>28.6.2 The Phosphorus/Metal Interconversion, 826</p> <p>28.7 Aryl─Aryl Coupling Through Halogen/Metal Interconversion, 827</p> <p>28.7.1 (Re)emerging Methods for Aryl─Aryl Coupling Through Halogen/Metal Interconversion, 827</p> <p>28.7.2 Aryne‐Mediated Aryl─Aryl Coupling, 828</p> <p>28.8 Summary and Outlook, 830</p> <p>Abbreviations, 830</p> <p>References, 830</p> <p><b>PART IX PHOTOCHEMICAL REACTIONS 835</b></p> <p><b>29 Aromatic Photochemical Reactions 837</b><br /><i>Norbert Hoffmann and Emmanuel Riguet</i></p> <p>29.1 Introduction, 837</p> <p>29.2 Aromatic Compounds as Chromophores, 838</p> <p>29.2.1 Photocycloaddition and Photochemical Electrocyclic Reactions Involving Aromatics, 838</p> <p>29.2.2 Photoinduced Radical Reactions, 842</p> <p>29.3 Photosensitized and Photocatalyzed Reactions, 849</p> <p>29.3.1 Metal‐Catalyzed Reactions, 849</p> <p>29.3.2 Metal‐Free Reactions, 856</p> <p>29.4 Conclusion, 864</p> <p>Abbreviation, 865</p> <p>References, 865</p> <p><b>30 Photochemical Bergman Cyclization and Related Reactions 869</b><br /><i>Rana K. Mohamed, Kemal Kaya, and Igor V. Alabugin</i></p> <p>30.1 Introduction: The Diversity of Cycloaromatization Reactions, 869</p> <p>30.2 Electronic Factors in Photo‐BC, 870</p> <p>30.2.1 Substituent Effects, 872</p> <p>30.2.2 Introducing Strain, 872</p> <p>30.3 Scope and Limitations of the Photo‐BC, 876</p> <p>30.3.1 Metal‐Mediated Photochemistry, 876</p> <p>30.3.2 Diverting from BC Pathway: Direct Excitation and Photoinduced Electron Transfer, 881</p> <p>30.4 Enediyne Photocyclizations: Tool for Cancer Therapy, 883</p> <p>30.5 Conclusion, 883</p> <p>Abbreviations, 885</p> <p>References, 885</p> <p><b>31 Photo‐Fries Reaction and Related Processes 889</b><br /><i>Francisco Galindo, M. Consuelo Jiménez, and Miguel Angel Miranda</i></p> <p>31.1 Introduction, 889</p> <p>31.2 Mechanistic Aspects, 889</p> <p>31.2.1 General Scheme, 889</p> <p>31.2.2 Experimental Evidence: Steady‐State Photolysis, 890</p> <p>31.2.3 Experimental Evidence: Time‐Resolved Studies, 891</p> <p>31.2.4 Experimental Evidence: Spin Chemistry Techniques, 894</p> <p>31.2.5 Theoretical Studies, 894</p> <p>31.3 Scope of the Reaction, 894</p> <p>31.3.1 Esters, 894</p> <p>31.3.2 Amides, 895</p> <p>31.3.3 Other, 895</p> <p>31.4 (Micro)Heterogeneous Systems as Reaction Media, 897</p> <p>31.4.1 Cyclodextrins, 897</p> <p>31.4.2 Micelles, 897</p> <p>31.4.3 Zeolites, 897</p> <p>31.4.4 Proteins, 897</p> <p>31.4.5 Other Organized Media, 897</p> <p>31.5 Applications in Organic Synthesis, 900</p> <p>31.6 Biological and Industrial Applications, 902</p> <p>31.6.1 Drugs, 902</p> <p>31.6.2 Agrochemicals, 902</p> <p>31.6.3 Polymers, 904</p> <p>31.7 Summary and Outlook, 905</p> <p>Abbreviations, 906</p> <p>References, 906</p> <p><b>PART X BIOTRANSFORMATIONS 913</b></p> <p><b>32 Biotransformations of Arenes: An Overview 915</b><br /><i>Simon E. Lewis</i></p> <p>32.1 Introduction, 915</p> <p>32.2 Dearomatizing Arene Dihydroxylation, 915</p> <p>32.3 Dearomatizing Arene Epoxidation, 918</p> <p>32.4 Arene Alkylation (Biocatalytic Friedel–Crafts), 919</p> <p>32.5 Arene Deacylation (Biocatalytic Retro Friedel–Crafts), 922</p> <p>32.6 Arene Carboxylation (Biocatalytic Kolbe–Schmitt), 923</p> <p>32.7 Arene Halogenation (Halogenases), 925</p> <p>32.8 Arene Oxidation with Laccases, 925</p> <p>32.9 Tetrahydroisoquinoline Synthesis (Biocatalytic Pictet–Spengler), 929</p> <p>32.10 Arene Hydroxylation, 930</p> <p>32.11 Arene Nitration, 932</p> <p>32.12 Summary and Outlook, 933</p> <p>Abbreviations, 934</p> <p>References, 934</p> <p>INDEX 939</p>
"The broad covering of topics, made possible by the collaboration of world-renowned experts in different<br />fields of organic chemistry and by a good balance in depth of coverage, positions [this book] as a deskbook that would be extremely useful for students of advanced courses of organic chemistry, instructors and professors, as well as experienced chemists in both academy and industry, and to those interested in arene chemistry and its application." -- Chemistry International<br /><br />" ... Jacques Mortier has brought together contributions from leading practitioners in universities and research institutes from around the world to create a concise but comprehensive text on aromatic chemistry. ... They have effectively condensed the essential material, and made an ideal source of information ..." -- Applied Organometallic Chemistry
<b>Jacques Mortier, PhD, </b>is Professor of Organic Chemistry at the University of Maine in Le Mans (France), where he teaches classes on Industrial Organic Chemistry and Reaction Mechanisms in Aromatic and Heteroaromatic Chemistry. Dr. Mortier started his career as a research chemist in the crop protection industry. At the University of Maine, his research is focused on various topics dealing with polar organometallics, directed aromatic metalation methodologies, and the study of reaction mechanisms. He has extensive experience as a consultant for the chemical industry. In recognition of his research expertise, he was distinguished as a member of the University Institute of France (IUF).
Arenes, or aromatic compounds, have tremendous importance in industrial chemical applications – used across such diverse industries as pharmaceuticals, dyes, and polymers. Given the utility of aromatic reactions, there is real need for a book focusing on mechanisms and strategies for aromatic reactions.<br /><br />Stepping up to meet that demand, <i>Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds</i> surveys the main methods used for preparing these compounds and their transformations. Organized to enable students and synthetic chemists to understand and expand on aromatic reactions, the book helps those readers apply aromatic reactions in a practical context by designing syntheses. The book has 10 parts, divided into 32 chapters organized according to the types of mechanisms rather than by the conditions under which a reaction is executed. The topics covered include electrophilic aromatic substitution, nucleophilic aromatic substitution, aryne chemistry, reduction, oxidation, and dearomatization reactions, aromatic rearrangement reactions, transition metal mediated coupling, C-H bond functionalization, directed metalation and photochemical reactions, and biotransformations.<br /><br />Featuring the perspectives and expertise of leading researchers from around the world, <i>Arene Chemistry</i> offers a valuable reference and resource for the organic chemistry community. Key benefits include:<br /><br />•    A thorough and accessible mechanistic explanation of aromatic reactions of arene compounds<br />•    Connection of reactivity and methodology with mechanism, at the interface of synthesis and physical organic chemistry<br />•    Essential information about techniques used to determine reaction mechanisms<br />•    Synthetic applications

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €