Details

Advances in Multiuser Detection


Advances in Multiuser Detection


Wiley Series in Telecommunications and Signal Processing, Band 99 1. Aufl.

von: Michael L. Honig

141,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.08.2009
ISBN/EAN: 9780470473801
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A Timely Exploration of Multiuser Detection in Wireless Networks</b></p> <p>During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes:</p> <ul> <li>Linear and decision feedback methods</li> <li>Iterative multiuser detection and decoding</li> <li>Multiuser detection in the presence of channel impairments</li> <li>Performance analysis with random signatures and channels</li> <li>Joint detection methods for MIMO channels</li> <li>Interference avoidance methods at the transmitter</li> <li>Transmitter precoding methods for the MIMO downlink</li> </ul> <p>This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.</p>
<p>Preface xv</p> <p>Contributors xvii</p> <p><b>1 Overview of Multiuser Detection 1<br /></b><i>Michael L. Honig</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Applications 2</p> <p>1.1.2 Mobile Cellular Challenges 4</p> <p>1.1.3 Chapter Outline 5</p> <p>1.2 Matrix Channel Model 6</p> <p>1.3 Optimal Multiuser Detection 8</p> <p>1.3.1 Maximum Likelihood (ML) 8</p> <p>1.3.2 Optimal (Maximum a Posteriori) Detection 9</p> <p>1.3.3 Sphere Decoder 10</p> <p>1.4 Linear Detectors 12</p> <p>1.4.1 Comparison with Optimal Detection 13</p> <p>1.4.2 Properties of Linear Multiuser Detection 15</p> <p>1.5 Reduced-Rank Estimation 16</p> <p>1.5.1 Subspaces from the Matched Filter 17</p> <p>1.5.2 Eigen-Space Methods 18</p> <p>1.5.2.1 Principal Components (PC) 18</p> <p>1.5.2.2 Generalized Side-lobe Canceller (GSC) 18</p> <p>1.5.2.3 Cross-Spectral Method 19</p> <p>1.5.2.4 Comparison 19</p> <p>1.5.3 Krylov Subspace Methods 20</p> <p>1.5.3.1 Multi-Stage Wiener Filter (MSWF) 20</p> <p>1.5.3.2 Rank-Recursive (Conjugate Gradient) Algorithm 22</p> <p>1.5.3.3 Performance 22</p> <p>1.5.3.4 Adaptive Rank Selection 24</p> <p>1.5.4 Performance Comparison 25</p> <p>1.6 Decision-Feedback Detection 26</p> <p>1.6.1 Successive Decision Feedback 30</p> <p>1.6.2 Parallel Decision Feedback 30</p> <p>1.6.3 Filter Adaptation 31</p> <p>1.6.4 Error Propagation and Iterative Decision Feedback 31</p> <p>1.6.5 Application to MIMO Channels 32</p> <p>1.7 Interference Mitigation at the Transmitter 33</p> <p>1.7.1 Precoding for Coordinated Data Streams 33</p> <p>1.7.1.1 Precoding for Equalizing SNR Performance 35</p> <p>1.7.2 Signature Optimization with Uncoordinated Data Streams 36</p> <p>1.7.3 Network Configurations 37</p> <p>1.8 Overview of Remaining Chapters 38</p> <p>References 39</p> <p><b>2 Iterative Techniques 47<br /></b><i>Alex Grant and Lars K. Rasmussen</i></p> <p>2.1 Introduction 47</p> <p>2.1.1 System Model 48</p> <p>2.1.2 Multiuser Detectors 50</p> <p>2.1.2.1 Optimal Multiuser Detectors 51</p> <p>2.1.2.2 Decorrelator Detector 52</p> <p>2.1.2.3 Linear Minimum Mean-Squared Error Detectors 52</p> <p>2.1.2.4 Per-User Linear Minimum Mean-Squared Error Detectors 53</p> <p>2.1.2.5 Per-User Approximate Nonlinear MMSE Detector 54</p> <p>2.2 Iterative Joint Detection for Uncoded Data 56</p> <p>2.2.1 Interference Cancellation 56</p> <p>2.2.1.1 Schedules for Iterative Cancellation 58</p> <p>2.2.1.2 Implementation via Residual Error Update 59</p> <p>2.2.1.3 Tentative Decision Functions 63</p> <p>2.2.2 Linear Methods 64</p> <p>2.2.2.1 Solutions to Linear Systems 66</p> <p>2.2.2.2 Direct Solution 66</p> <p>2.2.2.3 Series Expansions 67</p> <p>2.2.2.4 Iterative Solution Methods 70</p> <p>2.2.2.5 Jacobi Iteration 72</p> <p>2.2.2.6 Gauss-Seidel Iteration 74</p> <p>2.2.2.7 Descent Algorithms 75</p> <p>2.2.3 Non-Linear Methods 80</p> <p>2.2.3.1 Constrained Optimization 80</p> <p>2.2.3.2 Clipped Soft Decision 84</p> <p>2.2.3.3 Hyperbolic Tangent 86</p> <p>2.2.3.4 Hard Decision 86</p> <p>2.2.4 Numerical Results 88</p> <p>2.2.4.1 Parallel Cancellation 88</p> <p>2.2.4.2 Serial Cancellation 89</p> <p>2.2.4.3 Gradient Methods 93</p> <p>2.3 Iterative Joint Decoding for Coded Data 95</p> <p>2.3.1 Joint Optimal Multiuser and Separate Single-User Decoders 96</p> <p>2.3.2 The Canonical Iterative Joint Multiuser Decoder 97</p> <p>2.3.3 Linear Detection in Iterative Joint Multiuser Decoding 100</p> <p>2.3.4 Parallel Interference Cancellation 102</p> <p>2.3.5 Per-User LMMSE Filters with Priors 103</p> <p>2.3.6 Transfer Function Convergence Analysis 105</p> <p>2.3.7 Numerical Examples 107</p> <p>2.3.7.1 Separate Multiuser Detection and Single-User Decoding 107</p> <p>2.3.7.2 Single-User Matched Filter Parallel Interference Cancellation 107</p> <p>2.3.7.3 Per-User LMMSE Filtering 111</p> <p>2.3.7.4 Comparison of Single-User Matched-Filter PIC and LMMSE Decoders 115</p> <p>2.4 Concluding Remarks 118</p> <p>References 119</p> <p><b>3 Blind Multiuser Detection in Fading Channels 127<br /></b><i>Daryl Reynolds, H. Vincent Poor, and Xiaodong Wang</i></p> <p>3.1 Introduction 127</p> <p>3.2 Signal Models and Blind Multiuser Detectors for Fading Channels 129</p> <p>3.2.1 Asynchronous Multi-Antenna Multipath CDMA 129</p> <p>3.2.2 Synchronous Multipath CDMA 134</p> <p>3.2.3 Synchronous Multi-Antenna CDMA 136</p> <p>3.2.4 Remarks 137</p> <p>3.3 Performance of Blind Multiuser Detectors 138</p> <p>3.3.1 Complex Gaussian Distribution 138</p> <p>3.3.2 Performance of Blind Multiuser Detectors with Known Channels 139</p> <p>3.3.3 Performance of Blind Multiuser Detector with Blind Channel Estimation 142</p> <p>3.3.4 Numerical Results 143</p> <p>3.3.5 Adaptive Implementation 144</p> <p>3.3.6 Algorithm Summary 146</p> <p>3.4 Bayesian Multiuser Detection for Long-Code CDMA 148</p> <p>3.4.1 System Descriptions 148</p> <p>3.4.1.1 Signal and Channel Model 148</p> <p>3.4.1.2 Noise Model 149</p> <p>3.4.1.3 Blind Bayesian Multiuser Detection 150</p> <p>3.4.1.4 The Gibbs Sampler 151</p> <p>3.4.2 Bayesian MCMC Multiuser Detectors 152</p> <p>3.4.2.1 White Gaussian Noise 152</p> <p>3.4.2.2 Colored Gaussian Noise 155</p> <p>3.4.3 Simulation Examples 157</p> <p>3.5 Multiuser Detection for Long-Code CDMA in Fast-Fading Channels 161</p> <p>3.5.1 Channel Model and Sequential EM Algorithm 161</p> <p>3.5.2 Sequential Blind Multiuser Detector 163</p> <p>3.5.3 Simulation Results 163</p> <p>3.6 Transmitter-Based Multiuser Precoding for Fading Channels 165</p> <p>3.6.1 Basic Approach and Adaptation 166</p> <p>3.6.1.1 Uplink Signal Model and Blind Channel Estimation 166</p> <p>3.6.1.2 Downlink Signal Model and Matched Filter Detection 166</p> <p>3.6.1.3 Transmitter Precoding for a Synchronous Multipath Downlink 167</p> <p>3.6.1.4 Adaptive Implementation 169</p> <p>3.6.1.5 Algorithm Summary 170</p> <p>3.6.2 Precoding with Multiple Transmit Antennas 171</p> <p>3.6.2.1 Downlink Signal Model 171</p> <p>3.6.2.2 Precoder Design for Orthogonal Spreading Codes 171</p> <p>3.6.2.3 Precoder Design for Non-Orthogonal Spreading Codes 172</p> <p>3.6.3 Precoding for Multipath ISI Channels 174</p> <p>3.6.3.1 Prerake-Diversity Combining 174</p> <p>3.6.3.2 Precoder Design 175</p> <p>3.6.4 Performance Analyses 178</p> <p>3.6.4.1 Performance of Transmitter Precoding with Blind Channel Estimation 178</p> <p>3.6.4.2 Performance and Achievable Diversity for Multi-Antenna Precoding 180</p> <p>3.7 Conclusion 183</p> <p>References 184</p> <p><b>4 Performance with Random Signatures 189<br /></b><i>Matthew J. M. Peacock, Iain B. Collings, and Michael L. Honig</i></p> <p>4.1 Random Signatures and Large System Analysis 189</p> <p>4.2 System Models 192</p> <p>4.2.1 Uplink CDMAWithout Multipath 193</p> <p>4.2.2 Downlink CDMA 194</p> <p>4.2.3 Multi-Cell Downlink or Multi-Signature Uplink 196</p> <p>4.2.4 Model Limitations 197</p> <p>4.3 Large System Limit 198</p> <p>4.3.1 SINR of Linear Filters 198</p> <p>4.4 Random Matrix Terminology 201</p> <p>4.4.1 Eigen-Value Distributions 201</p> <p>4.4.2 Stieltjes Transform 201</p> <p>4.4.3 Examples 202</p> <p>4.4.4 Asymptotic Equivalence 203</p> <p>4.5 Incremental Matrix Expansion 204</p> <p>4.6 Analysis of Downlink Model 206</p> <p>4.6.1 MMSE Receiver and SINR 206</p> <p>4.6.2 Large-System SINR 207</p> <p>4.6.3 Two Important Preliminary Results 208</p> <p>4.6.3.1 Rotational Invariance of SINR 208</p> <p>4.6.3.2 Covariance Matrix Expansion Along Transmit Dimensions 209</p> <p>4.6.4 Large System SINR 210</p> <p>4.6.5 Numerical Example 213</p> <p>4.7 Spectral Efficiency 215</p> <p>4.7.1 Sum Capacity 215</p> <p>4.7.2 Capacity Regions 219</p> <p>4.8 Adaptive Linear Receivers 221</p> <p>4.8.1 ALS Receiver 221</p> <p>4.8.2 ALS Convergence: Numerical Example 223</p> <p>4.8.3 Large System Limit 224</p> <p>4.8.4 Analysis and Results 225</p> <p>4.8.4.1 ALS Transient Behavior 226</p> <p>4.8.4.2 Steady-State SINR 228</p> <p>4.8.5 Numerical Examples 228</p> <p>4.8.6 Optimization of Training Overhead 230</p> <p>4.9 Other Models and Extensions 236</p> <p>4.10 Bibliographical Notes 237</p> <p>Appendix: Proof Sketch of Theorem 1 238</p> <p>Appendix: Free Probability Transforms 241</p> <p>4.B.1 Free Probability Transforms 242</p> <p>4.B.2 Sums of Unitarily Invariant Matrices 243</p> <p>4.B.3 Products of Unitarily Invariant Matrices 245</p> <p>References 246</p> <p><b>5 Generic Multiuser Detection and Statistical Physics 251<br /></b><i>Dongning Guo and Toshiyuki Tanaka</i></p> <p>5.1 Introduction 251</p> <p>5.1.1 Generic Multiuser Detection 251</p> <p>5.1.2 Single-User Characterization of Multiuser Systems 252</p> <p>5.1.3 On the Replica Method 254</p> <p>5.1.4 Statistical Inference Using Practical Algorithms 254</p> <p>5.1.5 Statistical Physics and Related Problems 255</p> <p>5.2 Generic Multiuser Detection 256</p> <p>5.2.1 CDMA/MIMO Channel Model 256</p> <p>5.2.2 Generic Posterior Mean Estimation 256</p> <p>5.2.3 Specific Detectors as Posterior Mean Estimators 259</p> <p>5.2.3.1 Linear Detectors 260</p> <p>5.2.3.2 Optimal Detectors 260</p> <p>5.2.3.3 Interference Cancelers 260</p> <p>5.3 Main Results: Single-User Characterization 261</p> <p>5.3.1 Is the Decision Statistic Gaussian? 261</p> <p>5.3.2 The Decoupling Principle: Individually Optimal Detection 262</p> <p>5.3.3 Decoupling Principle: Generic Multiuser Detection 269</p> <p>5.3.3.1 A Companion Channel 269</p> <p>5.3.3.2 Main Results 271</p> <p>5.3.4 Justification of Results: Sparse Spreading 272</p> <p>5.3.5 Well-Known Detectors as Special Cases 273</p> <p>5.3.5.1 Linear Detectors 273</p> <p>5.3.5.2 Optimal Detectors 275</p> <p>5.4 The Replica Analysis of Generic Multiuser Detection 276</p> <p>5.4.1 The Replica Method 276</p> <p>5.4.1.1 Spectral Efficiency and Detection Performance 276</p> <p>5.4.1.2 The Replica Method 277</p> <p>5.4.1.3 A Simple Example 278</p> <p>5.4.2 Free Energy 281</p> <p>5.4.2.1 Large Deviations and Saddle Point 283</p> <p>5.4.2.2 Replica Symmetry Solution 285</p> <p>5.4.2.3 Single-User Channel Interpretation 286</p> <p>5.4.2.4 Spectral Efficiency and Multiuser Efficiency 288</p> <p>5.4.3 Joint Moments 289</p> <p>5.5 Further Discussion 291</p> <p>5.5.1 On Replica Symmetry 291</p> <p>5.5.2 On Metastable Solutions 292</p> <p>5.6 Statistical Physics and the Replica Method 294</p> <p>5.6.1 A Note on Statistical Physics 294</p> <p>5.6.2 Multiuser Communications and Statistical Physics 296</p> <p>5.6.2.1 Equivalence of Multiuser Systems and Spin Glasses 296</p> <p>5.7 Interference Cancellation 297</p> <p>5.7.1 Conventional Parallel Interference Cancellation 297</p> <p>5.7.2 Belief Propagation 298</p> <p>5.7.2.1 Application of Belief Propagation to Multiuser Detection 298</p> <p>5.7.2.2 Conventional Parallel Interference Cancellation as Approximate BP 300</p> <p>5.7.2.3 BP-Based Parallel Interference Cancellation Algorithm 301</p> <p>5.8 Concluding Remarks 303</p> <p>5.9 Acknowledgments 304</p> <p>References 304</p> <p><b>6 Joint Detection for Multi-Antenna Channels 311<br /></b><i>Antonia Tulino, Matthew R. McKay, Jeffrey G. Andrews, Iain B. Collings, and Robert W. Heath, Jr.</i></p> <p>6.1 Introduction 311</p> <p>6.2 Wireless Channels: The Multi-Antenna Realm 312</p> <p>6.3 Definitions and Preliminaries 314</p> <p>6.4 Multi-Antenna Capacity: Ergodic Regime 315</p> <p>6.4.1 Input Optimization and Capacity-Achieving Transceiver Architectures 316</p> <p>6.4.2 Random Matrix Theory 320</p> <p>6.4.2.1 Eigen-Value Distributions 320</p> <p>6.4.2.2 Transforms 320</p> <p>6.4.3 Canonical Model (IID Channel) 321</p> <p>6.4.3.1 Separable Correlation Model 323</p> <p>6.5 Multi-Antenna Capacity: Non-Ergodic Regime 327</p> <p>6.6 Receiver Architectures and Performance 330</p> <p>6.6.1 Linear Receivers 330</p> <p>6.6.1.1 Zero-Forcing Receiver 331</p> <p>6.6.1.2 Minimum Mean-Square Error Receiver 337</p> <p>6.7 Multiuser Multi-Antenna Systems 345</p> <p>6.7.1 Same-Cell Interference and Cooperation 346</p> <p>6.7.1.1 Downlink: Precoding 347</p> <p>6.7.1.2 Uplink: Interference Cancellation 349</p> <p>6.7.2 Other-Cell Interference and Cooperation 349</p> <p>6.7.2.1 Joint Encoding 350</p> <p>6.7.2.2 Base Station Cooperative Scheduling 350</p> <p>6.8 Diversity-Multiplexing Tradeoffs and Spatial Adaptation 351</p> <p>6.8.1 Diversity-Multiplexing Tradeoff 352</p> <p>6.8.2 Mode Adaptation: Switching Between Diversity and Multiplexing 353</p> <p>6.9 Conclusions 355</p> <p>References 355</p> <p><b>7 Interference Avoidance for CDMA Systems 365<br /></b><i>Dimitrie C. Popescu, Sennur Ulukus, Christopher Rose, and Roy Yates</i></p> <p>7.1 Introduction 365</p> <p>7.2 Interference Avoidance Basics 367</p> <p>7.2.1 Greedy Interference Avoidance: The Eigen-Algorithm 370</p> <p>7.2.2 MMSE Interference Avoidance 372</p> <p>7.2.3 Other Algorithms for Interference Avoidance 376</p> <p>7.3 Interference Avoidance over Time-Invariant Channels 377</p> <p>7.3.1 Interference Avoidance with Diagonal Channel Matrices 379</p> <p>7.3.2 Interference Avoidance with General Channel Matrices 380</p> <p>7.4 Interference Avoidance in Fading Channels 384</p> <p>7.4.1 Iterative Power and Sequence Optimization in Fading 388</p> <p>7.5 Interference Avoidance in Asynchronous Systems 389</p> <p>7.5.1 Interference Avoidance for User Capacity Maximization 390</p> <p>7.5.2 Interference Avoidance for Sum Capacity Maximization 396</p> <p>7.5.3 TSAC Reduction: Iterative Algorithms 399</p> <p>7.6 Feedback Requirements for Interference Avoidance 401</p> <p>7.6.1 Codeword Tracking for Interference Avoidance 401</p> <p>7.6.2 Reduced-Rank Signatures 402</p> <p>7.7 Recent Results on Interference Avoidance 403</p> <p>7.7.1 Interference Avoidance and Power Control 403</p> <p>7.7.2 Adaptive Interference Avoidance Algorithms 405</p> <p>7.8 Summary and Conclusions 410</p> <p>References 411</p> <p><b>8 Capacity-Approaching Multiuser Communications Over Multiple Input/Multiple Output Broadcast Channels 417<br /></b><i>Uri Erez and Stephan ten Brink</i></p> <p>8.1 Introduction 417</p> <p>8.2 Many-to-One Multiple Access versus One-to-Many Scalar Broadcast Channels 418</p> <p>8.3 Alternative Approach: Dirty Paper Coding 420</p> <p>8.3.1 The Dirty Paper Coding Result 420</p> <p>8.3.2 DPC vs. SSD Approach for a Coded Interference Signal 421</p> <p>8.3.3 Scalar Broadcast Using the DPC Approach 421</p> <p>8.4 A Simple 2 × 2 Example 423</p> <p>8.5 General Gaussian MIMO Broadcast Channels 428</p> <p>8.5.1 Vector Dirty Paper Coding: Reduction to Scalar Case 428</p> <p>8.5.2 DPC Rate Region 430</p> <p>8.6 Coding with Side Information at the Transmitter 431</p> <p>8.6.1 A Naive Attempt 432</p> <p>8.6.2 Scalar Quantization: Tomlinson-Harashima Precoding 432</p> <p>8.6.2.1 Dither Signal 434</p> <p>8.6.2.2 Losses of Tomlinson-Harashima Precoding 434</p> <p>8.6.2.3 MMSE Scaling 436</p> <p>8.6.2.4 One-Dimensional Soft-Symbol Metric 437</p> <p>8.6.3 Vector Quantization: Sign-Bit Shaping 440</p> <p>8.6.3.1 Lattices 440</p> <p>8.6.3.2 Shaping Gain 440</p> <p>8.6.3.3 Communication Using Lattices 441</p> <p>8.6.3.4 Lattice Precoding at the Transmitter 442</p> <p>8.6.3.5 High-Dimensional Lattices from Linear Codes 443</p> <p>8.6.3.6 Sign-Bit Shaping 447</p> <p>8.6.3.7 Coset Decoding at the Receiver 448</p> <p>8.6.3.8 Mutual Information Limits 450</p> <p>8.6.4 The Role of Channel Knowledge 451</p> <p>8.6.4.1 Single User vs. Multiuser MIMO 451</p> <p>8.6.4.2 Obtaining Channel Knowledge 452</p> <p>8.7 Summary 452</p> <p>References 453</p> <p>Index 455</p>
<p><b>MICHAEL L. HONIG</b> is a Professor in the Electrical Engineering and Computer Science Department at Northwestern University.
<p><b>A TIMELY EXPLORATION OF MULTIUSER DETECTION IN WIRELESS NETWORKS</b> <p>During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes: <ul> <li>Linear and decision feedback methods</li> <li>Iterative multiuser detection and decoding</li> <li>Multiuser detection in the presence of channel impairments</li> <li>Performance analysis with random signatures and channels</li> <li>Joint detection methods for MIMO channels</li> <li>Interference avoidance methods at the transmitter</li> <li>Transmitter precoding methods for the MIMO downlink</li> </ul> <p>This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €