Details

Advances in Food Biotechnology


Advances in Food Biotechnology


1. Aufl.

von: Ravishankar Rai V

197,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 09.10.2015
ISBN/EAN: 9781118864500
Sprache: englisch
Anzahl Seiten: 748

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<B>ADVANCES IN FOOD BIOTECHNOLOGY</B> <p><i>The </i>application of biotechnology in the food sciences has led to an increase in food production, and enhanced the quality and safety of food. Food biotechnology is a dynamic field, and the continual progress and advances have not only dealt effectively with issues related to food security but also augmented the nutritional and health aspects of food. <p><i>Advances in Food Biotechnology</i> provides an overview of the latest development in food biotechnology as it relates to safety, quality and security. The seven sections of the book are multidisciplinary and cover the following topics: <ul><li>GMOs and food security issues</li> <li>Applications of enzymes in food processing</li> <li>Fermentation technology</li> <li>Functional food and nutraceuticals</li> <li>Valorization of food waste</li> <li>Detection and control of foodborne pathogens</li> <li>Emerging techniques in food processing</li></ul> <p>Bringing together experts drawn from around the world, the book is a comprehensive reference in the most progressive field of food science and will be of interest to professionals, scientists and academics in the food and biotech industries. The book will be highly resourceful to governmental research, regulatory agencies and those who are studying and teaching food biotechnology. <p><b>Also available from Wiley</b><BR> <i>Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients</i><BR> Edited by Cristina M. Sabliov, Hongda Chen, Rickey Y. Yada<BR> ISBN: 978-1-118-46220-1 <p><i>Fundamentals of Food Biotechnology</i>, 2nd Edition<BR> Byong H. Lee<BR> ISBN: 978-1-118-38495-4
Contributors xxi <p>Preface xxvii</p> <p><b>I GLOBAL FOOD SECURITY: ARE GMOS THE SOLUTION TO THE FOOD SECURITY ISSUE? 1</b></p> <p><b>1 Biotechnological Approaches for Nutritionally Enhanced Food Crop Production 3</b><br /><i>Kathleen L. Hefferon and Abdullah Makhzoum</i></p> <p>1.1 Introduction 3</p> <p>1.2 The Case for Biofortified Food 3</p> <p>1.3 Nutritionally Enhanced Feed Crops 6</p> <p>1.4 Plants with Other Health Benefits 6</p> <p>1.5 Biopharmaceuticals Produced in Plants 6</p> <p>1.6 Genome Editing for Nutritionally Enhanced Plants 7</p> <p>1.7 Epigenetics and Nutritionally Enhanced Plants 7</p> <p>1.8 Risk Assessment and Regulation of Nutritionally Enhanced Crops 9</p> <p>1.9 Conclusions 9</p> <p>References 10</p> <p><b>2 Current and Emerging Applications of Metabolomics in the Field of Agricultural Biotechnology 13</b><br /><i>Camilla B. Hill, Daniel A. Dias, and Ute Roessner</i></p> <p>2.1 Introduction 13</p> <p>2.2 Metabolomics of Cereals for Food Production 16</p> <p>2.3 Metabolomics and its Application in the Production of Wine 18</p> <p>2.4 Final Remarks 23</p> <p>Acknowledgements 23</p> <p>References 23</p> <p><b>3 Safety Assessment of Genetically Modified Foods 27</b><br /><i>Gijs A. Kleter and Maryvon Y. Noordam</i></p> <p>3.1 Introduction 27</p> <p>3.2 Safety Assessment of GM-Crop-Derived Foods 28</p> <p>3.3 Recurrent Items Addressed during the Food and Feed Safety Assessment 28</p> <p>3.4 Outlook and Future Challenges 35</p> <p>3.5 Conclusions 36</p> <p>Acknowledgements 36</p> <p>References 36</p> <p><b>4 Towards a Universal Molecular Approach for the Quality Control of New Foodstuffs 37</b><br /><i>Andrea Galimberti, Anna Sandionigi, Antonia Bruno, Ilaria Bruni, Michela Barbuto, Maurizio Casiraghi, and Massimo Labra</i></p> <p>4.1 Food Quality and Safety Assessment in the Era of Genomics 37</p> <p>4.2 DNA Barcoding: General Characteristics and Applications for the Analysis of Modern Foodstuffs 38</p> <p>4.3 Microbiological Composition of Foodstuffs 38</p> <p>4.4 Pathogenic Microorganisms and Food Spoilage 43</p> <p>4.5 Towards a Molecular Identification of Food-Related Microorganisms 44</p> <p>4.6 Towards a Standardized Molecular Identification of Food Raw Materials 45</p> <p>4.7 Next-Generation Technologies to Characterize Complex Food Matrices and their Microbiome 50</p> <p>4.8 Conclusions 51</p> <p>References 51</p> <p><b>5 Mass Spectrometry-Based Approaches in Food Safety 61</b><br /><i>Pasquale Ferranti and Gianluca Picariello</i></p> <p>5.1 Background 61</p> <p>5.2 Instrumentation 61</p> <p>5.3 Mass Spectrometry and Food Safety 63</p> <p>5.4 Effects of Technological Processing 64</p> <p>5.5 Microbiological Issues 65</p> <p>5.6 Genetically Modified Organisms 65</p> <p>5.7 Food Allergy 66</p> <p>5.8 Food Metabolomics 67</p> <p>5.9 Food Lipidomics 67</p> <p>5.10 Current Challenges and Perspectives 68</p> <p>References 68</p> <p><b>6 Feeding the World: Are Biotechnologies the Solution? 71</b><br /><i>Yves Bertheau</i></p> <p>6.1 Introduction 71</p> <p>6.2 Current Situation 72</p> <p>6.3 Proposed Solutions 76</p> <p>6.4 Conclusion 94</p> <p>References 95</p> <p><b>II APPLICATION OF ENZYMES IN THE FOOD INDUSTRY 103</b></p> <p><b>7 Application of Microbial Enzymes in the Food Industry 105</b><br /><i>Alane Beatriz Vermelho, Verônica Cardoso, Rodrigo Pires Nascimento, Anderson S. Pinheiro, and Igor Rodrigues de Almeida</i></p> <p>7.1 Introduction 105</p> <p>7.2 The Main Enzymes 106</p> <p>7.3 Main Microorganism Producers of Enzymes 111</p> <p>7.4 Marine Microbial Enzymes 115</p> <p>7.5 Dairy Industry 116</p> <p>7.6 Microbial Enzymes Applied in the Beverage Industry 118</p> <p>7.7 Animal Feed 121</p> <p>7.8 Targeting Microbial Enzymes of Industrial Interest 123</p> <p>7.9 Mathematical Models for Enhanced Enzyme Production 124</p> <p>Acknowledgements 124</p> <p>References 125</p> <p><b>8 Enzymatic Modification of Proteins and Starches for Gluten-Free and Low-Glycaemic-Index Foods for Special Dietary Uses 133</b><br /><i>A.M. Calderón de la Barca, A.R. Islas-Rubio, N.G. Heredia, and F. Cabrera-Chávez</i></p> <p>8.1 Introduction 133</p> <p>8.2 Foods for Special Dietary Uses 134</p> <p>8.3 Wheat Constituents that may Trigger Adverse Reactions 134</p> <p>8.4 Gluten Proteins: Role in Pathogenesis of Gluten-Related Disorders 135</p> <p>8.5 Enzymatic Modification of Proteins 136</p> <p>8.6 Polysaccharides and the Glucose Response 139</p> <p>8.7 Polysaccharide Enzymatic Modification 140</p> <p>8.8 Conclusions 141</p> <p>References 141</p> <p><b>9 Enzyme Immobilization and its Application in the Food Industry 145</b><br /><i>Ahmad Homaei</i></p> <p>9.1 Introduction 145</p> <p>9.2 History of Enzyme Immobilization 145</p> <p>9.3 Carrier Materials for Enzyme Immobilization 146</p> <p>9.4 Enzyme Immobilization Techniques 148</p> <p>9.5 Commercialization and Use of Immobilized Enzymes in the Food Industry 153</p> <p>9.6 Conclusions 159</p> <p>References 159</p> <p><b>10 Enzymes for Food and Beverage Industries: Current Situation, Challenges and Perspectives 165</b><br /><i>Antonella Amore and Vincenza Faraco</i></p> <p>10.1 Introduction 165</p> <p>10.2 Application of Enzymes in Food and Beverage Industries 166</p> <p>10.3 Tools to Enhance Use of Food Enzymes 178</p> <p>10.4 Conclusions, Challenges and Perspectives 182</p> <p>References 183</p> <p><b>11 Enzymes Inhibitors: Food and Non-Food Impacts 191</b><br /><i>Nana Akyaa Ackaah-Gyasi, Yi Zhang, and Benjamin K. Simpson</i></p> <p>11.1 Introduction 191</p> <p>11.2 Types of Enzyme Inhibitors 191</p> <p>11.3 Sources of Enzyme Inhibitors 194</p> <p>11.4 Isolation and Purification of some Naturally Occurring Enzyme Inhibitors 196</p> <p>11.5 Mechanisms of Action 196</p> <p>11.6 Food Uses of Enzyme Inhibitors 198</p> <p>11.7 Health and Biomedical Uses of Inhibitors 200</p> <p>11.8 Future of Enzyme Inhibitors 201</p> <p>References 202</p> <p><b>12 Proteases as a Tool in Food Biotechnology 207</b><br /><i>Olga Luisa Tavano</i></p> <p>12.1 Introduction 207</p> <p>12.2 Protease Characteristics 207</p> <p>12.3 Seeking a More Appropriate Protease 209</p> <p>12.4 Modifications in Functional and Sensorial Properties of Food Proteins 212</p> <p>12.5 Cheese-Making 213</p> <p>12.6 Food Additives 214</p> <p>12.7 Special Diets 214</p> <p>12.8 Conclusion 217</p> <p><b>References 217</b></p> <p><b>III RECENT ADVANCES IN FERMENTATION TECHNOLOGY 221</b></p> <p><b>13 Application of Metabolic Engineering in Industrial Fermentative Process 223</b><br /><i>Mahbuba Rahman</i></p> <p>13.1 Introduction 223</p> <p>13.2 Metabolic Engineering Strategies for Microbial Strain Improvement 224</p> <p>13.3 Stages and Tools of Metabolic Engineering 225</p> <p>13.4 Applications of Metabolic Engineering in Fermentation-Based Food Industries 229</p> <p>13.5 Yeasts 232</p> <p>13.6 Bacteria 235</p> <p>13.7 Perspectives 239</p> <p>References 240</p> <p><b>14 Isolation and Selection of Conventional and Non-Conventional Fermentative Yeasts 243</b><br /><i>João Simões and Ana Catarina Gomes</i></p> <p>14.1 Introduction 243</p> <p>14.2 Microorganism Relevance in Wine Production 244</p> <p>14.3 Methods to Recover Fermentative Yeasts 247</p> <p>14.4 Identification of Fermentative Species 248</p> <p>14.5 Strain Identification 249</p> <p>14.6 Fermentative Yeast Phenotypic Characterization 249</p> <p>14.7 Yeast Improvement Strategies 251</p> <p>14.8 From the Genome to Phenotype 254</p> <p>14.9 Future Perspectives and Challenges 256</p> <p>References 257</p> <p><b>15 Multifunctional Lactic Acid Bacteria Cultures to Improve Quality and Nutritional Benefits in Dairy Products 263</b><br /><i>Domenico Carminati, Aurora Meucci, Flavio Tidona, Miriam Zago, and Giorgio Giraffa</i></p> <p>15.1 Lactic Acid Bacteria: Ecology, Taxonomy and Metabolic Activities 263</p> <p>15.2 Role of LAB in Dairy Products 265</p> <p>15.3 LAB Selection and Improvement 268</p> <p>15.4 Final Remarks 271</p> <p>References 272</p> <p><b>16 New Biotechnological Approaches in Sourdough Bread Production Regarding Starter Culture Applications 277</b><br /><i>Stavros Plessas, Ioanna Mantzourani, Argyro Bekatorou, Athanasios Alexopoulos, and Eugenia Bezirtzoglou</i></p> <p>16.1 Introduction 277</p> <p>16.2 Effect of Sourdough on Product Quality 278</p> <p>16.3 Application of Starter Cultures for Sourdough Bread-Making 278</p> <p>References 283</p> <p><b>17 New Biotechnologies for Wine Fermentation and Ageing 287</b><br /><i>Antonio Morata and José A. Suárez-Lepe</i></p> <p>17.1 The Return of Non-Saccharomyces Yeasts to Oenology 287</p> <p>17.2 Influence of Yeasts on Wine Ageing 295</p> <p>17.3 Future Possibilities 296</p> <p>17.4 Conclusions 297</p> <p>References 297</p> <p><b>18 Yeast Biotechnology 303</b><br /><i>Julie Kellershohn and Inge Russell</i></p> <p>18.1 The Market for Yeast and Yeast Products 303</p> <p>18.2 The Baking Industry 303</p> <p>18.3 Brewing and Distilling Yeast Developments 304</p> <p>18.4 Sake Yeast Developments 305</p> <p>18.5 Wine Production and the Creation of Engineered Malolactic Yeast (ML01) 305</p> <p>18.6 Food Yeast 305</p> <p>18.7 Soy Sauce Fermentation 306</p> <p>18.8 Chymosin for Cheese Production 306</p> <p>18.9 Flavour Compounds Produced Using Yeast 307</p> <p>18.10 Carotenoids from Yeast 307</p> <p>18.11 Saccharomyces Yeast in Non-Food Developments 307</p> <p>18.12 The Synthetic Yeast Project 307</p> <p>18.13 The Future 308</p> <p>References 308</p> <p><b>IV FUNCTIONAL FOODS AND NUTRACEUTICALS: NUTRITION, HEALTH AND SAFETY ASPECTS 311</b></p> <p><b>19 Bioencapsulation Technologies for Incorporating Bioactive Components into Functional Foods 313</b><br /><i>Kasipathy Kailasapathy</i></p> <p>19.1 Health and Functional Foods 313</p> <p>19.2 Need for Encapsulation 313</p> <p>19.3 Bioencapsulation Techniques for Administration and Delivery of Bioactive Components 314</p> <p>19.4 Applications: Encapsulation and Controlled Release of Biofunctional Ingredients in Functional Foods: Selected Examples 320</p> <p>19.5 Conclusion and Future Trends 328</p> <p>References 329</p> <p><b>20 Gut Microbiota and Polyphenols: A Strict Connection Enhancing Human Health 335</b><br /><i>Filomena Nazzaro, Florinda Fratianni, and Antonio d’Acierno</i></p> <p>20.1 State of the Art 335</p> <p>20.2 Polyphenols 337</p> <p>20.3 Gut Metabotypes and Polyphenols 340</p> <p>20.4 Influence of Phenolic Compounds on Microbiota Composition 343</p> <p>20.5 Interaction between Specific Probiotics, Microbiota and Vegetal Sources 344</p> <p>20.6 Conclusions 345</p> <p>References 345</p> <p><b>21 Improving Probiotics for Functional Foods 351</b><br /><i>Lorena Ruiz, Miguel Gueimonde, Patricia Ruas-Madiedo, Abelardo Margolles, and Borja Sánchez</i></p> <p>21.1 Introduction 351</p> <p>21.2 Technological Factors 352</p> <p>21.3 Physiological Factors 353</p> <p>21.4 Improving Probiotic Strains I: Strain Selection 354</p> <p>21.5 Improving Probiotic Strains II: Stress Adaptation 355</p> <p>21.6 Improving Probiotic Strains III: Strain Production and Food Design 357</p> <p>21.7 Improving Probiotic Strains IV: Gene Modification 360</p> <p>21.8 Conclusions and Perspectives 361</p> <p>Acknowledgements 362</p> <p>References 362</p> <p><b>22 Production of Single-Cell Oil Containing Omega-3 and Omega-6 Fatty Acids 369</b><br /><i>Kianoush Khosravi-Darani, Paliz Koohy-Kamaly, Houshang Nikoopour, and Seyedeh Zeinab Asadi</i></p> <p>22.1 Introduction 369</p> <p>22.2 Biochemistry of SCO 370</p> <p>22.3 Microorganisms Producing SCO 370</p> <p>22.4 Systems of Cultivation 371</p> <p>22.5 Commercial Production of SCO 373</p> <p>22.6 Recovery and Purification of PUFA from SCO 375</p> <p>22.7 Conclusion 376</p> <p>References 377</p> <p><b>23 Biotechnological Production of Oligosaccharides: Advances and Challenges 381</b><br /><i>Diana B. Muñiz-Márquez, Juan C. Contreras, Raúl Rodríguez, Solange I. Mussatto, José A. Teixeira, and Cristóbal N. Aguilar</i></p> <p>23.1 Introduction 381</p> <p>23.2 Beneficial Effects of Oligosaccharides 381</p> <p>23.3 Types of Oligosaccharides 383</p> <p>23.4 Other Enzymes used for the Biosynthesis of Oligosaccharides 385</p> <p>23.5 Microbial Production of Prebiotic Oligosaccharides 386</p> <p>23.6 Yeast Strains used in Galactooligosaccharide Production from Lactose 386</p> <p>23.7 Analysis of Oligosaccharides 386</p> <p>23.8 New Approaches for Purification of Oligosaccharides 387</p> <p>23.9 Emerging Trends in the Production of Novel Oligosaccharides 388</p> <p>23.10 Concluding Remarks 388</p> <p>Acknowledgements 388</p> <p>References 388</p> <p><b>V VALORIZATION OF FOOD WASTE USING BIOTECHNOLOGY 393</b></p> <p><b>24 Biotechnological Exploitation of Brewery Solid Wastes for Recovery or Production of Value-Added Products 395</b><br /><i>Argyro Bekatorou, Stavros Plessas, and Ioanna Mantzourani</i></p> <p>24.1 Introduction 395</p> <p>24.2 Generation and Physicochemical Characteristics of Brewery Solid Wastes 397</p> <p>24.3 Value-Added Bio-Products from Brewery Solid Wastes 399</p> <p>24.4 Conclusions 408</p> <p>References 409</p> <p><b>25 Value-Added Utilization of Agro-Industrial Residues 415</b><br /><i>Sigrid Kusch, Chibuike C. Udenigwe, Cristina Cavinato, Marco Gottardo, and Federico Micolucci</i></p> <p>25.1 Introduction 415</p> <p>25.2 Occurrence and Characteristics of Food Waste 417</p> <p>25.3 Current and Emerging Food Waste Valorization Strategies 419</p> <p>25.4 A Spotlight on Functional Foods 421</p> <p>25.5 Concluding Remarks 424</p> <p>References 424</p> <p><b>26 Cascaded Valorization of Food Waste using Bioconversions as Core Processes 427</b><br /><i>Linsey Garcia-Gonzalez, Sebastiaan Bijttebier, Stefan Voorspoels, Maarten Uyttebroek, Kathy Elst, Winnie Dejonghe, Yamini Satyawali, Deepak Pant, Karolien Vanbroekhoven, and Heleen De Wever</i></p> <p>26.1 Food Waste: Tomorrow’s Raw Materials? 427</p> <p>26.2 Characterization of Biomass on a Molecular Level 428</p> <p>26.3 Extraction of High-Value Compounds 430</p> <p>26.4 Bioconversions of Food Waste using Enzyme Technology 431</p> <p>26.5 Bioconversions of Food Waste using Fermentation Technology 433</p> <p>26.6 Electricity Generation using Microbial Fuel Cells 434</p> <p>26.7 Conclusions 436</p> <p>Acknowledgements 436</p> <p>References 437</p> <p><b>27 Potential of Fruits Processing Wastes for Fungal Production of Multi-Enzymes Complexes 443</b><br /><i>A.B. Díaz, I. Caro, I. de Ory, and A. Blandino</i></p> <p>27.1 Food Processing Wastes as Substrates for SSF 443</p> <p>27.2 Hydrolytic Enzymes Production from Fruit-Processing Wastes 445</p> <p>27.3 SSF on Fruit-Processing Wastes in Bioreactors 447</p> <p>27.4 Application of Hydrolytic Multi-Enzyme Complexes 449</p> <p>27.5 Use of Enzyme Immobilization Strategies 450</p> <p>27.6 Conclusions 451</p> <p>References 451</p> <p><b>VI FOOD SAFETY: DETECTION AND CONTROL OF FOOD-BORNE PATHOGENS 455</b></p> <p><b>28 Emergent Strategies for Detection and Control of Biofilms in Food Processing Environments 457</b><br /><i>Heidy M.W. den Besten, Yichen Ding, Tjakko Abee, and Liang Yang</i></p> <p>28.1 Introduction 457</p> <p>28.2 Biofilm-Associated Problems in Food Processing Environments 457</p> <p>28.3 Biofilm Formation Mechanisms of Major Food Pathogens 457</p> <p>28.4 Mechanisms of Biofilm Resistance 460</p> <p>28.5 Novel Approaches for Biofilm Detection 461</p> <p>28.6 Biofilm Control Strategies in Food Industry 462</p> <p>28.7 Conclusions 466</p> <p>Acknowledgements 466</p> <p>References 466</p> <p><b>29 Molecular Methods for the Detection and Characterization of Food-Borne Pathogens 471</b><br /><i>Gulam Rusul and Li-Oon Chuah</i></p> <p>29.1 Introduction 471</p> <p>29.2 Molecular Detection and Identification of Food-Borne Pathogens 472</p> <p>29.3 Molecular Typing Techniques 483</p> <p>29.4 Criteria to Consider when Choosing a Method 486</p> <p>29.5 Sample Preparation for the Detection of Food-Borne Pathogens 487</p> <p>29.6 Conclusions 487</p> <p>References 488</p> <p><b>30 Non-Thermal Food Preservation: Control of Food-Borne Pathogens through Active Food Packaging and Nanotechnology 499</b><br /><i>Paula Judith Perez Espitia and Rejane Andrade Batista</i></p> <p>30.1 Introduction 499</p> <p>30.2 Polymeric Matrixes and Methods of Food Packaging 500</p> <p>30.3 Controlling Food-Borne Pathogens through Active Food Packaging 504</p> <p>30.4 Nanotechnology for Antimicrobial Food Packaging 506</p> <p>30.5 Safety Issues 506</p> <p>Acknowledgements 508</p> <p>References 508</p> <p><b>31 Strategies for Advantageous Antimicrobial Activity by Bacteriocins from Lactic Acid Bacteria: Higher Yield, Enhanced Activity and Successful Application in Foods 511</b><br /><i>Myrto-Panagiota Zacharof</i></p> <p>31.1 Introduction 511</p> <p>31.2 Bacteriocin Uses and Demands of a Knowledge-Driven Economy 511</p> <p>31.3 Strategies for Advantageous Production of Bacteriocins 512</p> <p>31.4 Synergistic Action of Bacteriocins for Enhanced Activity 517</p> <p>31.5 Application of Bacteriocins in Foods: Examples and Case Studies 519</p> <p>31.6 Conclusions 521</p> <p>References 521</p> <p><b>32 The Role of Phages in Food-Borne Pathogen Detection 527</b><br /><i>Eoghan Nevin, Aidan Coffey, and Jim O’Mahony</i></p> <p>32.1 Introduction 527</p> <p>32.2 Methods of Phage Detection 527</p> <p>Acknowledgements 535</p> <p>References 535</p> <p><b>VII EMERGING TECHNIQUES IN FOOD PROCESSING 539</b></p> <p><b>33 Applications of Micro- and Nanofluidics in the Food Industry 541</b><br /><i>Fabrizio Sarghini</i></p> <p>33.1 Introduction 541</p> <p>33.2 Physical Bases of Microfluidics 542</p> <p>33.3 Applications 545</p> <p>33.4 Basic Microfluidic Devices for Food Analysis and Food Processing 548</p> <p>33.5 Perspectives and Challenges 559</p> <p>References 560</p> <p><b>34 Atmospheric-Pressure Non-Thermal Plasma Decontamination of Foods 565</b><br /><i>N.N. Misra, Annalisa Segat, and P.J. Cullen</i></p> <p>34.1 Introduction 565</p> <p>34.2 NTP Fundamentals 566</p> <p>34.3 Plasma–Microbiological Interactions 568</p> <p>34.4 Plasma–Food Interactions 569</p> <p>34.5 Challenges in NTP Processing of Foods 571</p> <p>34.6 Conclusions and Future Trends 572</p> <p>34.7 Acknowledgement 572</p> <p>References 572</p> <p><b>35 Electrochemical Processes During High-Voltage Electric Pulses and their Importance in Food Processing Technology 575</b><br /><i>Gintautas Saulis, Raminta Rodaitė-Riševičienė, Viktorija SkaidrutėDainauskaitė, and Rita Saulė</i></p> <p>35.1 Introduction 575</p> <p>35.2 Theoretical Background 576</p> <p>35.3 Consequences of Electrochemical Processes 578</p> <p>35.4 Methods of Reducing Electrochemical Reaction Intensity and Reaction Consequences 586</p> <p>35.5 Conclusion 587</p> <p>Acknowledgements 587</p> <p>References 587</p> <p><b>36 Microencapsulation in Food Biotechnology by a Spray-Drying Process 593</b><br /><i>Berta N. Estevinho and Fernando Rocha</i></p> <p>36.1 Introduction 593</p> <p>36.2 Microencapsulation in Food Biotechnology 594</p> <p>36.3 Microencapsulation Concepts 599</p> <p>36.4 Spray-Drying Process 600</p> <p>36.5 Kinetic Mechanisms of Controlled Release 602</p> <p>36.6 Conclusions 603</p> <p>Acknowledgements 603</p> <p>References 603</p> <p><b>37 Nanofibre Encapsulation of Active Ingredients and their Controlled Release 607</b><br /><i>Filiz Altay and Nagihan Okutan</i></p> <p>37.1 Introduction 607</p> <p>37.2 Encapsulation by Electrospinning 609</p> <p>37.3 Applications of Electrospun Nanofibre-Encapsulated Ingredients 611</p> <p>37.4 Controlled Release from Nanofibres 611</p> <p>37.5 Conclusion and Future Trends 614</p> <p>Acknowledgements 614</p> <p>References 614</p> <p><b>38 Applications of Nanobiotechnology in the Food Industry 617</b><br /><i>Jamuna Bai Aswathanarayan and Ravishankar Rai V.</i></p> <p>38.1 Introduction 617</p> <p>38.2 Nanobiotechnology in Food Packaging: Improved, Intelligent and Active Packaging 618</p> <p>38.3 Nanotechnology for Delivery of Bioactives and Nutraceuticals 623</p> <p>38.4 Nanobiosensors: Detection of Food-Relevant Analytes 625</p> <p>38.5 Safety and Regulatory Aspects of Nanotechnology Applications 630</p> <p>38.6 Conclusion 630</p> <p>References 630</p> <p><b>39 Recent Advances in and Applications of Encapsulated Microbial and Non-Microbial Active Agents in Food and Beverage Manufacture 635<br /></b><i>Viktor Nedovic,ì Branko Bugarski, Fani Mantzouridou, Adamantini Paraskevopoulou, Eleni Naziri, Thomas Koupantsis, Kata Trifkovic ì, Ivana Drvenica, Bojana Balanč, and Verica Ðord̵evic ì</i></p> <p>39.1 Introduction 635</p> <p>39.2 Microbial Food Culture Encapsulation as a Biotechnological Process Tool 636</p> <p>39.3 Encapsulation for Enhanced In Vivo Bioactive Compound Bioavailability and Improved Aroma 637</p> <p>39.4 Food-Specific Materials and Methods/Techniques for Encapsulation 642</p> <p>39.5 Examples of Encapsulated Cell Technology in Fermentation Processes 649</p> <p>39.6 Examples of Immobilized Cell Technology in Microbial Production of High-Value Food Ingredients 655</p> <p>39.7 Examples of Encapsulated Cells/Bioactives in Production of Functional Food Products 659</p> <p>39.8 Trends in Encapsulation 661</p> <p>39.9 Future Perspectives 665</p> <p>Acknowledgements 665</p> <p>References 666</p> <p><b>40 Thermal Processing of Food 681</b><br /><i>S. K. Pankaj</i></p> <p>40.1 Introduction 681</p> <p>40.2 Cooking Criteria 684</p> <p>40.3 Retorts 684</p> <p>40.4 Control Systems 685</p> <p>40.5 Process Evaluation 687</p> <p>40.6 On-Line Retort Control 689</p> <p>40.7 Novel Technologies 689</p> <p>40.8 Future Trends 691</p> <p>References 692</p> <p>Index 693</p>
<P><B>ABOUT THE EDITOR </B><BR> <b>Dr Ravishankar Rai V.</b> is Professor at the Department of Studies in Microbiology, University of Mysore, India.
<p><i>The </i>application of biotechnology in the food sciences has led to an increase in food production, and enhanced the quality and safety of food. Food biotechnology is a dynamic field, and the continual progress and advances have not only dealt effectively with issues related to food security but also augmented the nutritional and health aspects of food. <p><i>Advances in Food Biotechnology</i> provides an overview of the latest development in food biotechnology as it relates to safety, quality and security. The seven sections of the book are multidisciplinary and cover the following topics: <ul><li>GMOs and food security issues</li> <li>Applications of enzymes in food processing</li> <li>Fermentation technology</li> <li>Functional food and nutraceuticals</li> <li>Valorization of food waste</li> <li>Detection and control of foodborne pathogens</li> <li>Emerging techniques in food processing</li></ul> <p>Bringing together experts drawn from around the world, the book is a comprehensive reference in the most progressive field of food science and will be of interest to professionals, scientists and academics in the food and biotech industries. The book will be highly resourceful to governmental research, regulatory agencies and those who are studying and teaching food biotechnology. <p><b>Also available from Wiley</b><BR> <i>Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients</i><BR> Edited by Cristina M. Sabliov, Hongda Chen, Rickey Y. Yada<BR> ISBN: 978-1-118-46220-1 <p><i>Fundamentals of Food Biotechnology</i>, 2nd Edition<BR> Byong H. Lee<BR> ISBN: 978-1-118-38495-4

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €