Details

Advanced Materials for Wastewater Treatment


Advanced Materials for Wastewater Treatment


Advanced Material Series 1. Aufl.

von: Shahid Ul-Islam

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.09.2017
ISBN/EAN: 9781119407799
Sprache: englisch
Anzahl Seiten: 534

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This comprehensive book deals with the use of novel materials such as plant-derived agents and advanced nanocomposites for the removal of heavy metals, nitrates, and synthetic dyes.</b></p> <p>Water is an essential component for living organisms on planet earth and its pollution is one of the critical global environmental issues today. The influx of significant quantities of organic and inorganic waste, sediments, surfactants, synthetic dyes, sewage, and heavy metals into all types of water bodies has been increasing substantially over the past century due to rapid industrialization, population growth, agricultural activities, and other geological and environmental changes. These pollutants are very dangerous and are posing serious threat to us all.</p> <p><i>Advanced Materials for Wastewater Treatment</i> brings together innovative methodologies and research strategies to remove toxic effluents from wastewaters. With contributions from leading scientists from all around the world, the book provides a comprehensive coverage of the current literature, up-to-date overviews of all aspects of toxic chemical remediation including the role of nanomaterials. Together they showcase in a very lucid manner an array of technologies that complement the traditional as well as advanced treatment practices of textile effluents. In particular, the book provides:</p> <ul> <li>Up-to-date overviews of all aspects of toxic chemical remediation</li> <li>The role of plants and abundantly available agro-wastes in the remediation of wastewater</li> <li>The removal of nitrates from wastewater using nanocomposites</li> </ul>
<p>Preface xv</p> <p><b>1 Arsenic: Toxic Effects and Remediation 1<br /></b><i>Sharf Ilahi Siddiqui and Saif Ali Chaudhry</i></p> <p>1.1 Introduction 1</p> <p>1.2 Arsenic Concentration in Water 2</p> <p>1.3 Exposure of Arsenic in Human Body 3</p> <p>1.4 Metabolism and Excretion of Arsenious Compounds 4</p> <p>1.5 Arsenic Toxicity and Mechanism 6</p> <p>1.5.1 Oxidative Stress 6</p> <p>1.5.2 Binding to Sulfhydryl Group 7</p> <p>1.5.3 Replacement of Phosphate Group 8</p> <p>1.5.4 Alternation in the Gene Expression 9</p> <p>1.5.5 Arsenic Impairs Glucose Catabolism 9</p> <p>1.6 Detoxification of Arsenic 10</p> <p>1.6.1 Antioxidants Agents 10</p> <p>1.6.2 Chelating Agents 11</p> <p>1.7 Arsenic Remediation Technologies 12</p> <p>1.8 Adsorption and Recent Advancement 15</p> <p>1.9 Conclusion 16</p> <p>Acknowledgment 17</p> <p>Abbreviations 17</p> <p>References 18</p> <p><b>2 Recent Trends in Textile Effluent Treatments: A Review 29<br /></b><i>Shumaila Kiran, Shahid Adeel, Sofia Nosheen, Atya Hassan, Muhammad Usman and Muhammad Asim Rafique</i></p> <p>2.1 Introduction 30</p> <p>2.2 Industrial Dyes, Dying Practices, and Associated Problems 31</p> <p>2.3 Wastewater Remediation 31</p> <p>2.4 Physical Methods 33</p> <p>2.4.1 Adsorption 35</p> <p>2.4.2 Coagulation and Flocculation 35</p> <p>2.4.3 Membrane Processes 35</p> <p>2.4.4 Ultra Filtration 36</p> <p>2.4.5 Micellar-Enhanced Ultrafiltration (MEUF) 36</p> <p>2.4.6 Reverse Osmosis 36</p> <p>2.4.7 Nanofiltration 37</p> <p>2.5 Chemical Methods 37</p> <p>2.5.1 Photo Catalytic Degradation of Dyes 37</p> <p>2.5.2 Oxidation and Photocatalysis with Hydrogen Peroxide 38</p> <p>2.5.3 Ozonation 39</p> <p>2.5.4 Degradation of Dyes Using Sodium Hypochlorite (NaOCl) 39</p> <p>2.5.5 Electrochemical Method 39</p> <p>2.6 Bioremediation 40</p> <p>2.7 Products Recognition and Mechanisms of Dye Degradation 40</p> <p>2.8 Conclusion 42</p> <p>2.9 Future Outlook 43</p> <p>References 43</p> <p><b>3 Polyaniline as an Inceptive Dye Adsorbent from Effluent 51<br /></b><i>Raminder Kaur and Monika Duhan</i></p> <p>3.1 Introduction 52</p> <p>3.1.1 Effluent from the Industries 53</p> <p>3.2 Pollution Due to Dyes 56</p> <p>3.2.1 Lethal Effects of Dyes 57</p> <p>3.3 Methods Used for the Dye Removal 58</p> <p>3.3.1 Removal of Dyes by Adsorption 59</p> <p>3.3.1.1 Factors Affecting Adsorption 62</p> <p>3.4 Adsorption Kinetics 71</p> <p>3.4.1 Adsorption Isotherms 72</p> <p>3.5 Polyaniline: An Emerging Adsorbent 74</p> <p>3.5.1 Polyaniline in Dye Removal 74</p> <p>3.5.2 Polyaniline in Metal Ions Removal 81</p> <p>3.5.3 Polyaniline in Phenols Removal 83</p> <p>3.5.4 Polyaniline in Acid Removal 83</p> <p>3.6 Conclusion 84</p> <p>References 84</p> <p><b>4 Immobilized Microbial Biosorbents for Wastewater Remediation 101<br /></b><i>Mohammad Asaduddin Laskar, Rajeev Kumar and Mohamed A. Barakat</i></p> <p>4.1 Introduction 102</p> <p>4.2 Immobilized Microbial Biosorbent 103</p> <p>4.2.1 Algae Biosorbent 103</p> <p>4.2.2 Fungi Biosorbent 106</p> <p>4.2.3 Bacteria Biosorbent 111</p> <p>4.3 Biosorption Mechanism 114</p> <p>4.3.1 Algae-Based Biocomposite 114</p> <p>4.3.2 Bacteria-Based Bio-Composite 116</p> <p>4.3.3 Fungi-Based Biocomposite 119</p> <p>4.4 Conclusion 120</p> <p>References 122</p> <p><b>5 Remediation of Cr (VI) Using Clay Minerals, Biomasses and Industrial Wastes as Adsorbents 129<br /></b><i>Rashmi Acharya, Satyabadi Martha and K. M. Parida</i></p> <p>5.1 Introduction 130</p> <p>5.2 Isotherm Models 133</p> <p>5.2.1 Langmuir Isotherm Model 133</p> <p>5.2.2 Freundlich Isotherm Model 134</p> <p>5.2.3 Dubnin–Radushkevich Isotherm Model 135</p> <p>5.3 Thermodynamics of Adsorption 135</p> <p>5.4 Kinetics of Adsorption 136</p> <p>5.4.1 Pseudo-First-Order Kinetics 136</p> <p>5.4.2 Pseudo-Second–Order Kinetics 137</p> <p>5.5 Solution pH 137</p> <p>5.6 Clay Minerals 139</p> <p>5.6.1 Natural Clay Minerals 139</p> <p>5.6.2 Natural Clay Minerals Along with Reducing Agents 140</p> <p>5.6.3 Modified Clay Minerals 140</p> <p>5.7 Biomasses 146</p> <p>5.8 Industrial Wastes 159</p> <p>5.9 Conclusion 161</p> <p>References 163</p> <p><b>6. Microbial Diversity as a Tool for Wastewater Treatment 171<br /></b><i>Sadia Ilyas and Haq Nawaz Bhatti</i></p> <p>6.1 Overview of Wastewater; Sources, Pollutants, and Characteristics 171</p> <p>6.1.1 Biodiversity of Wastewater Plants 175</p> <p>6.2 Role of Dominant Wastewater Treatment Communities in Biodegradation 179</p> <p>6.2.1 Hydrolytic Microbial Community 179</p> <p>6.2.2 Acetogenic, Coliforms, and Cyanobacterial Community 181</p> <p>6.2.3 Denitrifying, Fecal Coliforms, and Fermentative Microbial Community 182</p> <p>6.2.4 Floc-Forming and Gram-Negative Microbial Community 183</p> <p>6.2.5 Nocardioforms and Methane-Forming Microbial Community 183</p> <p>6.2.6 Nitrifying Microbial Community 184</p> <p>6.2.7 Denitrifying Microbial Community 187</p> <p>6.2.8 Phosphorous Solubilizing Microbial Community 190</p> <p>6.2.9 Sulfur Oxidizing and Reducing Microbial Community 197</p> <p>6.3 Methods for the Treatment of Wastewater 200</p> <p>6.3.1 Preliminary Treatments 200</p> <p>6.3.2 Primary Treatments 204</p> <p>6.3.3 Secondary/Biological Treatments 205</p> <p>6.3.3.1 Aerated Lagoons and Bioaugmentation 207</p> <p>6.3.3.2 Trickling Filter Process 211</p> <p>6.3.3.3 Activated Sludge Process 213</p> <p>6.3.3.4 Oxidation Ditch and Oxidation Pond Process 214</p> <p>6.3.3.5 Anaerobic Digestion Process 216</p> <p>6.3.3.6 Biogenic Enzymatic Wastewater Treatment 216</p> <p>6.4 Conclusion 218</p> <p>References 218</p> <p><b>7 Role of Plant Species in Bioremediation of Heavy Metals from Polluted Areas and Wastewaters 223<br /></b><i>Mayerly Alexandra Oyuela Leguizamo</i></p> <p>7.1 Introduction 224</p> <p>7.2 Heavy Metals (HM) Worldwide 225</p> <p>7.3 Allochthonous and Autochthonous Plants 227</p> <p>7.4 Phytoremediation of Heavy Metals (HM) 231</p> <p>7.4.1 Phytoremediation 231</p> <p>7.4.2 Phytoremediation Approaches and Technologies 231</p> <p>7.5 Methodology 238</p> <p>7.6 Analysis of Research on Heavy Metals (HM) and Native and Endemic Plant Species 238</p> <p>7.7 Results 249</p> <p>7.8 Conclusion 249</p> <p>References 252</p> <p><b>8 Bioremediation: A Green, Sustainable and Eco-Friendly Technique for the Remediation of Pollutants 263<br /></b><i>Munawar Iqbal, Arif Nazir, Mazhar Abbas, Qudsia Kanwal and Dure Najaf Iqbal</i></p> <p>8.1 Introduction 264</p> <p>8.2 Immobilization 264</p> <p>8.3 Enzyme Immobilization Strategies 265</p> <p>8.4 Adsorption 265</p> <p>8.5 Entrapment 267</p> <p>8.6 Encapsulation 268</p> <p>8.7 Covalent Binding 269</p> <p>8.8 Self-Immobilization 270</p> <p>8.9 Properties of Immobilized Enzymes 271</p> <p>8.9.1 Immobilized LiP 271</p> <p>8.9.2 Immobilized MnP 273</p> <p>8.9.3 Immobilized Lac 274</p> <p>8.10 Enzymes Sources 276</p> <p>8.11 Conditions for Lipid Degradation 276</p> <p>8.12 Environmental Applications of Ligninolytic Enzymes 279</p> <p>8.12.1 Degradation and Decolorization of Industrial (Textile) Dyes 279</p> <p>8.12.2 Dye Decolorization with Free Ligninolytic Enzymes 280</p> <p>8.12.3 Dye Removal by Immobilized Ligninolytic Enzymes 286</p> <p>8.12.4 Degradation of Lipids 291</p> <p>8.12.5 Degradation of Miscellaneous Compounds 292</p> <p>8.12.6 Xenobiotics and Industrial Effluents 295</p> <p>8.12.7 Degradation of Aromatic Compounds 296</p> <p>8.13 Conclusions 299</p> <p>References 300</p> <p><b>9 Role of Plant-Based Biochar in Pollutant Removal: An Overview 313<br /></b><i>D.S. Malik, C.K. Jain, Anuj K. Yadav and Sushmita Banerjee</i></p> <p>9.1 Introduction 313</p> <p>9.2 Preparation Methods of Biochar 315</p> <p>9.2.1 Pyrolysis 315</p> <p>9.2.2 Slow Pyrolysis 315</p> <p>9.2.3 Fast Pyrolysis 315</p> <p>9.2.4 Gasification 315</p> <p>9.2.5 Hydrothermal Carbonization 315</p> <p>9.3 Physico-chemical Characterization of Plant-Based Biochar 316</p> <p>9.3.1 pH 317</p> <p>9.3.2 Ash Content 317</p> <p>9.3.3 Moisture Content 317</p> <p>9.3.4 Bulk Density 317</p> <p>9.3.5 Elemental Analysis 320</p> <p>9.3.6 BET (Brunauer, Emmett, and Teller) 320</p> <p>9.3.7 SEM and EDX 320</p> <p>9.3.8 FTIR 320</p> <p>9.4 Biochar for Heavy Metal Removal 320</p> <p>9.5 Biochar for Dye Removal 321</p> <p>9.6 Biochar for Fluoride Removal 322</p> <p>9.7 Biochar for Persistent Organic Pollutant Removal 323</p> <p>9.8 Biochar for Other Pollutant Removal 323</p> <p>9.9 Biochar for Soil Treatment/Improvement 324</p> <p>9.10 Conclusion 324</p> <p>Acknowledgments 325</p> <p>References 325</p> <p><b>10 A Review on Ferrate(VI) and Photocatalysis as Oxidation Processes for the Removal of Organic Pollutants in Water and Wastewater 331<br /></b><i>Kyriakos Manoli, Malini Ghosh, George Nakhla and Ajay K. Ray</i></p> <p>10.1 Introduction 332</p> <p>10.2 Ferrate(VI) 335</p> <p>10.2.1 Introduction 335</p> <p>10.2.2 Synthesis 336</p> <p>10.2.2.1 Electrochemical Synthesis 336</p> <p>10.2.2.2 Wet Chemical Method 338</p> <p>10.2.2.3 Dry Thermal Method 338</p> <p>10.2.3 Characterization 338</p> <p>10.2.4 Oxidation 340</p> <p>10.2.4.1 Kinetics of the Oxidation of Organics by Ferrate(VI) 340</p> <p>10.2.4.2 Stoichiometry 341</p> <p>10.2.4.3 Application and Performance of Ferrate(VI) in Wastewater Treatment 357</p> <p>10.2.5 Future Directions 359</p> <p>10.3 Photocatalysis 360</p> <p>10.3.1 Introduction 360</p> <p>10.3.1.1 General Concept of Photocatalysis 360</p> <p>10.3.1.2 Basic Principle of Photocatalysis 361</p> <p>10.3.2 Design Parameters of Photocatalysis 363</p> <p>10.3.2.1 Different Aspects of Design Parameters 364</p> <p>10.3.2.2 Reactor Design Limitations Along with Proposed Solution 365</p> <p>10.3.3 Photocatalysts 367</p> <p>10.3.3.1 Doping of TiO<sub>2</sub> 369</p> <p>10.3.3.2 Coupled Semiconductors 371</p> <p>10.3.3.3 Dye-Sensitized Catalyst 373</p> <p>10.3.4 Challenges and Future Prospects of Photocatalysis 376</p> <p>10.4 Combination of Photocatalysis (UV/TiO<sub>2</sub>) and Ferrate(VI) 376</p> <p>10.5 Conclusion 378</p> <p>References 379</p> <p><b>11 Agro-Industrial Wastes Composites as Novel Adsorbents 391<br /></b><i>Haq Nawaz Bhatti, Amina Kamal and Munawar Iqbal</i></p> <p>11.1 Introduction 392</p> <p>11.2 Material and Methods 400</p> <p>11.2.1 Chemical, Reagent and Instruments 400</p> <p>11.2.2 Biomass Collection and Preparation 401</p> <p>11.2.3 Composites Preparation 401</p> <p>11.2.4 Dye Solution Preparation 402</p> <p>11.2.5 Adsorption Experiments 402</p> <p>11.3 Results and Discussion 402</p> <p>11.3.1 Screening of Adsorbents 402</p> <p>11.3.2 Effect of pH 403</p> <p>11.3.3 Effect of Composites Dose 405</p> <p>11.3.4 Effect of Contact Time 406</p> <p>11.3.5 Effect of Initial Concentration 406</p> <p>11.3.6 Effect of Temperature 408</p> <p>11.3.7 Kinetic Study 409</p> <p>11.3.8 Intraparticle Diffusion Model 412</p> <p>11.3.9 Isotherm Modelling 412</p> <p>11.3.10 Thermodynamic Study 417</p> <p>11.4 Conclusion 421</p> <p>References 421</p> <p><b>12 A Review on the Removal of Nitrate from Water by Adsorption on Organic–Inorganic Hybrid Biocomposites 433<br /></b><i>Wondalem Misganaw Golie, Kaisar Ahmad and Sreedevi Upadhyayula</i></p> <p>12.1 Introduction 433</p> <p>12.1.1 Risks Associated to High Level of Nitrate in Water 434</p> <p>12.1.2 Technologies for the Removal of Nitrate from Water 435</p> <p>12.2 Adsorbents for the Removal of Nitrate from Water 437</p> <p>12.3 Models for Adsorption Process 445</p> <p>12.3.1 Batch Adsorption Models 445</p> <p>12.3.1.1 Adsorption Isotherms and Models 446</p> <p>12.3.1.2 Langmuir Isotherm 446</p> <p>12.3.1.3 Freundlich Isotherm 447</p> <p>12.3.1.4 Temkin Isotherm 448</p> <p>12.3.1.5 Dubinin–Radushkevich (D–R) Isotherm 448</p> <p>12.3.1.6 Sips Isotherm 449</p> <p>12.3.1.7 Redlich–Peterson Isotherm 450</p> <p>12.3.1.8 Thermodynamic Parameters 450</p> <p>12.3.1.9 Adsorption Kinetics 452</p> <p>12.4 Column Study 454</p> <p>12.4.1 Breakthrough Curve Analysis 455</p> <p>12.4.2 Models of Column Studies 457</p> <p>12.4.2.1 Adams-Bohart Model 457</p> <p>12.4.2.2 Thomas Model 458</p> <p>12.4.2.3 Yoon and Nelson Model 459</p> <p>12.4.2.4 Clark Model 460</p> <p>12.4.2.5 The Wolborska Model 461</p> <p>12.4.2.6 Bed Depth Service Time (BDST) Model 462</p> <p>12.5 Conclusion 463</p> <p>Nomenclatures 464</p> <p>References 467</p> <p><b>13 Nitrate Removal and Nitrogen Sequestration from Polluted Waters Using Zero-Valent Iron Nanoparticles Synthesized under Ultrasonic Irradiation 479<br /></b><i>Mohammadreza Kamali, Maria Elisabete Costa and Isabel Capela</i></p> <p>13.1 Introduction 480</p> <p>13.2 Materials and Methods 483</p> <p>13.2.1 Experimental 483</p> <p>13.2.1.1 Reagents 483</p> <p>13.2.1.2 Synthesis Protocol 483</p> <p>13.2.2 Characterization 484</p> <p>13.2.3 Taguchi Design and Reactivity Analysis 485</p> <p>13.3 Results and Discussion 486</p> <p>13.3.1 Characterization 486</p> <p>13.3.2 Reactivity of nZVI 489</p> <p>13.3.2.1 Statistical Analysis 489</p> <p>13.3.2.2 Nitrate Removal Reaction: Mechanisms and Pathways 492</p> <p>13.4 Conclusion 497</p> <p>Acknowledgments 498</p> <p>References 498</p> <p>Index 507</p>
<p><b>Shahid-ul-Islam </b>is a researcher at the Indian Institute of Technology, New Delhi. His current research interests include green chemistry, dyes & pigments, thermodynamics and kinetics of colorants, and polymeric nanocomposites. He has numerous academic publications in international journals of high repute to his credit.</p>
<p><b>This comprehensive book deals with the use of novel materials such as plant-derived agents and advanced nanocomposites for the removal of heavy metals, nitrates, and synthetic dyes. </b></p> <p>Water is an essential component for living organisms on planet earth and its pollution is one of the critical global environmental issues today. The influx of significant quantities of organic and inorganic waste, sediments, surfactants, synthetic dyes, sewage, and heavy metals into all types of water bodies has been increasing substantially over the past century due to rapid industrialization, population growth, agricultural activities, and other geological and environmental changes. These pollutants are very dangerous and are posing serious threat to us all. <p><i>Advanced Materials for Wastewater Treatment</i> brings together innovative methodologies and research strategies to remove toxic effluents from wastewaters. With contributions from leading scientists from all around the world, the book provides a comprehensive coverage of the current literature, up-to-date overviews of all aspects of toxic chemical remediation including the role of nanomaterials. Together they showcase in a very lucid manner an array of technologies that complement the traditional as well as advanced treatment practices of textile effluents. In particular, the book provides: <ul><li>Up-to-date overviews of all aspects of toxic chemical remediation</li> <li>The role of plants and abundantly available agro-wastes in the remediation of wastewater</li> <li>The removal of nitrates from wastewater using nanocomposites</li></ul> <p><b>Audience</b><BR><i>Advanced Materials for Wastewater Treatment</i> will be equally valuable to academicians, industry scientists and students involved with water treatment from a materials science, chemical engineering and nanotechnology perspective.

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €