Details

Advanced Control of Aircraft, Spacecraft and Rockets


Advanced Control of Aircraft, Spacecraft and Rockets


Aerospace Series, Band 37 1. Aufl.

von: Ashish Tewari, Peter Belobaba, Jonathan Cooper, Roy Langton, Allan Seabridge

87,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.06.2011
ISBN/EAN: 9781119972747
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Advanced Control of Aircraft, Spacecraft and Rockets</i> introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. <p><i>Advanced Control of Aircraft, Spacecraft and Rockets</i> features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.</p>
<b>Series Preface xiii</b> <p><b>Preface xv</b></p> <p><b>1 Introduction 1</b></p> <p>1.1 Notation and Basic Definitions 1</p> <p>1.2 Control Systems 3</p> <p><i>1.2.1 Linear Tracking Systems</i> 7</p> <p><i>1.2.2 Linear Time-Invariant Tracking Systems</i> 9</p> <p>1.3 Guidance and Control of Flight Vehicles 10</p> <p>1.4 Special Tracking Laws 13</p> <p><i>1.4.1 Proportional Navigation Guidance</i> 13</p> <p><i>1.4.2 Cross-Product Steering</i> 16</p> <p><i>1.4.3 Proportional-Integral-Derivative Control</i> 19</p> <p>1.5 Digital Tracking System 24</p> <p>1.6 Summary 25</p> <p>Exercises 26</p> <p>References 28</p> <p><b>2 Optimal Control Techniques 29</b></p> <p>2.1 Introduction 29</p> <p>2.2 Multi-variable Optimization 31</p> <p>2.3 Constrained Minimization 33</p> <p><i>2.3.1 Equality Constraints</i> 34</p> <p><i>2.3.2 Inequality Constraints</i> 38</p> <p>2.4 Optimal Control of Dynamic Systems 41</p> <p><i>2.4.1 Optimality Conditions</i> 43</p> <p>2.5 The Hamiltonian and the Minimum Principle 44</p> <p><i>2.5.1 Hamilton–Jacobi–Bellman Equation</i> 45</p> <p><i>2.5.2 Linear Time-Varying System with Quadratic Performance Index</i> 47</p> <p>2.6 Optimal Control with End-Point State Equality Constraints 48</p> <p><i>2.6.1 Euler–Lagrange Equations</i> 50</p> <p><i>2.6.2 Special Cases</i> 50</p> <p>2.7 Numerical Solution of Two-Point Boundary Value Problems 52</p> <p><i>2.7.1 Shooting Method</i> 54</p> <p><i>2.7.2 Collocation Method</i> 57</p> <p>2.8 Optimal Terminal Control with Interior Time Constraints 61</p> <p><i>2.8.1 Optimal Singular Control</i> 62</p> <p>2.9 Tracking Control 63</p> <p><i>2.9.1 Neighboring Extremal Method and Linear Quadratic Control</i> 64</p> <p>2.10 Stochastic Processes 69</p> <p><i>2.10.1 Stationary Random Processes</i> 75</p> <p><i>2.10.2 Filtering of Random Noise</i> 77</p> <p>2.11 Kalman Filter 77</p> <p>2.12 Robust Linear Time-Invariant Control 81</p> <p><i>2.12.1 LQG/LTR Method</i> 82</p> <p><i>2.12.2 H</i>2<i>/H</i>?E?E <i>Design Methods</i> 89</p> <p>2.13 Summary 96</p> <p>Exercises 98</p> <p>References 101</p> <p><b>3 Optimal Navigation and Control of Aircraft 103</b></p> <p>3.1 Aircraft Navigation Plant 104</p> <p><i>3.1.1 Wind Speed and Direction</i> 110</p> <p><i>3.1.2 Navigational Subsystems</i> 112</p> <p>3.2 Optimal Aircraft Navigation 115</p> <p><i>3.2.1 Optimal Navigation Formulation</i> 116</p> <p><i>3.2.2 Extremal Solution of the Boundary-Value Problem: Long-Range</i> <i>Flight Example</i> 119</p> <p><i>3.2.3 Great Circle Navigation</i> 121</p> <p>3.3 Aircraft Attitude Dynamics 128</p> <p><i>3.3.1 Translational and Rotational Kinetics</i> 132</p> <p><i>3.3.2 Attitude Relative to the Velocity Vector</i> 135</p> <p>3.4 Aerodynamic Forces and Moments 136</p> <p>3.5 Longitudinal Dynamics 139</p> <p><i>3.5.1 Longitudinal Dynamics Plant</i> 142</p> <p>3.6 Optimal Multi-variable Longitudinal Control 145</p> <p>3.7 Multi-input Optimal Longitudinal Control 147</p> <p>3.8 Optimal Airspeed Control 148</p> <p><i>3.8.1 LQG/LTR Design Example</i> 149</p> <p><i>3.8.2 H</i>?E?E <i>Design Example</i> 160</p> <p><i>3.8.3 Altitude and Mach Control</i> 166</p> <p>3.9 Lateral-Directional Control Systems 173</p> <p><i>3.9.1 Lateral-Directional Plant</i> 173</p> <p><i>3.9.2 Optimal Roll Control</i> 177</p> <p><i>3.9.3 Multi-variable Lateral-Directional Control: Heading-Hold Autopilot</i> 180</p> <p>3.10 Optimal Control of Inertia-Coupled Aircraft Rotation 183</p> <p>3.11 Summary 189</p> <p>Exercises 192</p> <p>References 194</p> <p><b>4 Optimal Guidance of Rockets 195</b></p> <p>4.1 Introduction 195</p> <p>4.2 Optimal Terminal Guidance of Interceptors 195</p> <p>4.3 Non-planar Optimal Tracking System for Interceptors: 3DPN 199</p> <p>4.4 Flight in a Vertical Plane 208</p> <p>4.5 Optimal Terminal Guidance 211</p> <p>4.6 Vertical Launch of a Rocket (Goddard’s Problem) 216</p> <p>4.7 Gravity-Turn Trajectory of Launch Vehicles 219</p> <p><i>4.7.1 Launch to Circular Orbit: Modulated Acceleration</i> 220</p> <p><i>4.7.2 Launch to Circular Orbit: Constant Acceleration</i> 227</p> <p>4.8 Launch of Ballistic Missiles 228</p> <p><i>4.8.1 Gravity-Turn with Modulated Forward Acceleration</i> 232</p> <p><i>4.8.2 Modulated Forward and Normal Acceleration</i> 233</p> <p>4.9 Planar Tracking Guidance System 237</p> <p><i>4.9.1 Stability, Controllability, and Observability</i> 241</p> <p><i>4.9.2 Nominal Plant for Tracking Gravity-Turn Trajectory</i> 243</p> <p>4.10 Robust and Adaptive Guidance 247</p> <p>4.11 Guidance with State Feedback 250</p> <p><i>4.11.1 Guidance with Normal Acceleration Input</i> 250</p> <p>4.12 Observer-Based Guidance of Gravity-Turn Launch Vehicle 254</p> <p><i>4.12.1 Altitude-Based Observer with Normal Acceleration Input</i> 255</p> <p><i>4.12.2 Bi-output Observer with Normal Acceleration Input</i> 260</p> <p>4.13 Mass and Atmospheric Drag Modeling 266</p> <p>4.14 Summary 274</p> <p>Exercises 275</p> <p>References 275</p> <p><b>5 Attitude Control of Rockets 277</b></p> <p>5.1 Introduction 277</p> <p>5.2 Attitude Control Plant 277</p> <p>5.3 Closed-Loop Attitude Control 281</p> <p>5.4 Roll Control System 281</p> <p>5.5 Pitch Control of Rockets 282</p> <p><i>5.5.1 Pitch Program</i> 282</p> <p><i>5.5.2 Pitch Guidance and Control System</i> 283</p> <p><i>5.5.3 Adaptive Pitch Control System</i> 288</p> <p>5.6 Yaw Control of Rockets 294</p> <p>5.7 Summary 295</p> <p>Exercises 295</p> <p>Reference 296</p> <p><b>6 Spacecraft Guidance Systems 297</b></p> <p>6.1 Introduction 297</p> <p>6.2 Orbital Mechanics 297</p> <p><i>6.2.1 Orbit Equation</i> 298</p> <p><i>6.2.2 Perifocal and Celestial Frames</i> 299</p> <p><i>6.2.3 Time Equation</i> 301</p> <p><i>6.2.4 Lagrange’s Coefficients</i> 304</p> <p>6.3 Spacecraft Terminal Guidance 305</p> <p><i>6.3.1 Minimum Energy Orbital Transfer</i> 307</p> <p><i>6.3.2 Lambert’s Theorem</i> 311</p> <p><i>6.3.3 Lambert’s Problem</i> 313</p> <p><i>6.3.4 Lambert Guidance of Rockets</i> 322</p> <p><i>6.3.5 Optimal Terminal Guidance of Re-entry Vehicles</i> 327</p> <p>6.4 General Orbital Plant for Tracking Guidance 334</p> <p>6.5 Planar Orbital Regulation 339</p> <p>6.6 Optimal Non-planar Orbital Regulation 345</p> <p>6.7 Summary 352</p> <p>Exercises 352</p> <p>References 355</p> <p><b>7 Optimal Spacecraft Attitude Control 357</b></p> <p>7.1 Introduction 357</p> <p>7.2 Terminal Control of Spacecraft Attitude 357</p> <p><i>7.2.1 Optimal Single-Axis Rotation of Spacecraft</i> 358</p> <p>7.3 Multi-axis Rotational Maneuvers of Spacecraft 364</p> <p>7.4 Spacecraft Control Torques 375</p> <p><i>7.4.1 Rocket Thrusters</i> 375</p> <p><i>7.4.2 Reaction Wheels, Momentum Wheels and Control Moment Gyros</i> 377</p> <p><i>7.4.3 Magnetic Field Torque</i> 378</p> <p>7.5 Satellite Dynamics Plant for Tracking Control 379</p> <p>7.6 Environmental Torques 380</p> <p><i>7.6.1 Gravity-Gradient Torque</i> 382</p> <p>7.7 Multi-variable Tracking Control of Spacecraft Attitude 383</p> <p><i>7.7.1 Active Attitude Control of Spacecraft by Reaction Wheels</i> 385</p> <p>7.8 Summary 389</p> <p>Exercises 389</p> <p>References 390</p> <p><b>Appendix A: Linear Systems 391</b></p> <p>A.1 Definition 391</p> <p>A.2 Linearization 392</p> <p>A.3 Solution to Linear State Equations 392</p> <p><i>A.3.1 Homogeneous Solution</i> 393</p> <p><i>A.3.2 General Solution</i> 393</p> <p>A.4 Linear Time-Invariant System 394</p> <p>A.5 Linear Time-Invariant Stability Criteria 395</p> <p>A.6 Controllability of Linear Time-Invariant Systems 395</p> <p>A.7 Observability of Linear Time-Invariant Systems 395</p> <p>A.8 Transfer Matrix 396</p> <p>A.9 Singular Value Decomposition 396</p> <p>A.10 Linear Time-Invariant Control Design 397</p> <p><i>A.10.1 Regulator Design by Eigenstructure Assignment</i> 397</p> <p><i>A.10.2 Regulator Design by Linear Optimal Control</i> 398</p> <p><i>A.10.3 Linear Observers and Output Feedback Compensators</i> 398</p> <p>References 400</p> <p><b>Appendix B: Stability 401</b></p> <p>B.1 Preliminaries 401</p> <p>B.2 Stability in the Sense of Lagrange 402</p> <p>B.3 Stability in the Sense of Lyapunov 404</p> <p><i>B.3.1 Asymptotic Stability</i> 406</p> <p><i>B.3.2 Global Asymptotic Stability</i> 406</p> <p><i>B.3.3 Lyapunov’s Theorem</i> 407</p> <p><i>B.3.4 Krasovski’s Theorem</i> 408</p> <p><i>B.3.5 Lyapunov Stability of Linear Systems</i> 408</p> <p>References 408</p> <p><b>Appendix C: Control of Underactuated Flight Systems 409</b></p> <p>C.1 Adaptive Rocket Guidance with Forward Acceleration Input 409</p> <p>C.2 Thrust Saturation and Rate Limits (Increased Underactuation) 415</p> <p>C.3 Single- and Bi-output Observers with Forward Acceleration Input 417</p> <p>References 432</p> <p><b>Index 433</b></p>
<b>Ashish Tewari</b> is a Professor in the Department of Aerospace Engineering at the IIT-Kanpur. He specializes in flight mechanics and control, and his research areas include attitude dynamics and control, re-entry flight dynamics and control, non-linear optimal control and active control of flexible flight and structures. He has authored 2 books <i>Atmospheric and Space Flight Dynamics</i> and <i>Modern Control Design with MATLAB and SIMULINK</i>, and over 40 refereed journal and conference papers.
<i>Advanced Control of Aircraft, Spacecraft and Rockets</i> introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. <p><i>Advanced Control of Aircraft, Spacecraft and Rockets</i> features worked examples and problems at the end of each chapter as well as a number of MATLAB/ Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.</p> <ul> <li> <div>Presents a unified approach to aircraft, rocket and spacecraft flight control systems</div> </li> <li> <div>Includes chapters on nonlinear, optimal control techniques with numerical solution methods, robust and adaptive guidance, navigation, and attitude control for atmospheric and space flight vehicles</div> </li> <li> <div>Allows the reader to test their grasp of the concepts presented via numerous pedagogical features including worked-out examples and problems at the end of each chapter, as well as case studies, short 'knowledge-check' questions, and longer assignments including coding and examination questions</div> </li> <li> <div> Appropriate for both intermediate and advanced level courses on automatic control of aircraft, spacecraft, and rocket, with emphasis on non-trivial, multi-variable applications.</div> </li> </ul>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €