Details

Applied Nanoindentation in Advanced Materials


Applied Nanoindentation in Advanced Materials


1. Aufl.

von: Atul Tiwari, Sridhar Natarajan

151,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 30.08.2017
ISBN/EAN: 9781119084525
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science.</p> <p><i>Applied Nanoindentation in Advanced Materials</i> addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively.</p> <p>Key features:</p> <ul> <li>A one stop solution for scholars and researchers to learn applied aspects of nanoindentation</li> <li>Contains contributions from leading researchers in the field</li> <li>Includes the analysis of key properties that can be studied using the nanoindentation technique</li> <li>Covers recent innovations</li> <li>Includes worked examples</li> </ul> <p><i>Applied Nanoindentation in Advanced Materials</i> is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.</p>
<p>List of Contributors xvii</p> <p>Preface xxiii</p> <p><b>Part I 1</b></p> <p><b>1 Determination of Residual Stresses by Nanoindentation 3<br /></b><i>P-L. Larsson</i></p> <p>1.1 Introduction 3</p> <p>1.2 Theoretical Background 5</p> <p>1.3 Determination of Residual Stresses 12</p> <p>1.3.1 Low Hardening Materials and Equi-biaxial Stresses 12</p> <p>1.3.2 General Residual Stresses 13</p> <p>1.3.3 Strain-hardening Effects 15</p> <p>1.3.4 Conclusions and Remarks 15</p> <p>References 16</p> <p><b>2 Nanomechanical Characterization of Carbon Films 19<br /></b><i>Ben D. Beake and TomaszW. Liskiewicz</i></p> <p>2.1 Introduction 19</p> <p>2.1.1 Types of DLC Coatings and their Mechanical Properties 19</p> <p>2.1.2 Carbon Films Processing Methods 20</p> <p>2.1.3 Residual Stresses in Carbon Films 21</p> <p>2.1.4 Friction Properties of Carbon Films 22</p> <p>2.1.5 Multilayering Strategies 23</p> <p>2.1.6 Applications of Carbon Films 24</p> <p>2.1.7 Optimization/testing Challenges 24</p> <p>2.2 Factors Influencing Reliable and Comparable Hardness and Elastic Modulus Determination 24</p> <p>2.2.1 The International Standard for Depth-sensing Indentation: EN ISO 14577–4 : 2007 24</p> <p>2.2.2 Challenges in Ultra-thin Films 27</p> <p>2.2.3 Indenter Geometry 28</p> <p>2.2.4 Surface Roughness 28</p> <p>2.3 Deformation in Indentation Contact 30</p> <p>2.3.1 The Relationship Between H/E and Plastic and ElasticWork in Nanoindentation 30</p> <p>2.3.2 Variation in H/E and Plasticity Index for Different DLC Films 31</p> <p>2.3.3 Cracking and Delamination 32</p> <p>2.3.4 Coatings on Si: Si Phase Transformation 33</p> <p>2.4 Nano-scratch Testing 34</p> <p>2.4.1 Scan Speed and Loading Rate 35</p> <p>2.4.2 Influence of Probe Radius 36</p> <p>2.4.3 Contact Pressure 36</p> <p>2.4.4 Role of the Si Substrate in Nano-scratch Testing 38</p> <p>2.4.5 Failure Behaviour of ta-C on Si 40</p> <p>2.4.6 Film Stress and Thickness 43</p> <p>2.4.7 Repetitive Nano-wear by Multi-pass Nano-scratch Tests 44</p> <p>2.4.8 Load Dependence of Friction 46</p> <p>2.5 Impact and Fatigue Resistance of DLC Films Using Nano-impact Testing 46</p> <p>2.5.1 Compositionally Graded a-C and a-C:H Coatings on M42 Tool Steel 49</p> <p>2.5.2 DLC/Cr Coating on Steel 51</p> <p>2.5.3 PACVD a-C:H Coatings on M2 Steel 51</p> <p>2.5.4 DLC Films on Si-film Thickness, Probe Geometry, Impact Force and Interfacial Toughness 52</p> <p>2.6 Wear Resistance of Amorphous Carbon Films Using Nano-fretting Testing 54</p> <p>2.6.1 Nano-fretting: State-of-the-art 55</p> <p>2.6.2 Nano-fretting of Thin DLC Films on Si 55</p> <p>2.6.3 Nano-fretting of DLC Coatings on Steel 57</p> <p>2.7 Conclusion 58</p> <p>References 59</p> <p><b>3 Mechanical Evaluation of Nanocoatings under Extreme Environments for Application in Energy Systems 69<br /></b><i>E.J. Rubio, G. Martinez, S.K. Gullapalli, M. Noor-A-Alam and C.V. Ramana</i></p> <p>3.1 Introduction 69</p> <p>3.2 Thermal Barrier Coatings 70</p> <p>3.2.1 Nanoindentation Characterization of TBCs 72</p> <p>3.2.2 Mechanical Properties of Hafnium-based TBCs 74</p> <p>3.3 Nanoindentation Evaluation of Coatings for Nuclear Power Generation Applications 76</p> <p>3.3.1 Evaluation ofW-based Materials for Nuclear Application 77</p> <p>3.4 Conclusions and Outlook 80</p> <p>Acknowledgments 81</p> <p>References 81</p> <p><b>4 Evaluation of the Nanotribological Properties of Thin Films 83<br /></b><i>ShojiroMiyake and MeiWang</i></p> <p>4.1 Introduction 83</p> <p>4.2 Evaluation Methods of Nanotribology 83</p> <p>4.3 Nanotribology Evaluation Methods and Examples 84</p> <p>4.3.1 Nanoindentation Evaluation 84</p> <p>4.3.2 Nanowear and Friction Evaluation 88</p> <p>4.3.2.1 Nanowear Properties 89</p> <p>4.3.2.2 Frictional Properties with Different Lubricants 91</p> <p>4.3.2.3 Nanowear and Frictional Properties, Evaluated with and without</p> <p>Vibrations 95</p> <p>4.3.3 Evaluation of the Force Modulation 98</p> <p>4.3.4 Evaluation of the Mechanical and Other Physical Properties 102</p> <p>4.4 Conclusions 108</p> <p>References 108</p> <p><b>5 Nanoindentation on Tribological Coatings 111<br /></b><i>Francisco J.G. Silva</i></p> <p>5.1 Introduction 111</p> <p>5.2 Relevant Properties on Coatings for Tribological Applications 116</p> <p>5.3 How can Nanoindentation Help Researchers to Characterize Coatings? 116</p> <p>5.3.1 Thin Coatings Nanoindentation Procedures 118</p> <p>5.3.2 Hardness Determination 120</p> <p>5.3.3 Young’s Modulus Determination 123</p> <p>5.3.4 Tensile Properties Determination 124</p> <p>5.3.5 Fracture Toughness inThin Films 125</p> <p>5.3.6 Coatings Adhesion Analysis 126</p> <p>5.3.7 Stiffness and Other Mechanical Properties 127</p> <p>5.3.8 Simulation and Models Applied to Nanoindentation 128</p> <p>References 129</p> <p><b>6 Nanoindentation of Macro-porous Materials for Elastic Modulus and Hardness Determination 135<br /></b><i>Zhangwei Chen</i></p> <p>6.1 Introduction 135</p> <p>6.1.1 Nanoindentation Fundamentals for Dense Materials 135</p> <p>6.1.2 Introduction to Porous Materials 137</p> <p>6.1.3 Studies of Elastic Properties of Porous Materials 138</p> <p>6.2 Nanoindentation of Macro-porous Bulk Ceramics 140</p> <p>6.3 Nanoindentation of Bone Materials 143</p> <p>6.4 Nanoindentation of Macro-porous Films 144</p> <p>6.4.1 Substrate Effect 145</p> <p>6.4.2 Densification Effect 147</p> <p>6.4.3 Surface Roughness Effect 149</p> <p>6.5 Concluding Remarks 151</p> <p>Acknowledgements 151</p> <p>References 151</p> <p><b>7 Nanoindentation Applied to DC Plasma Nitrided Parts 157<br /></b><i>Silvio Francisco Brunatto and CarlosMaurício Lepienski</i></p> <p>7.1 Introduction 157</p> <p>7.2 Basic Aspects of DC Plasma Nitrided Parts 160</p> <p>7.2.1 The Potential Distribution for an Abnormal Glow Discharge 160</p> <p>7.2.2 Plasma-surface Interaction in Cathode Surface 161</p> <p>7.2.3 Electrical Configuration Modes in DC Plasma Nitriding 162</p> <p>7.3 Basic Aspects of Nanoindentation in Nitrided Surfaces 163</p> <p>7.4 Examples of Nanoindentation Applied to DC Plasma Nitrided Parts 167</p> <p>7.4.1 Mechanical Polishing: Nanoindentation in Niobium 169</p> <p>7.4.2 Surface Roughness: Nanoindentation in DC Plasma Nitrided Parts 170</p> <p>7.4.2.1 Nanoindentation in DC Plasma Nitrided Niobium 170</p> <p>7.4.2.2 Nanoindentation in DC Plasma Nitrided Titanium 174</p> <p>7.4.2.3 Nanoindentation in DC Plasma Nitrided Martensitic Stainless Steel 175</p> <p>7.4.3 Nitrogen-concentration Gradients: Nanoindentation in DC Plasma Nitrided Tool Steel 176</p> <p>7.4.4 Crystallographic Orientation: Nanoindentation in DC Plasma Nitrided Austenitic Stainless Steels 177</p> <p>7.5 Conclusion 178</p> <p>Acknowledgements 179</p> <p>References 179</p> <p><b>8 Nanomechanical Properties of Defective Surfaces 183<br /></b><i>Oscar Rodríguez de la Fuente</i></p> <p>8.1 Introduction 183</p> <p>8.1.1 The Role of Surface Defects in Plasticity 183</p> <p>8.1.2 Experimental Techniques for Visualization and Generation of Surface Defects 184</p> <p>8.1.3 Approaches to Study and Probe Nanomechanical Properties 185</p> <p>8.2 Homogeneous and Heterogeneous Dislocation Nucleation 186</p> <p>8.2.1 Homogeneous Dislocation Nucleation 186</p> <p>8.2.2 Heterogeneous Dislocation Nucleation 188</p> <p>8.3 Surface Steps 190</p> <p>8.3.1 Studies on Surface Steps 191</p> <p>8.4 Subsurface Defects 194</p> <p>8.4.1 Sub-surface Vacancies 195</p> <p>8.4.2 Sub-surface Impurities and Dislocations 195</p> <p>8.5 Rough Surfaces 197</p> <p>8.6 Conclusions 200</p> <p>Acknowledgements 200</p> <p>References 200</p> <p><b>9 Viscoelastic and Tribological Behavior of Al2O3 Reinforced Toughened Epoxy Hybrid Nanocomposites 205<br /></b><i>Mandhakini Mohandas and AlagarMuthukaruppan</i></p> <p>9.1 Introduction 205</p> <p>9.2 Experimental 206</p> <p>9.2.1 Materials 206</p> <p>9.2.2 FTIR Analysis 208</p> <p>9.2.3 Results and Discussion 209</p> <p>9.2.3.1 Viscoeleastic Properties 210</p> <p>9.2.3.2 Hardness and Modulus by Nanoindentation 214</p> <p>9.3 Conclusion 219</p> <p>References 220</p> <p><b>10 Nanoindentation of Hybrid Foams 223<br /></b><i>Anne Jung, Zhaoyu Chen and Stefan Diebels</i></p> <p>10.1 Introduction 223</p> <p>10.1.1 Motivation 223</p> <p>10.1.2 State of the art of Nanoindentation of Metal and Metal Foam 226</p> <p>10.2 Sample Material and Preparation 230</p> <p>10.2.1 Al Material and Coating Process 230</p> <p>10.2.2 Sample Preparation for Nanoindentation 231</p> <p>10.3 Nanoindentation Experiments 232</p> <p>10.3.1 Experimental Setup 232</p> <p>10.3.2 Results and Discussion 232</p> <p>10.4 Conclusions and Outlook 239</p> <p>Acknowledgements 240</p> <p>References 240</p> <p><b>11 AFM-based Nanoindentation of Cellulosic Fibers 247<br /></b><i>Christian Ganser and Christian Teichert</i></p> <p>11.1 Introduction 247</p> <p>11.2 Experimental 248</p> <p>11.2.1 AFM Instrumentation 248</p> <p>11.2.2 AFM-based Nanoindentation 250</p> <p>11.2.3 Comparison with Results of Classical NI 255</p> <p>11.2.4 Sample Preparation 256</p> <p>11.3 Mechanical Properties of Cellulose Fibers 257</p> <p>11.3.1 Pulp Fibers 257</p> <p>11.3.2 Swollen Viscose Fibers 259</p> <p>11.4 Conclusions and Outlook 265</p> <p>Acknowledgments 265</p> <p>References 266</p> <p><b>12 Evaluation of Mechanical and Tribological Properties of Coatings for Stainless Steel 269<br /></b><i>A.Mina, J.C. Caicedo,W. Aperador, M. Mozafari and H.H. Caicedo</i></p> <p>12.1 Introduction 269</p> <p>12.2 Experimental Details 270</p> <p>12.3 Results and Discussion 271</p> <p>12.3.1 Crystal Lattice Arrangement of β-TCP/Ch Coatings 271</p> <p>12.3.2 Surface Coating Analysis 272</p> <p>12.3.3 Morphological Analysis of the β-TCP-Ch Coatings 274</p> <p>12.3.4 Mechanical Properties 276</p> <p>12.3.5 Tribological Properties 279</p> <p>12.3.6 SurfaceWear Analysis 280</p> <p>12.3.7 Adhesion Behaviour 281</p> <p>12.4 Conclusions 283</p> <p>Acknowledgements 283</p> <p>References 283</p> <p><b>13 Nanoindentation in Metallic Glasses 287<br /></b><i>Vahid Nekouie, Anish Roy and Vadim V. Silberschmidt</i></p> <p>13.1 Introduction 287</p> <p>13.1.1 Motivation 287</p> <p>13.1.2 Nanoindentation Studies of Metallic Glasses 288</p> <p>13.1.2.1 Pile-up and Sink-in 291</p> <p>13.1.2.2 Indentation Size Effect 293</p> <p>13.2 Experimental Studies 296</p> <p>13.2.1 Nano Test Platform III Indentation System 296</p> <p>13.2.2 Calibration 297</p> <p>13.2.2.1 Frame Compliance 298</p> <p>13.2.2.2 Cross-hair Calibration 298</p> <p>13.2.2.3 Indenter Area Function 298</p> <p>13.2.3 Experimental Procedure 301</p> <p>13.2.4 Results and Discussion 301</p> <p>13.3 Conclusions 307</p> <p>References 308</p> <p>Part II 313</p> <p><b>14 Molecular Dynamics Modeling of Nanoindentation 315<br /></b><i>C.J. Ruestes, E.M. Bringa, Y. Gao and H.M. Urbassek</i></p> <p>14.1 Introduction 315</p> <p>14.2 Methods 316</p> <p>14.2.1 The Indentation Tip 318</p> <p>14.2.2 Control Methods Used in Experiment and in MD Simulations 319</p> <p>14.2.3 Penetration Rate 320</p> <p>14.3 Interatomic Potentials 321</p> <p>14.3.1 Elastic Constants 321</p> <p>14.3.2 Generalized Stacking Fault Energies 322</p> <p>14.4 Elastic Regime 324</p> <p>14.5 The Onset of Plasticity 325</p> <p>14.5.1 Evolution of the Dislocation Network 325</p> <p>14.5.2 Contact Area and Hardness 327</p> <p>14.5.3 Indentation Rate Effect 328</p> <p>14.5.4 Tip Diameter Effect 329</p> <p>14.6 The Plastic Zone: Dislocation Activity 329</p> <p>14.6.1 Face-centered Cubic Metals 329</p> <p>14.6.2 Body-centered Cubic Metals 330</p> <p>14.6.3 Quantification of Dislocation Length and Density 331</p> <p>14.6.4 Pile-up 333</p> <p>14.6.5 Geometrically-necessary Dislocations and the Identification of Intrinsic Length-scales from Hardness Simulations 334</p> <p>14.7 Outlook 336</p> <p>Acknowledgements 337</p> <p>References 337</p> <p><b>15 Continuum Modelling and Simulation of Indentation in Transparent Single Crystalline Minerals and Energetic Solids 347<br /></b><i>J.D. Clayton, B.B. Aydelotte, R. Becker, C.D. Hilton and J. Knap</i></p> <p>15.1 Introduction 347</p> <p>15.2 Theory: MaterialModelling 349</p> <p>15.2.1 General Multi-field Continuum Theory 349</p> <p>15.2.2 Crystal Plasticity Theory 350</p> <p>15.2.3 Phase FieldTheory for Twinning 351</p> <p>15.3 Application: Indentation of RDX Single Crystals 352</p> <p>15.3.1 Review of PriorWork 353</p> <p>15.3.2 New Results and Analysis 354</p> <p>15.4 Application: Indentation of Calcite Single Crystals 356</p> <p>15.4.1 Review of PriorWork 359</p> <p>15.4.2 New Results and Analysis 361</p> <p>15.5 Conclusions 364</p> <p>Acknowledgements 365</p> <p>References 365</p> <p><b>16 NanoindentationModeling: From Finite Element to Atomistic Simulations 369<br /></b><i>Daniel Esqué- de los Ojos and Jordi Sort</i></p> <p>16.1 Introduction 369</p> <p>16.2 Scaling and Dimensional Analysis Applied to IndentationModelling 370</p> <p>16.2.1 Geometrical Similarity of Indenter Tips 370</p> <p>16.2.2 Dimensional Analysis 371</p> <p>16.2.3 Dimensional Analysis Applied to Extraction of Mechanical Properties 372</p> <p>16.3 Finite Element Simulations of Advanced Materials 374</p> <p>16.3.1 Nanocrystalline Porous Materials and Pressure-sensitive Models 375</p> <p>16.3.2 Finite Element Simulations of 1D Structures: Nanowires 378</p> <p>16.3.3 Continuum Crystal Plasticity Finite Element Simulations: Nanoindentation of Thin Solid Films 380</p> <p>16.4 Nucleation and Interaction of Dislocations During Single Crystal Nanoindentaion: Atomistic Simulations 383</p> <p>16.4.1 Dislocation Dynamics Simulations 383</p> <p>16.4.2 Molecular Dynamics Simulations 385</p> <p>References 386</p> <p><b>17 Nanoindentation in silico of Biological Particles 393<br /></b><i>Olga Kononova, Kenneth A. Marx and Valeri Barsegov</i></p> <p>17.1 Introduction 393</p> <p>17.2 ComputationalMethodology of Nanoindentation in silico 395</p> <p>17.2.1 Molecular Modelling of Biological Particles 395</p> <p>17.2.2 Coarse-graining: Self-organized Polymer (SOP) Model 396</p> <p>17.2.3 MultiscaleModeling Primer: SOP Model Parameterization for Microtubule Polymers 398</p> <p>17.2.4 Using Graphics Processing Units as Performance Accelerators 399</p> <p>17.2.5 Virtual AFM Experiment: Forced Indentation in silico of Biological Particles 401</p> <p>17.3 Biological Particles 403</p> <p>17.3.1 Cylindrical Particles: Microtubule Polymers 403</p> <p>17.3.2 Spherical Particles: CCMV Shell 404</p> <p>17.4 Nanoindentation in silico: Probing Reversible Changes in Near-equilibrium Regime 406</p> <p>17.4.1 Probing Reversible Transitions 406</p> <p>17.4.2 Studying Near-equilibrium Dynamics 407</p> <p>17.5 Application of in silico Nanoindentation: Dynamics of Deformation of MT and CCMV 409</p> <p>17.5.1 Long Polyprotein – Microtubule Protofilament 409</p> <p>17.5.2 Cylindrical Particle – Microtubule Polymer 411</p> <p>17.5.3 Spherical Particle – CCMV Protein Shell 416</p> <p>17.6 Concluding Remarks 421</p> <p>References 424</p> <p><b>18 Modeling and Simulations in Nanoindentation 429<br /></b><i>Yi Sun and Fanlin Zeng</i></p> <p>18.1 Introduction 429</p> <p>18.2 Simulations of Nanoindention on Polymers 430</p> <p>18.2.1 Models and Simulation Methods 430</p> <p>18.2.2 Load-displacement Responses 431</p> <p>18.2.3 Hardness and Young’s Modulus 433</p> <p>18.2.4 The Mechanism of Mechanical Behaviours and Properties 437</p> <p>18.3 Simulations of Nanoindention on Crystals 441</p> <p>18.3.1 Models and Simulation Methods 442</p> <p>18.3.2 The Load-displacement Responses 444</p> <p>18.3.3 Dislocation Nucleation 446</p> <p>18.3.4 Mechanism of Dislocation Emission 449</p> <p>18.4 Conclusions 455</p> <p>Acknowledgments 456</p> <p>References 456</p> <p><b>19 Nanoindentation of Advanced Ceramics: Applications to ZrO2 Materials 459<br /></b><i>Joan Josep Roa Rovira, Emilio Jiménez Piqué andMarc J. Anglada Gomila</i></p> <p>19.1 Introduction 459</p> <p>19.2 IndentationMechanics 460</p> <p>19.2.1 Deformation Mechanics 460</p> <p>19.2.2 Elastic Contact 461</p> <p>19.2.3 Elasto/plastic Contact 462</p> <p>19.3 Fracture Toughness 462</p> <p>19.4 Coatings 463</p> <p>19.4.1 Coating Hardness 463</p> <p>19.4.2 Coating Elastic Modulus 464</p> <p>19.5 Issues for Reproducible Results 464</p> <p>19.6 Applications of Nanoindentation to Zirconia 465</p> <p>19.6.1 Hardness and Elastic Modulus 466</p> <p>19.6.2 Stress–strain Curve and Phase Transformation 467</p> <p>19.6.3 Plastic Deformation Mechanisms 468</p> <p>19.6.4 Mechanical Properties of Damaged Surfaces 468</p> <p>19.6.5 Relation Between Microstructure and Local Mechanical Properties by</p> <p>Massive Nanoindentation Cartography 471</p> <p>19.7 Conclusions 472</p> <p>Acknowledgements 472</p> <p>References 473</p> <p><b>20 FEM Simulation of Nanoindentation 481<br /></b><i>F. Pöhl, W. Theisen and S. Huth</i></p> <p>20.1 Introduction 481</p> <p>20.2 Indentation of Isotropic Materials 482</p> <p>20.3 Indentation of Thin Films 489</p> <p>20.4 Indentation of a Hard Phase Embedded in Matrix 490</p> <p>References 495</p> <p><b>21 Investigations Regarding Plastic Flow Behaviour and Failure Analysis on CrAlN Thin Hard Coatings 501<br /></b><i>Jan Perne</i></p> <p>21.1 Introduction 501</p> <p>21.2 Description of the Method 501</p> <p>21.2.1 Flow Curve Determination 502</p> <p>21.2.1.1 Nanoindentation Step 502</p> <p>21.2.1.2 Yield Strength Determination 502</p> <p>21.2.1.3 Flow Curve Determination by Iterative Simulation 503</p> <p>21.2.1.4 Determination of Strain Rate and Temperature Dependency 503</p> <p>21.2.2 Failure Criterion Determination with Nano-scratch Analysis 503</p> <p>21.3 Investigations into the CrAlN Coating System 504</p> <p>21.3.1 Flow curve dependency on chemical composition and microstructure 504</p> <p>21.3.2 Strain Rate Dependency of Different CrN-AlN Coating Systems 506</p> <p>21.3.3 Failure criterion determination on a CrN/AlN nanolaminate 507</p> <p>21.4 Concluding Remarks 509</p> <p>References 511</p> <p><b>22 Scale Invariant Mechanical Surface Optimization 513<br /></b><i>Norbert Schwarzer</i></p> <p>22.1 Introduction 513</p> <p>22.1.1 Interatomic Potential Description of Mechanical Material Behavior 513</p> <p>22.1.2 The Effective Indenter Concept and Its Extension to Layered Materials 514</p> <p>22.1.3 About Extensions of the Oliver and Pharr Method 514</p> <p>22.1.3.1 Making the Classical Oliver and Pharr Method Fit for Time Dependent Mechanical Behavior 515</p> <p>22.1.4 Introduction to the Physical Scratch and/or Tribological Test and its Analysis 515</p> <p>22.1.5 Illustrative Hypothetical Example for Optimization Against Dust Impact 515</p> <p>22.1.6 About the Influence of Intrinsic Stresses 516</p> <p>22.2 Theory 517</p> <p>22.2.1 First Principle Based Interatomic Potential Description of Mechanical Material Behavior 517</p> <p>22.2.2 The Effective Indenter Concept 521</p> <p>22.2.3 An Oliver and Pharr Method for Time Dependent Layered Materials 522</p> <p>22.2.4 Theory for the Physical Scratch and/or Tribological Test 533</p> <p>22.2.5 From Quasi-Static Experiments and Parameters to DynamicWear, Fretting and Tribological Tests 534</p> <p>22.2.6 Including Biaxial Intrinsic Stresses 537</p> <p>22.3 The Procedure 540</p> <p>22.4 Discussion by Means of Examples 544</p> <p>22.5 Conclusions 555</p> <p>Acknowledgements 555</p> <p>Referencess 556</p> <p><b>23 Modelling and Simulations of Nanoindentation in Single Crystals 561<br /></b><i>Qiang Liu,Murat Demiral, Anish Roy and Vadim V. Silberschmidt</i></p> <p>23.1 Introduction 561</p> <p>23.2 Review of IndentationModelling 564</p> <p>23.3 Crystal PlasticityModelling of Nanoindentation 565</p> <p>23.3.1 Indentation of F.C.C. Copper Single Crystal 567</p> <p>23.3.2 Indentation of B.C.C. Ti-64 569</p> <p>23.3.3 Indentation of B.C.C. Ti-15-3-3 571</p> <p>23.4 Conclusions 573</p> <p>References 574</p> <p><b>24 Computer Simulation and Experimental Analysis of Nanoindentation Technique 579<br /></b><i>A. Karimzadeh,M.R. Ayatollahi and A. Rahimi</i></p> <p>24.1 Introduction 579</p> <p>24.2 Finite Element Simulation for Nanoindentation 580</p> <p>24.3 Finite Element Modeling 580</p> <p>24.3.1 Geometry 580</p> <p>24.3.2 Material Characteristics 581</p> <p>24.3.3 Boundary Condition 582</p> <p>24.3.4 Interaction 582</p> <p>24.3.5 Meshing 582</p> <p>24.4 Verification of Finite Element Simulation 583</p> <p>24.4.1 Nanoindentation Experiment on Al 1100 584</p> <p>24.4.2 Comparison Between Simulation and Experimental Results for Al 1100 584</p> <p>24.4.2.1 Load-displacement 584</p> <p>24.4.2.2 Hardness 588</p> <p>24.5 Molecular Dynamic Modeling for Nanoindentation 591</p> <p>24.5.1 Simulation Procedure 592</p> <p>24.6 Results of Molecular Dynamic Simulation 595</p> <p>24.7 Conclusions 597</p> <p>References 597</p> <p><b>25 Atomistic Simulations of Adhesion, Indentation andWear at Nanoscale 601<br /></b><i>Jun Zhong, Donald J. Siegel, Louis G. Hector, Jr. and James B. Adams</i></p> <p>25.1 Introduction 601</p> <p>25.2 Methodologies 604</p> <p>25.2.1 Density FunctionalTheory 604</p> <p>25.2.1.1 The Exchange–correlation Functional 605</p> <p>25.2.1.2 PlaneWaves and Supercell 606</p> <p>25.2.2 Pseudopotential Approximation 606</p> <p>25.2.3 Molecular Dynamics 607</p> <p>25.2.3.1 Equations of Motion 607</p> <p>25.2.3.2 Algorithms 608</p> <p>25.2.3.3 Statistical Ensembles 608</p> <p>25.2.3.4 Interatomic Potentials 608</p> <p>25.2.3.5 Ab initio Molecular Dynamics 609</p> <p>25.2.4 Some Commercial Software 611</p> <p>25.2.4.1 The VASP 611</p> <p>25.2.4.2 The LAMMPS 611</p> <p>25.3 Density Functional Study of Adhesion at the Metal/Ceramic Interfaces 612</p> <p>25.3.1 Calculations 612</p> <p>25.3.2 Effect of Surface Energies in theWsep 614</p> <p>25.3.3 Conclusions 615</p> <p>25.4 Molecular Dynamics Simulations of Nanoindentation 616</p> <p>25.4.1 Empirical Modeling 616</p> <p>25.4.1.1 Modeling Geometry and Simulation Procedures 617</p> <p>25.4.1.2 Results and discussions 618</p> <p>25.4.1.3 Conclusions 622</p> <p>25.4.2 Ab initio Modeling 622</p> <p>25.4.2.1 Modeling Geometry and Simulation Procedures 622</p> <p>25.4.2.2 Results and Discussions 624</p> <p>25.5 Molecular Dynamics Simulations of AdhesiveWear on the Al-substrate 628</p> <p>25.5.1 Modeling Geometry and Simulation Procedures 629</p> <p>25.5.2 Results and Discussions 630</p> <p>25.5.2.1 One CommonWear Sequence 630</p> <p>25.5.2.2 Thermal Analysis for theWear Sequence 631</p> <p>25.5.2.3 Wear Rate Analyses 632</p> <p>25.6 Summary and Prospect 636</p> <p>Acknowledgments 638</p> <p>References 638</p> <p><b>26 Multiscale Model for Nanoindentation in Polymer and Polymer Nanocomposites 647<br /></b><i>Rezwanur Rahman</i></p> <p>26.1 Introduction 647</p> <p>26.2 Modeling Scheme 648</p> <p>26.2.1 Details of the MD Simulation 649</p> <p>26.3 Nanoindentation Test 650</p> <p>26.4 Theoretically and Experimentally Determined Result 651</p> <p>26.5 Multiscale of Complex Heterogeneous Materials 651</p> <p>26.5.1 Introduction to Peridynamics 652</p> <p>26.5.2 Nonlocal Multiscale Modeling using Peridynamics: Linking Macro- to Nano-scales 654</p> <p>26.6 MultiscaleModeling for Nanoindentation in Epoxy: EPON 862 655</p> <p>26.7 UnifiedTheory for MultiscaleModeling 658</p> <p>26.8 Conclusion 658</p> <p>References 659</p> <p>Index 663</p>
<p><b> Editors:<br> Dr. Atul Tiwari</b> is the Fellow of The Royal Society of Chemistry, UK and currently serves as President, Flora Coatings Company. in Phoenix, USA. Previously, Dr. Tiwari has served as a research faculty member in the Department of Mechanical Engineering at the University of Hawaii, USA. He has achieved double subject majors, in Organic Chemistry as well as Mechanical Engineering. He has also received Ph.D. in Polymer Materials Science along with the earned Chartered Chemist and Chartered Scientist status from the Royal Society of Chemistry, UK. <p><b> Dr. Sridhar Natarajan</b> is currently the Chief Medical Examiner/Director at Lubbock County Medical Examiner's Office, Lubbock, Texas. He was a Colonel, Medical Corp in the United States Army Reserves (Retired) and is a former United Stated Navy Nuclear Submarine Officer Gold Dolphin Insignia.
<p> Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. <p><i> Applied Nanoindentation in Advanced Materials</i> addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into two parts. Part one covers innovations and analysis, and part two examines the application and evaluation of soft and ceramic-like materials respectively. <p><b> Key features: </b> <ul> <li>A one stop solution for scholars and researchers to learn applied aspects of nanoindentation</li> <li>Contains contributions from leading researchers in the field</li> <li>Includes the analysis of key properties that can be studied using the nanoindentation technique</li> <li>Covers recent innovations</li> <li>Includes worked examples</li> </ul> <br> <p><i> Applied Nanoindentation in Advanced Materials</i> is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €